MosMedData: data set of 1110 chest CT scans performed during the COVID-19 epidemic

Sergey P. Morozov , Anna E. Andreychenko , Ivan A. Blokhin , Pavel B. Gelezhe , Anna P. Gonchar , Alexander E. Nikolaev , Nikolay A. Pavlov , Valeria Yu. Chernina , Victor A. Gombolevskiy

Digital Diagnostics ›› 2020, Vol. 1 ›› Issue (1) : 49 -59.

PDF (922KB)
Digital Diagnostics ›› 2020, Vol. 1 ›› Issue (1) :49 -59. DOI: 10.17816/DD46826
Datasets
research-article

MosMedData: data set of 1110 chest CT scans performed during the COVID-19 epidemic

Author information +
History +
PDF (922KB)

Abstract

With the ongoing COVID-19 pandemic decreasing availability of polymerase chain reaction with reverse transcription and the snowballing growth of medical imaging, especially the number of chest computed tomography (CT) scans being performed, methods to augment and automate the image analysis, increasing productivity and minimizing human error are of particular importance. The creation of high-quality datasets is essential for the development and validation of artificial intelligence algorithms. Such technologies have sufficient accuracy in diagnosing COVID-19 in medical imaging. The presented large-scale dataset contains anonymized human CT scans with COVID-19 features as well as normal studies. Some studies were tagged by radiologists using binary pixel masks of regions of interest (e.g., characteristic areas of consolidation and ground-glass opacities). CT data were acquired between March 1, 2020, and April 25, 2020, and provided by municipal hospitals in Moscow, Russia. The presented dataset is licensed under Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0).

Keywords

artificial intelligence / COVID-19 / machine learning / dataset / CT, chest

Cite this article

Download citation ▾
Sergey P. Morozov, Anna E. Andreychenko, Ivan A. Blokhin, Pavel B. Gelezhe, Anna P. Gonchar, Alexander E. Nikolaev, Nikolay A. Pavlov, Valeria Yu. Chernina, Victor A. Gombolevskiy. MosMedData: data set of 1110 chest CT scans performed during the COVID-19 epidemic. Digital Diagnostics, 2020, 1(1): 49-59 DOI:10.17816/DD46826

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ai T, Yang Z, Hou H, et al. Correlation of chest CT and RT-PCR testing in Coronavirus Disease 2019 (COVID19) in China: a report of 1014 cases. Radiology. 2020;296(2):E32–E40. doi: 10.1148/radiol.2020200642

[2]

Ai T., Yang Z., Hou H., et al. Correlation of chest CT and RT-PCR testing in Coronavirus Disease 2019 (COVID19) in China: а report of 1014 cases // Radiology. 2020. Vol. 296, N 2. E32–E40. doi: 10.1148/radiol.2020200642

[3]

Handbook of COVID-19 Prevention and Treatment. Ed. by T. Liang. Zhejiang University School of Medicine; 2020. 68 p.

[4]

Handbook of COVID-19 Prevention and Treatment. Ed. by T. Liang. Zhejiang University School of Medicine, 2020. 68 p.

[5]

Huang Z, Zhao S, Li Z, et al. The battle against Coronavirus Disease 2019 (COVID-19): emergency management and infection control in a Radiology Department. J Am Coll Radiol. 2020;17(6):710–716. doi: 10.1016/j.jacr.2020.03.011

[6]

Huang Z., Zhao S., Li Z., et al. The battle against Coronavirus Disease 2019 (COVID-19): emergency management and infection control in a Radiology Department. J Am Coll Radiol. 2020. Vol. 17, N 6. Р. 710–716. doi: 10.1016/j.jacr.2020.03.011

[7]

Morozov SP, Gombolevskiy VA, Cherninа VY, et al. Prediction of lethal outcomes in COVID-19 cases based on the results chest computed tomography. Tuberculosis and Lung Diseases. 2020;98(6):7–14. (In Russ.) doi: 10.21292/2075-1230-2020-98-6-7-14

[8]

Морозов С.П., Гомболевский В.А., Чернина В.Ю. и др. Прогнозирование летальных исходов при COVID-19 по данным компьютерной томографии органов грудной клетки // Туберкулез и болезни легких. 2020. Т. 98, № 6. С. 7–14. doi: 10.21292/2075-1230-2020-98-6-7-14

[9]

Morozov S, Guseva E, Ledikhova N, et al. Telemedicine-based system for quality management and peer review in radiology. Insights Imaging. 2018;9(3):337–341. doi: 10.1007/s13244-018-0629-y

[10]

Morozov S., Guseva E., Ledikhova N., et al. Telemedicine-based system for quality management and peer review in radiology // Insights Imaging. 2018. Vol. 9, N 3. Р. 337–341. doi: 10.1007/s13244-018-0629-y

[11]

Li L, Qin L, Xu Z, et al. Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: evaluation of the diagnostic accuracy. Radiology. 2020;296(2):E65–E71. doi: 10.1148/radiol.2020200905

[12]

Li L., Qin L., Xu Z., et al. Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: evaluation of the diagnostic accuracy // Radiology. 2020. Vol. 296, N 2. E65–E71. doi: 10.1148/radiol.2020200905

[13]

Ucar F, Korkmaz D. COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images. Med Hypotheses. 2020;140:109761. doi: 10.1016/j.mehy.2020.109761

[14]

Ucar F., Korkmaz D. COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images // Med Hypotheses. 2020. Vol. 140. Р. 109761. doi: 10.1016/j.mehy.2020.109761

[15]

Vremennye metodicheskie rekomendatsii “Profilaktika, diagnostika i lechenie novoi koronavirusnoi infektsii (COVID-19). Versiya 9” (utv. Ministerstvom zdravookhraneniya RF 26 oktyabrya 2020). Available from: https://base.garant.ru/74810808/

[16]

Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 9» (утв. Министерством здравоохранения РФ 26 октября 2020). Режим доступа: https://base.garant.ru/74810808/. Дата обращения: 12.10.2020.

[17]

Morozov SP, Protsenko DN, Smetanina SV, editors. Radiation diagnostics of coronavirus disease (COVID-19): organization, methodology, interpretation of results: guidelines. Series “Best practices of radiation and instrumental diagnostics”. Issue 65. Moscow; 2020.

[18]

Морозов С.П., Проценко Д.Н., Сметанина С.В. и др. Лучевая диагностика коронавирусной болезни (COVID-19): организация, методология, интерпретация результатов: методические рекомендации. Серия «Лучшие практики лучевой и инструментальной диагностики». Вып. 65. Москва, 2020.

[19]

Morozov SP, Vladzymyrskyy AV, Klyashtornyy VG, et al. Clinical acceptance of software based on artificial intelligence technologies (radiology). Series “Best practices in medical imaging”. Moscow; 2019. Issue 57.

[20]

Morozov S.P., Vladzymyrskyy A.V., Klyashtornyy V.G., et al. Clinical acceptance of software based on artificial intelligence technologies (radiology). Series «Best practices in medical imaging». Moscow, 2019. Issue 57.

[21]

Cohen JP, Morrison P, Dao L. COVID-19 Image Data Collection [Internet]. 2020 [cited 2020 Mar 25]. Available from: https://arxiv.org/abs/2003.11597

[22]

Cohen J.P., Morrison P., Dao L. COVID-19 Image Data Collection [Internet]. 2020 [дата обращения: 25.03.2020]. Доступ по ссылке: https://arxiv.org/abs/2003.11597

[23]

Jun M, Cheng G, Yixin W, et al. COVID-19 CT lung and infection segmentation dataset. Verson 1.0. 2020. doi: 10.5281/zenodo.3757476

[24]

Jun M., Cheng G., Yixin W., et al. COVID-19 CT lung and infection segmentation dataset. Verson 1.0. 2020. doi: 10.5281/zenodo.3757476

RIGHTS & PERMISSIONS

Morozov S.P., Andreychenko A.E., Blokhin I.A., Gelezhe P.B., Gonchar A.P., Nikolaev A.E., Pavlov N.A., Chernina V.Y., Gombolevskiy V.A.

PDF (922KB)

270

Accesses

0

Citation

Detail

Sections
Recommended

/