Using a mobile computer tomography scanner in a field hospital setting to manage patients with COVID-19
Nikita D. Kudryavtsev , Alexey V. Petraikin , Ekaterina S. Ahkmad , Fyodor A. Kiselev , Vyacheslav V. Burashov , Anna N. Mukhortova , Iliya V. Soldatov , Andrey S. Shkoda
Digital Diagnostics ›› 2023, Vol. 4 ›› Issue (3) : 427 -438.
Using a mobile computer tomography scanner in a field hospital setting to manage patients with COVID-19
The global outbreak of COVID-19 has posed unprecedented challenges to healthcare systems worldwide. Healthcare administrators had to make quick and effective decisions to ensure high quality of medical care standards in new conditions. The need to form a reserve bed fund during the pandemic was due to the high load on city hospitals in Moscow. Due to this fact, temporary reserved hospitals for COVID-19 patients were organized in non-core facilities, such as ice arenas, shopping malls, and exhibition pavilions. This urgency prompted a search for solutions that could provide the necessary level of diagnosis and treatment appropriate to specialized medical facility. Given the technical and time constraints associated with the installation of a fixed computer tomographic scanner, the deployment of mobile computer tomographic scanners emerged as a viable option.
The study aims to share insights gained from using a mobile computer tomographic scanner within a temporary backup hospital setting to treating patients with COVID-19 coronavirus infection. The paper discusses the features, advantages, and disadvantages of mobile computer tomography. It also presents hardware and control room layouts, along with the placement options for the computer tomography device. The research includes the results of dosimetry studies and provides a clinical assessment of the applicability of this type of diagnostic devices.
computer tomographic scanner / COVID-19 pandemics / radiology departments
| [1] |
Morozov SP, Kuzmina ES, Ledikhova NV, et al. Mobilizing the academic and practical potential of diagnostic radiology during the COVID-19 pandemic in Moscow. Digital Diagnostics. 2020;1(1):5–12. (In Russ). doi: 10.17816/DD51043 |
| [2] |
Morozov S.P., Kuzmina E.S., Ledikhova N.V., et al. Mobilizing the academic and practical potential of diagnostic radiology during the COVID-19 pandemic in Moscow // Digital Diagnostics. 2020. Vol. 1, N 1. P. 5–12. doi: 10.17816/DD51043 |
| [3] |
Morozov SP, Kuzmina ES, Ledikhova NV, et al. Mobilizing the academic and practical potential of diagnostic radiology during the COVID-19 pandemic in Moscow. Digital Diagnostics. 2020;1(1):5–12. (In Russ). doi: 10.17816/DD51043 |
| [4] |
Prevention, diagnosis and treatment of new coronavirus infection (2019-nCoV): temporary guidelines. Version 17 (12/14/2022). (In Russ). Available from: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/061/254/original/%D0%92%D0%9C%D0%A0_COVID-19_V17.pdf?1671088207. Accessed: 15.03.2023. ( |
| [5] |
Профилактика, диагностика и лечение новой коронавирусной инфекции (2019-nCoV): временные методические рекомендации. Версия 17 (14.12.2022). Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/061/254/original/%D0%92%D0%9C%D0%A0_COVID-19_V17.pdf?1671088207. Дата обращения: 15.03.2023. |
| [6] |
Prevention, diagnosis and treatment of new coronavirus infection (2019-nCoV): temporary guidelines. Version 17 (12/14/2022). (In Russ). Available from: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/061/254/original/%D0%92%D0%9C%D0%A0_COVID-19_V17.pdf?1671088207. Accessed: 15.03.2023. ( |
| [7] |
De Smet K, De Smet D, Ryckaert T, et al. Diagnostic performance of chest CT for SARS-CoV-2 infection in individuals with or without COVID-19 symptoms. Radiology. 2021;298(1):E30–E37. doi: 10.1148/radiol.2020202708 |
| [8] |
De Smet K., De Smet D., Ryckaert T., et al. Diagnostic performance of chest CT for SARS-CoV-2 infection in individuals with or without COVID-19 symptoms // Radiology. 2021. Vol. 298, N 1. P. E30–E37. doi: 10.1148/radiol.2020202708 |
| [9] |
De Smet K, De Smet D, Ryckaert T, et al. Diagnostic performance of chest CT for SARS-CoV-2 infection in individuals with or without COVID-19 symptoms. Radiology. 2021;298(1):E30–E37. doi: 10.1148/radiol.2020202708 |
| [10] |
Huang Y, Cheng W, Zhao N, et al. CT screening for early diagnosis of SARS-CoV-2 infection. Lancet Inf Dis. 2020;20(9):1010–1011. doi: 10.1016/S1473-3099(20)30241-3 |
| [11] |
Huang Y., Cheng W., Zhao N., et al. CT screening for early diagnosis of SARS-CoV-2 infection // Lancet Infect Dis. 2020. Vol. 20, N 9. P. 1010–1011. doi: 10.1016/S1473-3099(20)30241-3 |
| [12] |
Huang Y, Cheng W, Zhao N, et al. CT screening for early diagnosis of SARS-CoV-2 infection. Lancet Inf Dis. 2020;20(9):1010–1011. doi: 10.1016/S1473-3099(20)30241-3 |
| [13] |
Barrett JF, Keat N. Artifacts in CT: Recognition and avoidance. RadioGraphics. 2004;24(6):1679–1691. doi: 10.1148/rg.246045065 |
| [14] |
Barrett J.F., Keat N. Artifacts in CT: Recognition and avoidance // RadioGraphics. 2004. Vol. 24, N 6. P. 1679–1691. doi: 10.1148/rg.246045065 |
| [15] |
Barrett JF, Keat N. Artifacts in CT: Recognition and avoidance. RadioGraphics. 2004;24(6):1679–1691. doi: 10.1148/rg.246045065 |
| [16] |
Samorodskaja IV, Larina VN, Nazimkin KE, Larin VG. Organizational and clinical problems of outpatient COVID-19 diagnostics. Vrach. 2020;31(5):23–30. (In Russ). doi: 10.29296/25877305-2020-05-05 |
| [17] |
Самородская И.В., Ларина В.Н., Назимкин К.Е., Ларин В.Г. Организационные и клинические проблемы диагностики COVID-19 на амбулаторном этапе // Врач. 2020. Т. 31, № 5. С. 23–30. doi: 10.29296/25877305-2020-05-05 |
| [18] |
Samorodskaja IV, Larina VN, Nazimkin KE, Larin VG. Organizational and clinical problems of outpatient COVID-19 diagnostics. Vrach. 2020;31(5):23–30. (In Russ). doi: 10.29296/25877305-2020-05-05 |
| [19] |
Cester G, Giraudo C, Causin F, et al. Retrospective analysis of a modified organizational model to guarantee CT workflow during the COVID-19 outbreak in the Tertiary Hospital of Padova, Italy. J Clin Med. 2020;9(9):3042. doi: 10.3390/jcm9093042 |
| [20] |
Cester G., Giraudo C., Causin F., et al. Retrospective analysis of a modified organizational model to guarantee CT workflow during the COVID-19 outbreak in the Tertiary Hospital of Padova, Italy // J Clin Med. 2020. Vol. 9, N 9. P. 3042. doi: 10.3390/jcm9093042 |
| [21] |
Cester G, Giraudo C, Causin F, et al. Retrospective analysis of a modified organizational model to guarantee CT workflow during the COVID-19 outbreak in the Tertiary Hospital of Padova, Italy. J Clin Med. 2020;9(9):3042. doi: 10.3390/jcm9093042 |
| [22] |
Bates DD, Vintonyak A, Mohabir R, et al. Use of a portable computed tomography scanner for chest imaging of COVID-19 patients in the urgent care at a tertiary cancer center. Emerg Radiol. 2020;27(6):597–600. doi: 10.1007/s10140-020-01801-5 |
| [23] |
Bates D.D., Vintonyak A., Mohabir R., et al. Use of a portable computed tomography scanner for chest imaging of COVID-19 patients in the urgent care at a tertiary cancer center // Emerg Radiol. 2020. Vol. 27, N 6. P. 597–600. doi: 10.1007/s10140-020-01801-5 |
| [24] |
Bates DD, Vintonyak A, Mohabir R, et al. Use of a portable computed tomography scanner for chest imaging of COVID-19 patients in the urgent care at a tertiary cancer center. Emerg Radiol. 2020;27(6):597–600. doi: 10.1007/s10140-020-01801-5 |
| [25] |
Khristenko EA, von Stackelberg O, Kautsor HU, et al. CT patterns in COVID-19 associated pneumonia: Standardization of research descriptions based on the Fleischner Society Glossary. Rejr. 2020;10(1):16–26. (In Russ). doi: 10.21569/2222-7415-2020-10-1-16-26 |
| [26] |
Христенко Е.А., фон Стакельберг О., Кауцор Х.У., et al. КТ-паттерны при COVID-19-ассоциированных пневмониях: стандартизация описания исследований на основе глоссария общества Флейшнера // Rejr. 2020. Т. 10, № 1. С. 16–26. doi: 10.21569/2222-7415-2020-10-1-16-26 |
| [27] |
Khristenko EA, von Stackelberg O, Kautsor HU, et al. CT patterns in COVID-19 associated pneumonia: Standardization of research descriptions based on the Fleischner Society Glossary. Rejr. 2020;10(1):16–26. (In Russ). doi: 10.21569/2222-7415-2020-10-1-16-26 |
| [28] |
Kyriakou Y, Meyer E, Prell D, Kachelriess M. Empirical beam hardening correction (EBHC) for CT. Med Phys. 2010;37(10):5179–5187. doi: 10.1118/1.3477088 |
| [29] |
Kyriakou Y., Meyer E., Prell D., Kachelriess M. Empirical beam hardening correction (EBHC) for CT // Med Phys. 2010. Vol. 37, N 10. P. 5179–5187. doi: 10.1118/1.3477088 |
| [30] |
Kyriakou Y, Meyer E, Prell D, Kachelriess M. Empirical beam hardening correction (EBHC) for CT. Med Phys. 2010;37(10):5179–5187. doi: 10.1118/1.3477088 |
| [31] |
Aliev AF, Kudryavtsev ND, Petryaykin AV, et al. Changing of pulmonary artery diameter in accordance with severity of COVID-19 (assessment based on non-contrast computer tomography). Digital Diagnostics. 2021;2(3):249–260. (In Russ). doi: 10.17816/DD76726 |
| [32] |
Aliev A.F., Kudryavtsev N.D., Petryaykin A.V., et al. Changing of pulmonary artery diameter in accordance with severity of COVID-19 (assessment based on non-contrast computer tomography) // Digital Diagnostics. 2021. Vol. 2, N 3. P. 249–260. doi: 10.17816/DD76726 |
| [33] |
Aliev AF, Kudryavtsev ND, Petryaykin AV, et al. Changing of pulmonary artery diameter in accordance with severity of COVID-19 (assessment based on non-contrast computer tomography). Digital Diagnostics. 2021;2(3):249–260. (In Russ). doi: 10.17816/DD76726 |
Eco-Vector
/
| 〈 |
|
〉 |