Comparison of the duration of generating radiological protocols with keyboard and voice input
Nikita D. Kudryavtsev , Daria E. Sharova , Anton V. Vladzymyrskyy
Digital Diagnostics ›› 2023, Vol. 4 ›› Issue (1S) : 76 -78.
Comparison of the duration of generating radiological protocols with keyboard and voice input
BACKGROUND: Speech recognition is becoming increasingly common in the national healthcare system. One of the first specialties to implement this technology on a large scale was radiology. However, the efficiency of voice input and its effect on the length of time required to complete medical records remain unresolved.
AIM: To assess the efficiency of speech recognition in generating radiological protocols of different modalities and types.
METHODS: The retrospective study was conducted at the Moscow Reference Center of the Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Department of Health. A total of 12,912 radiological reports on fluorography, mammography, chest computed tomography (CT), contrast-enhanced magnetic resonance imaging (MRI) of the brain, and contrast-enhanced CT of the abdomen and pelvis were included in the study by simple random sampling. The size of all samples exceeded 766 reports, calculated with regard to the size of the general population of over 100,000 reports. The Voice2Med software was used to fill in the radiological protocols. Intergroup comparison was performed using the Mann–Whitney U-test with a statistical significance level of 0.05.
RESULTS: The average duration of generating fluorographic protocols in the keyboard and voice input groups was 189.9 s (0:03:09) and 236.2 s (0:03:56), respectively (p <0.0001). For mammographic reports, the duration was 387.1 s (0:06:27) and 444.8 s (0:07:24), respectively (p <0.0001). For radiographic reports, it amounted to 247.8 s (0:04:07) and 189.0 s (0: 03:09), respectively (p <0.0001), and for chest CT, it was 379.7 s (0:06:19) and 382.7 s (0:06:22), respectively (p=0.12). For MRI of the brain, the protocols were generated for 709.9 s (0:11:49) and 559.9 s (0: 09:19), respectively (p <0.0001), and for contrast-enhanced chest, abdominal, and pelvic CT scans, it took 2714.6 s (0:45:15) and 1778.4 s (0:29:38), respectively. Voice input slowed down the preparation time of mammographic and fluorographic protocols. This is due to the use of a structured electronic medical document in medical facilities to describe the results of the examinations. Speech recognition showed the greatest efficiency in generating MRI and CT protocols. Such reports contain a large number of pathological changes, both target and incidental findings, which requires a detailed description by the radiologist in the examination protocol.
CONCLUSIONS: Speech recognition in generating radiological protocols showed different efficiency depending on the modality and type of the radiological protocol filled in using the voice input system. This approach is optimal for describing CT and MRI scans.
speech recognition technology / report generation / voice input / stopwatch study / radiology department
| [1] |
Khramtsov AI, Nasyrov RA, Khramtsova GF. Application of digital technology in the work of a pathologist: guidelines for learning how to use speech recognition systems. Pediatrician (St. Petersburg). 2021;12(3):63–68. (In Russ). doi: 10.17816/PED12363-68 |
| [2] |
Храмцов А.И., Насыров Р.А., Храмцова Г.Ф. Применение цифровых технологий в работе патологоанатома: обучение использованию систем автоматического распознавания речи // Педиатр. 2021. Т. 12, № 3. С. 63–68. doi: 10.17816/PED12363-68 |
| [3] |
Kudryavtsev N D, Sergunova K A, Ivanova G.V, et al. Evaluation of the effectiveness of the implementation of speech recognition technology for the preparation of radiological protocol. Vrach i informatsionnye tekhnologii. 2020;(S1):58–64. (In Russ). doi: 10.37690/1811-0193-2020-S1-58-64 |
| [4] |
Кудрявцев Н.Д., Сергунова К.А., Иванова Г.В., и др. Оценка эффективности внедрения технологии распознавания речи для подготовки протоколов рентгенологических исследований // Врач и информационные технологии. 2020. № S1. С. 58–64. doi: 10.37690/1811-0193-2020-S1-58-64 |
| [5] |
Tekhnologiya raspoznavaniya rechi pomogla vracham zapolnit’ bolee 210 tysyach protokolov luchevykh issledovanii [Internet]. Moscow Mayor official website [cited 2023 Apr 18]. Available from: https://www.mos.ru/news/item/118060073/. (In Russ). |
| [6] |
Технология распознавания речи помогла врачам заполнить более 210 тысяч протоколов лучевых исследований [интернет] // Официальный сайт Мэра Москвы. Дата обращения: 18.04.2023. Доступ по ссылке: https://www.mos.ru/news/item/118060073/. |
| [7] |
Kudryavtsev ND, Semenov DS, Kozhikhina DD, Vladzymyrskyy AV. Speech recognition technology: results of a survey of radiologists at the Moscow reference center for diagnostic radiology. Healthcare Management: News. Views. Education. Bulletin of VSHOUZ. 2022;8(3):95–104. (In Russ). doi: 10.33029/2411-8621-2022-8-3-95-104 |
| [8] |
Кудрявцев Н.Д., Семенов Д.С., Кожихина Д.Д., Владзимирский А.В. Технология распознавания речи: результаты опроса врачей-рентгенологов Московского референс-центра лучевой диагностики // ОРГЗДРАВ: новости, мнения, обучение. Вестник ВШОУЗ. 2022. Т. 8, № 3. С. 95–104. doi: 10.33029/2411-8621-2022-8-3-95-104 |
Eco-Vector
/
| 〈 |
|
〉 |