Bone mineral density radiopaque templates for cone beam computed tomography and multidetector computed tomography
Shazmim D. Hossain , Alexey V. Petraikin , Alexandr A. Muraev , Aslan B. Danaev , Dmitry V. Burenchev , Alexander A. Dolgalev , Yuriy A. Vasilev , Darya E. Sharova , Sergey Yu. Ivanov
Digital Diagnostics ›› 2023, Vol. 4 ›› Issue (3) : 292 -305.
Bone mineral density radiopaque templates for cone beam computed tomography and multidetector computed tomography
BACKGROUND: Cone beam computed tomography is widely applied for diagnostics and planning various manipulations in the maxillofacial region, for example, dental implantation. Its advantages include high spatial resolution, low radiation exposure, and cost-effectiveness. However, it has a significant drawback: the inability to determine the density of the jaw bone in Hounsfield Units (HU).
AIMS: This study aimed to develop radiopaque templates with sets of X-ray density based on potassium hydrophosphate and beta-tricalcium phosphate, to study templates on various cone beam computed tomography and multidetector computed tomography devices, and to determine a cross-calibration algorithm for assessing the bone mineral density of the jaw in HU.
MATERIALS AND METHODS: The bone mineral density template comprised microtubes (0.25 ml) with potassium hydrophosphate concentrations of 49.96, 99.98, 174.99, 349.99, and 549.98 mg/ml, and a suspension of beta-tricalcium phosphate with an equivalent concentration of potassium hydrophosphate 1,506 mg/ml, designed to simulate the types of bone density according to C. Mish. The study was carried out on two multidetector computed tomography and four cone beam computed tomography machines. Cross-calibration was referred on the “standard” multidetector computed tomography 1 mode 120 kV, 200 mA.
RESULTS: There was a significant scatter of the X-ray values (HU for multidetector computed tomography and GV for cone beam computed tomography) vs. bone mineral density, with varying slopes, bias, and curve shapes. After cross-calibration, good comparability corresponding to the multidetector computed tomography 1 mode was shown. The median of the differences before cross-calibration was 160 relative units (HU, GV), after decreased by 10 times and amounted to 16 rel. units (p=0.000). The mean difference for cone beam computed tomography was significantly higher (30 rel. units) than for multidetector computed tomography (8 rel. units) (p=0.024, Mann–Whitney U test).
CONCLUSION: The developed radiopaque template enables the standardization of densitometric indicators for cone beam computed tomography and various multidetector computed tomography modes. On average, the spread after cross-calibration is reduced by 10 times, which makes it possible to classify bone tissue in HU according to C. Mish.
cone beam computed tomography / multidetector computed tomography / cross-calibration / bone mineral density / X-ray density / densitometry / dental implantation
| [1] |
Hounsfield GN. Computerized transverse axial scanning (tomography). Description of system. Br J Radiol. 1973;46(552): 1016–1022. doi: 10.1259/0007-1285-46-552-1016 |
| [2] |
Hounsfield G.N. Computerized transverse axial scanning (tomography). Description of system // Br J Radiol. 1973. Vol. 46, N 552. P. 1016–1022. doi: 10.1259/0007-1285-46-552-1016 |
| [3] |
Hounsfield GN. Computerized transverse axial scanning (tomography). Description of system. Br J Radiol. 1973;46(552): 1016–1022. doi: 10.1259/0007-1285-46-552-1016 |
| [4] |
Bornstein MM, Scarfe WC, Vaughn VM, Jacobs R. Cone beam computed tomography in implant dentistry: A systematic review focusing on guidelines, indications, and radiation dose risks. Int J Oral Maxillofac Implants. 2014;29(Suppl):55–77. doi: 10.11607/jomi.2014suppl.g1.4 |
| [5] |
Bornstein M.M., Scarfe W.C., Vaughn V.M., Jacobs R. Cone beam computed tomography in implant dentistry: A systematic review focusing on guidelines, indications, and radiation dose risks // Int J Oral Maxillofac Implants. 2014. Vol. 2014, N 29, Suppl. P. 55–77. doi: 10.11607/jomi.2014suppl.g1.4 |
| [6] |
Bornstein MM, Scarfe WC, Vaughn VM, Jacobs R. Cone beam computed tomography in implant dentistry: A systematic review focusing on guidelines, indications, and radiation dose risks. Int J Oral Maxillofac Implants. 2014;29(Suppl):55–77. doi: 10.11607/jomi.2014suppl.g1.4 |
| [7] |
DenOtter TD, Schubert J. Hounsfield Unit. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022. |
| [8] |
DenOtter T.D., Schubert J. Hounsfield Unit. In: StatPearls. Treasure Island (FL): StatPearls Publishing; March 9, 2022. |
| [9] |
DenOtter TD, Schubert J. Hounsfield Unit. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022. |
| [10] |
Kim Y, Oh TJ, Misch CE, Wang HL. Occlusal considerations in implant therapy: Clinical guidelines with biomechanical rationale. Clin Oral Implants Res. 2005;16(1):26–35. doi: 10.1111/j.1600-0501.2004.01067.x |
| [11] |
Kim Y., Oh T.J., Misch C.E., Wang H.L. Occlusal considerations in implant therapy: Clinical guidelines with biomechanical rationale // Clin Oral Implants Res. 2005. Vol. 16, N 1. P. 26–35. doi: 10.1111/j.1600-0501.2004.01067.x |
| [12] |
Kim Y, Oh TJ, Misch CE, Wang HL. Occlusal considerations in implant therapy: Clinical guidelines with biomechanical rationale. Clin Oral Implants Res. 2005;16(1):26–35. doi: 10.1111/j.1600-0501.2004.01067.x |
| [13] |
Woelber JP, Fleiner J, Rau J, et al. Accuracy and usefulness of CBCT in periodontology: A systematic review of the literature. Int J Periodontics Restorative Dent. 2018;38(2):289–297. doi: 10.11607/prd.2751 |
| [14] |
Woelber J.P., Fleiner J., Rau J., et al. Accuracy and usefulness of CBCT in periodontology: A systematic review of the literature // Int J Periodontics Restorative Dent. 2018. Vol. 38, N 2. P. 289–297. doi: 10.11607/prd.2751 |
| [15] |
Woelber JP, Fleiner J, Rau J, et al. Accuracy and usefulness of CBCT in periodontology: A systematic review of the literature. Int J Periodontics Restorative Dent. 2018;38(2):289–297. doi: 10.11607/prd.2751 |
| [16] |
Song D, Shujaat S, de Faria Vasconcelos K, et al. Diagnostic accuracy of CBCT versus intraoral imaging for assessment of peri-implant bone defects. BMC Med Imaging. 2021;21(1):23. doi: 10.1186/s12880-021-00557-9 |
| [17] |
Song D., Shujaat S., de Faria Vasconcelos K., et al. Diagnostic accuracy of CBCT versus intraoral imaging for assessment of peri-implant bone defects // BMC Med Imaging. 2021. Vol. 21, N 1. P. 23. doi: 10.1186/s12880-021-00557-9 |
| [18] |
Song D, Shujaat S, de Faria Vasconcelos K, et al. Diagnostic accuracy of CBCT versus intraoral imaging for assessment of peri-implant bone defects. BMC Med Imaging. 2021;21(1):23. doi: 10.1186/s12880-021-00557-9 |
| [19] |
Savoldi F, Yon MJ, Kwok VM, et al. Accuracy of CBCT in the identification of mental, lingual, and retromolar foramina: A comparison with visual inspection of human dry mandibles. Int J Periodontics Restorative Dent. 2021;41(6):e277–e286. doi: 10.11607/prd.4770 |
| [20] |
Savoldi F., Yon M.J., Kwok V.M., et al. Accuracy of CBCT in the identification of mental, lingual, and retromolar foramina: A comparison with visual inspection of human dry mandibles // Int J Periodontics Restorative Dent. 2021. Vol. 4, N 6. P. e277–e286. doi: 10.11607/prd.4770 |
| [21] |
Savoldi F, Yon MJ, Kwok VM, et al. Accuracy of CBCT in the identification of mental, lingual, and retromolar foramina: A comparison with visual inspection of human dry mandibles. Int J Periodontics Restorative Dent. 2021;41(6):e277–e286. doi: 10.11607/prd.4770 |
| [22] |
Levi C, Gray JE, McCullough EC, Hattery RR. The unreliability of CT numbers as absolute values. AJR Am J Roentgenol. 1982;139(3): 443–447. doi: 10.2214/ajr.139.3.443 |
| [23] |
Levi C., Gray J.E., McCullough E.C., Hattery R.R. The unreliability of CT numbers as absolute values // AJR Am J Roentgenol. 1982. Vol. 139, N 3. P. 443–447. doi: 10.2214/ajr.139.3.443 |
| [24] |
Levi C, Gray JE, McCullough EC, Hattery RR. The unreliability of CT numbers as absolute values. AJR Am J Roentgenol. 1982;139(3): 443–447. doi: 10.2214/ajr.139.3.443 |
| [25] |
Petraikin AV, Skripnikova IA. Quantitative computed tomography, modern data. Review. Medical Imaging. 2021;25(4):134–146. (In Russ). doi: 10.24835/1607-0763-1049 |
| [26] |
Петряйкин А.В., Скрипникова И.А. Количественная компьютерная томография, современные данные. Обзор // Медицинская визуализация. 2021. Т. 25, № 4. С. 134–146. doi: 10.24835/1607-0763-1049 |
| [27] |
Petraikin AV, Skripnikova IA. Quantitative computed tomography, modern data. Review. Medical Imaging. 2021;25(4):134–146. (In Russ). doi: 10.24835/1607-0763-1049 |
| [28] |
Ivanov DV, Kirillova IV, Kossovich LY, et al. Influence of convolution kernel and beam-hardening effect on the assessment of trabecular bonemineral density using quantitative computed tomography. News Saratov University. 2020;20(2):205–219. (In Russ). doi: 10.18500/1816-9791-2020-20-2-205-219 |
| [29] |
Иванов Д.В., Кириллова И.В., Коссович Л.Ю., и др. Влияние конволюционных ядер и эффекта «упрочнения луча» на оценку минеральной плотности губчатой костной ткани с использованием количественной компьютерной томографии // Известия Саратовского университета. 2020. Т. 20, № 2. С. 205–219. doi: 10.18500/1816-9791-2020-20-2-205-219 |
| [30] |
Ivanov DV, Kirillova IV, Kossovich LY, et al. Influence of convolution kernel and beam-hardening effect on the assessment of trabecular bonemineral density using quantitative computed tomography. News Saratov University. 2020;20(2):205–219. (In Russ). doi: 10.18500/1816-9791-2020-20-2-205-219 |
| [31] |
Petraikin AV, Smorchkova AK, Kudryavtsev ND, et al. Comparison of two asynchronous QCT methods. Medical Imaging. 2020;24(4): 108–118. (In Russ). doi: 10.24835/1607-0763-2020-4-108-118 |
| [32] |
Петряйкин А.В., Сморчкова А.К., Кудрявцев Н.Д., и др. Сравнение двух методик асинхронной КТ-денситометрии // Медицинская визуализация. 2020. T. 24, № 4. С. 108–118. doi: 10.24835/1607-0763-2020-4-108-118 |
| [33] |
Petraikin AV, Smorchkova AK, Kudryavtsev ND, et al. Comparison of two asynchronous QCT methods. Medical Imaging. 2020;24(4): 108–118. (In Russ). doi: 10.24835/1607-0763-2020-4-108-118 |
| [34] |
Witt RM, Cameron JR. Bone Standards. USAEC Progress Report No. COO-1422-42 US Atomic Energy Comission, Madison, Wisconsin; 1969. |
| [35] |
Witt R.M., Cameron J.R. Bone Standards. USAEC Progress Report COO-1422-42, US Atomic Energy Comission, Madison, Wisconsin, 1969. |
| [36] |
Witt RM, Cameron JR. Bone Standards. USAEC Progress Report No. COO-1422-42 US Atomic Energy Comission, Madison, Wisconsin; 1969. |
| [37] |
Cann CE, Genant HK. Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr. 1980;4(4):493–500. doi: 10.1097/00004728-198008000-00018 |
| [38] |
Cann C.E., Genant H.K. Precise measurement of vertebral mineral content using computed tomography // J Comput Assist Tomogr. 1980. Vol. 4, N 4. P. 493–500. doi: 10.1097/00004728-198008000-00018 |
| [39] |
Cann CE, Genant HK. Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr. 1980;4(4):493–500. doi: 10.1097/00004728-198008000-00018 |
| [40] |
Hubbell JH. Photon cross sections, attenuation coefficients, and energy absorption coefficients from 10 keV to 100 GeV. National Institute of Standards and Technology, Gaithersburg, MD; 1969. doi: 10.6028/NBS.NSRDS.29 |
| [41] |
Hubbell J.H. Photon cross sections, attenuation coefficients, and energy absorption coefficients from 10 keV to 100 GeV. National Institute of Standards and Technology, Gaithersburg, MD, 1969. doi: 10.6028/NBS.NSRDS.29 |
| [42] |
Hubbell JH. Photon cross sections, attenuation coefficients, and energy absorption coefficients from 10 keV to 100 GeV. National Institute of Standards and Technology, Gaithersburg, MD; 1969. doi: 10.6028/NBS.NSRDS.29 |
| [43] |
International Commission on Radiation Units and Measurements (ICRU). Tissue Substitutes in Radiation Dosimetry and Measurement. ICRU Report.1989;(44):1–189. |
| [44] |
International Commission on Radiation Units and Measurements (ICRU). Tissue Substitutes in Radiation Dosimetry and Measurement // ICRU Report. 1989. N 44. P. 1–189. |
| [45] |
International Commission on Radiation Units and Measurements (ICRU). Tissue Substitutes in Radiation Dosimetry and Measurement. ICRU Report.1989;(44):1–189. |
| [46] |
Nikolaev AE, Korkunova OA, Blokhin IA, et al. Calcification density oncomputed tomography depending on scanning parameters: Phantom study. (In Russ). Med Imaging. 2020;24(4):119–132. doi: 10.24835/1607-0763-2020-4-119-132 |
| [47] |
Николаев А.Е., Коркунова О.А., Блохин И.А., и др. Плотность кальцификации при компьютерной томографии в зависимости от параметров сканирования: фантомное исследование // Медицинская визуализация. 2020. T. 24, № 4. С. 119–132. doi: 10.24835/1607-0763-2020-4-119-132 |
| [48] |
Nikolaev AE, Korkunova OA, Blokhin IA, et al. Calcification density oncomputed tomography depending on scanning parameters: Phantom study. (In Russ). Med Imaging. 2020;24(4):119–132. doi: 10.24835/1607-0763-2020-4-119-132 |
| [49] |
Gaur A, Dhillon M, Puri N, et al. Questionable accuracy of CBCT in determining bone density: A comparative CBCT-CT in vitro study. Dent Med Probl. 2022;59(3):413–419. doi: 10.17219/dmp/143504 |
| [50] |
Gaur A., Dhillon M., Puri N., et al. Questionable accuracy of CBCT in determining bone density: A comparative CBCT-CT in vitro study // Dent Med Probl. 2022. Vol. 59, N 3. P. 413–419. doi: 10.17219/dmp/143504 |
| [51] |
Gaur A, Dhillon M, Puri N, et al. Questionable accuracy of CBCT in determining bone density: A comparative CBCT-CT in vitro study. Dent Med Probl. 2022;59(3):413–419. doi: 10.17219/dmp/143504 |
| [52] |
Martinez C, de Molina C, Desco M, Abella M. Optimization of a calibration phantom for quantitative radiography. Med Phys. 2021;48(3):1039–1053. doi: 10.1002/mp.14638 |
| [53] |
Martinez C., de Molina C., Desco M., Abella M. Optimization of a calibration phantom for quantitative radiography // Med Phys. 2021. Vol. 48, N 3. P. 1039–1053. doi: 10.1002/mp.14638 |
| [54] |
Martinez C, de Molina C, Desco M, Abella M. Optimization of a calibration phantom for quantitative radiography. Med Phys. 2021;48(3):1039–1053. doi: 10.1002/mp.14638 |
| [55] |
Hu Z, Wang T, Pan X, et al. Comparison of diagnosis of cracked tooth using contrast-enhanced CBCT and micro-CT. Dentomaxillofac Radiol. 2021;50(7):20210003. doi: 10.1259/dmfr.20210003 |
| [56] |
Hu Z., Wang T., Pan X., et al. Comparison of diagnosis of cracked tooth using contrast-enhanced CBCT and micro-CT // Dentomaxillofac Radiol. 2021. Vol. 50, N 7. P. 20210003. doi: 10.1259/dmfr.20210003 |
| [57] |
Hu Z, Wang T, Pan X, et al. Comparison of diagnosis of cracked tooth using contrast-enhanced CBCT and micro-CT. Dentomaxillofac Radiol. 2021;50(7):20210003. doi: 10.1259/dmfr.20210003 |
| [58] |
Lehmann L, Alvarez R, Macovski A, et al. Generalized image combinations in dual KVP digital radiography. Med Phys. 1981;8(5):659–667. doi: 10.1118/1.595025 |
| [59] |
Lehmann L., Alvarez R., Macovski A., et al. Generalized image combinations in dual KVP digital radiography // Med Phys. 1981. Vol. 8, N 5. P. 659–667. doi: 10.1118/1.595025 |
| [60] |
Lehmann L, Alvarez R, Macovski A, et al. Generalized image combinations in dual KVP digital radiography. Med Phys. 1981;8(5):659–667. doi: 10.1118/1.595025 |
| [61] |
Chuang KS, Huang H. Comparison of four dual energy image decomposition methods. Physics Med Biol. 1988;33(4):455. doi: 10.1088/0031-9155/33/4/005 |
| [62] |
Chuang K.S., Huang H. Comparison of four dual energy image decomposition methods // Physics Med Biol. 1988. Vol. 33, N 4. P. 455. doi: 10.1088/0031-9155/33/4/005 |
| [63] |
Chuang KS, Huang H. Comparison of four dual energy image decomposition methods. Physics Med Biol. 1988;33(4):455. doi: 10.1088/0031-9155/33/4/005 |
| [64] |
Gingold EL, Hasegawa BH. Systematic bias in basis material decomposition applied to quantitative dual-energy X-ray imaging. Med Phys. 1992;19(1):25–33. doi: 10.1088/0031-9155/33/4/005 |
| [65] |
Gingold E.L., Hasegawa B.H. Systematic bias in basis material decomposition applied to quantitative dual-energy X-ray imaging // Med Phys. 1992. Vol. 9, N 1. P. 25–33. doi: 10.1118/1.596889 |
| [66] |
Gingold EL, Hasegawa BH. Systematic bias in basis material decomposition applied to quantitative dual-energy X-ray imaging. Med Phys. 1992;19(1):25–33. doi: 10.1088/0031-9155/33/4/005 |
| [67] |
Cardinal HN, Fenster A. An accurate method for direct dual-energy calibration and decomposition. Med Phys. 1990;17(3):327–341. doi: 10.1118/1.596512 |
| [68] |
Cardinal H.N., Fenster A. An accurate method for direct dual-energy calibration and decomposition // Med Phys. 1990. Vol. 17, N 3. P. 327–341. doi: 10.1118/1.596512 |
| [69] |
Cardinal HN, Fenster A. An accurate method for direct dual-energy calibration and decomposition. Med Phys. 1990;17(3):327–341. doi: 10.1118/1.596512 |
| [70] |
Jacobs R, Salmon B, Codari M, et al. Cone beam computed tomography in implant dentistry: recommendations for clinical use. BMC Oral Health. 2018;18(1):88. doi: 10.1186/s12903-018-0523-5 |
| [71] |
Jacobs R., Salmon B., Codari M., et al. Cone beam computed tomography in implant dentistry: Recommendations for clinical use // BMC Oral Health. 2018. Vol. 18, N 1. P. 88. doi: 10.1186/s12903-018-0523-5 |
| [72] |
Jacobs R, Salmon B, Codari M, et al. Cone beam computed tomography in implant dentistry: recommendations for clinical use. BMC Oral Health. 2018;18(1):88. doi: 10.1186/s12903-018-0523-5 |
| [73] |
Dolgalev AA, Danaev AB, Yusupov RD, et al. Objective assessment of measurement error in significant cone-beam computed tomography in dental practice. Med Alphabet. 2022;(7):65–68. (In Russ). doi: 10.33667/2078-5631-2022-7-65-68 |
| [74] |
Долгалев А.А., Данаев А.Б., Юсупов Р.Д., и др. Объективная оценка погрешности показателей плотности при проведении конусно-лучевой компьютерной томографии в стоматологической практике // Медицинский алфавит. 2022. № 7. С. 65–68. doi: 10.33667/2078-5631-2022-7-65-68 |
| [75] |
Dolgalev AA, Danaev AB, Yusupov RD, et al. Objective assessment of measurement error in significant cone-beam computed tomography in dental practice. Med Alphabet. 2022;(7):65–68. (In Russ). doi: 10.33667/2078-5631-2022-7-65-68 |
| [76] |
Cassetta M, Stefanelli LV, Di Carlo S, et al. The accuracy of CBCT in measuring jaws bone density. Eur Rev Med Pharmacol Sci. 2012;16(10):1425–1429. |
| [77] |
Cassetta M., Stefanelli L.V., Di Carlo S., et al. The accuracy of CBCT in measuring jaws bone density // Eur Rev Med Pharmacol Sci. 2012. Vol. 16, N 10. P. 1425–1429. |
| [78] |
Cassetta M, Stefanelli LV, Di Carlo S, et al. The accuracy of CBCT in measuring jaws bone density. Eur Rev Med Pharmacol Sci. 2012;16(10):1425–1429. |
| [79] |
Harvey S, Patel S. Guidelines and template for reporting on CBCT scans. Br Dent J. 2020;228(1):15–18. doi: 10.1038/s41415-019-1115-8 |
| [80] |
Harvey S., Patel S. Guidelines and template for reporting on CBCT scans // Br Dent J. 2020. Vol. 228, N 1. P. 15–18. doi: 10.1038/s41415-019-1115-8 |
| [81] |
Harvey S, Patel S. Guidelines and template for reporting on CBCT scans. Br Dent J. 2020;228(1):15–18. doi: 10.1038/s41415-019-1115-8 |
| [82] |
Cassetta M, Stefanelli LV, Pacifici A, et al. How accurate is CBCT in measuring bone density? A comparative CBCT-CT in vitro study. Clin Implant Dent Relat Res. 2014;16(4):471–478. doi: 10.1111/cid.12027 |
| [83] |
Cassetta M., Stefanelli L.V., Pacifici A., et al. How accurate is CBCT in measuring bone density? A comparative CBCT-CT in vitro study // Clin Implant Dent Relat Res. 2014. Vol. 16, N 4. P. 471–478. doi: 10.1111/cid.12027 |
| [84] |
Cassetta M, Stefanelli LV, Pacifici A, et al. How accurate is CBCT in measuring bone density? A comparative CBCT-CT in vitro study. Clin Implant Dent Relat Res. 2014;16(4):471–478. doi: 10.1111/cid.12027 |
| [85] |
Parsa A, Ibrahim N, Hassan B, et al. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT. Clin Oral Implants Res. 2015;26(1):e1–7. doi: 10.1111/clr.12315 |
| [86] |
Parsa A., Ibrahim N., Hassan B., et al. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT // Clin Oral Implants Res. 2015. Vol. 26, N 1. P. e1–7. doi: 10.1111/clr.12315 |
| [87] |
Parsa A, Ibrahim N, Hassan B, et al. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT. Clin Oral Implants Res. 2015;26(1):e1–7. doi: 10.1111/clr.12315 |
| [88] |
Van Dessel J, Nicolielo LF, Huang Y, et al. Accuracy and reliability of different cone beam computed tomography (CBCT) devices for structural analysis of alveolar bone in comparison with multislice CT and micro-CT. Eur J Oral Implantol. 2017;10(1):95–105. |
| [89] |
Van Dessel J., Nicolielo L.F., Huang Y., et al. Accuracy and reliability of different cone beam computed tomography (CBCT) devices for structural analysis of alveolar bone in comparison with multislice CT and micro-CT // Eur J Oral Implantol. 2017. Vol. 10, N 1. P. 95–105. |
| [90] |
Van Dessel J, Nicolielo LF, Huang Y, et al. Accuracy and reliability of different cone beam computed tomography (CBCT) devices for structural analysis of alveolar bone in comparison with multislice CT and micro-CT. Eur J Oral Implantol. 2017;10(1):95–105. |
| [91] |
Dillenseger JP, Matern JF, Gros CI, et al. MSCT versus CBCT: Evaluation of high-resolution acquisition modes for dento-maxillary and skull-base imaging. Eur Radiol. 2015;25(2):505–515. doi: 10.1007/s00330-014-3439-8 |
| [92] |
Dillenseger J.P., Matern J.F., Gros C.I., et al. MSCT versus CBCT: Evaluation of high-resolution acquisition modes for dento-maxillary and skull-base imaging // Eur Radiol. 2015. Vol. 25, N 2. P. 505–515. doi: 10.1007/s00330-014-3439-8 |
| [93] |
Dillenseger JP, Matern JF, Gros CI, et al. MSCT versus CBCT: Evaluation of high-resolution acquisition modes for dento-maxillary and skull-base imaging. Eur Radiol. 2015;25(2):505–515. doi: 10.1007/s00330-014-3439-8 |
| [94] |
Schegerer AA, Lechel U, Ritter M, et al. Dose and image quality of cone-beam computed tomography as compared with conventional multislice computed tomography in abdominal imaging. Invest Radiol. 2014;49(10):675–684. doi: 10.1097/RLI.0000000000000069 |
| [95] |
Schegerer A.A., Lechel U., Ritter M., et al. Dose and image quality of cone-beam computed tomography as compared with conventional multislice computed tomography in abdominal imaging // Invest Radiol. 2014. Vol. 49, N 10. P. 675–684. doi: 10.1097/RLI.0000000000000069 |
| [96] |
Schegerer AA, Lechel U, Ritter M, et al. Dose and image quality of cone-beam computed tomography as compared with conventional multislice computed tomography in abdominal imaging. Invest Radiol. 2014;49(10):675–684. doi: 10.1097/RLI.0000000000000069 |
| [97] |
Veldhoen S, Schöllchen M, Hanken H, et al. Performance of cone-beam computed tomography and multidetector computed tomography in diagnostic imaging of the midface: A comparative study on Phantom and cadaver head scans. Eur Radiol. 2017;27(2):790–800. doi: 10.1007/s00330-016-4387-2 |
| [98] |
Veldhoen S., Schöllchen M., Hanken H., et al. Performance of cone-beam computed tomography and multidetector computed tomography in diagnostic imaging of the midface: A comparative study on Phantom and cadaver head scans // Eur Radiol. 2017. Vol. 27, N 2. P. 790–800. doi: 10.1007/s00330-016-4387-2 |
| [99] |
Veldhoen S, Schöllchen M, Hanken H, et al. Performance of cone-beam computed tomography and multidetector computed tomography in diagnostic imaging of the midface: A comparative study on Phantom and cadaver head scans. Eur Radiol. 2017;27(2):790–800. doi: 10.1007/s00330-016-4387-2 |
| [100] |
Grunz JP, Weng AM, Gietzen CH, et al. Evaluation of ultra-high-resolution cone-beam CT prototype of twin robotic radiography system for cadaveric wrist imaging. Acad Radiol. 202;28(10):e314–e322. doi: 10.1016/j.acra.2020.06.018 |
| [101] |
Grunz J.P., Weng A.M., Gietzen C.H., et al. Evaluation of ultra-high-resolution cone-beam CT prototype of twin robotic radiography system for cadaveric wrist imaging // Acad Radiol. 2021. Vol. 28, N 10. P. e314–e322. doi: 10.1016/j.acra.2020.06.018 |
| [102] |
Grunz JP, Weng AM, Gietzen CH, et al. Evaluation of ultra-high-resolution cone-beam CT prototype of twin robotic radiography system for cadaveric wrist imaging. Acad Radiol. 202;28(10):e314–e322. doi: 10.1016/j.acra.2020.06.018 |
| [103] |
Medelnik J, Hertrich K, Steinhäuser-Andresen S, et al. Accuracy of anatomical landmark identification using different CBCT- and MSCT-based 3D images: An in vitro study. J Orofac Orthop. 2011;72(4):261–278. doi: 10.1007/s00056-011-0032-5 |
| [104] |
Medelnik J., Hertrich K., Steinhäuser-Andresen S., et al. Accuracy of anatomical landmark identification using different CBCT- and MSCT-based 3D images: An in vitro study // J Orofac Orthop. 2011. Vol. 72, N 4. P. 261–278. doi: 10.1007/s00056-011-0032-5 |
| [105] |
Medelnik J, Hertrich K, Steinhäuser-Andresen S, et al. Accuracy of anatomical landmark identification using different CBCT- and MSCT-based 3D images: An in vitro study. J Orofac Orthop. 2011;72(4):261–278. doi: 10.1007/s00056-011-0032-5 |
| [106] |
Elshenawy H, Aly W, Salah N, et al. Influence of small, midi, medium and large fields of view on accuracy of linear measurements in CBCT imaging: Diagnostic accuracy study. Open Access Maced J Med Sci. 2019;7(6):1037–1041. doi: 10.3889/oamjms.2019.232 |
| [107] |
Elshenawy H., Aly W., Salah N., et al. Influence of small, midi, medium and large fields of view on accuracy of linear measurements in CBCT imaging: Diagnostic accuracy study // Open Access Maced J Med Sci. 2019. Vol. 7, N 6. P. 1037–1041. doi: 10.3889/oamjms.2019.232 |
| [108] |
Elshenawy H, Aly W, Salah N, et al. Influence of small, midi, medium and large fields of view on accuracy of linear measurements in CBCT imaging: Diagnostic accuracy study. Open Access Maced J Med Sci. 2019;7(6):1037–1041. doi: 10.3889/oamjms.2019.232 |
Eco-Vector
/
| 〈 |
|
〉 |