Volumetry versus linear diameter lung nodule measurement: an ultra-low-dose computed tomography lung cancer screening study
Maria M. Suchilova , Ivan A. Blokhin , Olga O. Aleshina , Victor A. Gombolevskiy , Roman V. Reshetnikov , Viktor Yu. Bosin , Olga V. Omelyanskaya , Anton V. Vladzymyrskyy
Digital Diagnostics ›› 2023, Vol. 4 ›› Issue (1) : 5 -13.
Volumetry versus linear diameter lung nodule measurement: an ultra-low-dose computed tomography lung cancer screening study
BACKGROUND: The Dutch–Belgian Randomized Lung Cancer Screening Trial (NELSON) used a volume-based protocol and significantly reduced the prevalence of false-positive results (2.1%).
AIM: To compare the performance of manual linear diameter and semi-automated volumetric nodule measurement in the pilot project “Moscow Lung Cancer Screening” ultra-low-dose computed tomography pilot study.
MATERIALS AND METHODS: The study included individuals with a lung nodule of at least 4 mm on baseline-computed tomography of the Moscow lung cancer screening between February 2017 and February 2018, without verified lung cancer diagnosis until 2020. The radiation dose was selected individually and did not exceed 1 mSv. All scans were assessed by three blinded readers to measure the maximum and minimum transversal nodule diameter and extrapolated volume. As a reference value of size and volume, the average value from the results of expert measurements was obtained. A false-positive nodule was defined as a nodule <6 mm/<100 mm3 and a false-negative nodule as a nodule ≥6 mm/≥100 mm3.
RESULTS: Overall, 293 patients were included (166 men; mean age, 64.6 ± 5.3years); 199 lung nodules were <6 mm/<100 mm3 and 94 were ≥6 mm/≥100 mm3. Regarding volumetric measurements, 32 [10.9%; 4 false-positive, 28 false-negative], 29 [9.9%; 17 false-positive, 12 false-negative], and 30 [10.2%; 6 false-positive, 24 false-negative] nodule discrepancies were reported by readers 1, 2, and 3 respectively. For linear diameter measurement, 92 [65.5%; 107 false-positive, 85 false-negative], 146 [49.8%; 58 false-positive, 88 false-negative], and 102 [34.8%; 23 false-positive, 79 false-negative] nodule discrepancies were reported by readers 1, 2, and 3 respectively.
CONCLUSIONS: The use of lung nodule volumetry strongly reduces the number of false-positive and false-negative nodules compared with nodule diameter measurements, in an ultra-low-dose computed tomography lung cancer screening program.
tomography X-Ray compute / early detection of cancer / lung neoplasms
| [1] |
De Koning HJ, van der Aalst CM, de Jong PA, et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N Engl J Med. 2020;382(6):503–513. doi: 10.1056/NEJMoa1911793 |
| [2] |
De Koning H.J., van der Aalst C.M., de Jong P.A., et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial // New Eng J Med. 2020. Vol. 382, N 6. Р. 503–513. doi: 10.1056/NEJMoa1911793 |
| [3] |
Henschke CI, Boffetta P, Yankelevitz DF, Altorki N. Computed tomography screening: The International Early Lung Cancer Action Program Experience. Thoracic Sur Clin. 2015;25(2):129–143. doi: 10.1016/j.thorsurg.2014.12.001 |
| [4] |
Henschke C.I., Boffetta P., Yankelevitz D.F., Altorki N. Computed tomography screening: The International Early Lung Cancer Action Program Experience // Thoracic Sur Clin. 2015. Vol. 25, N 2. Р. 129–143. doi: 10.1016/j.thorsurg.2014.12.001 |
| [5] |
Callister ME, Baldwin DR, Akram AR, et al. Correction: British Thoracic Society guidelines for the investigation and management of pulmonary nodules: Accredited by NICE. Thorax. 2015;70(Suppl 2):ii1–ii54. doi: 10.1136/thoraxjnl-2015-207168 |
| [6] |
Callister M.E., Baldwin D.R., Akram A.R., et al. Correction: British Thoracic Society guidelines for the investigation and management of pulmonary nodules: Accredited by NICE // Thorax. 2015. Vol. 70, Suppl 2. Р. ii1–ii54. doi: 10.1136/thoraxjnl-2015-207168 |
| [7] |
Oudkerk M, Devaraj A, Vliegenthart R, et al. European Position Statement on Lung Cancer Screening. Lancet Oncology. 2017;18(12):e754–766. doi: 10.1016/S1470-2045(17)30861-6 |
| [8] |
Oudkerk M., Devaraj A., Vliegenthart R., et al. European Position Statement on Lung Cancer Screening // Lancet Oncology. 2017. Vol. 18, N 12. Р. e754–e766. doi: 10.1016/S1470-2045(17)30861-6 |
| [9] |
Wood DE, Kazerooni EA, Baum SL, et al. Lung cancer screening, version 3.2018, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2018;16(4):412–441. doi: 10.6004/jnccn.2018.0020 |
| [10] |
Wood D.E., Kazerooni E.A., Baum S.L., et al. Lung cancer screening, version 3.2018, NCCN clinical practice guidelines in oncology // J Nation Compr Can Netw. 2018. Vol. 16, N 4. Р. 412–441. doi: 10.6004/jnccn.2018.0020 |
| [11] |
Horeweg N, Scholten ET, de Jong PA, et al. Detection of lung cancer through low-dose CT screening (NELSON): A prespecified analysis of screening test performance and interval cancers. Lancet Oncology. 2014;15(3):1342–1350. doi: 10.1016/S1470-2045(14)70387-0 |
| [12] |
Horeweg N., Scholten E.T., de Jong P.A., et al. Detection of lung cancer through low-dose CT screening (NELSON): A prespecified analysis of screening test performance and interval cancers // Lancet Oncology. 2014. Vol. 15, N 12. Р. 1342–1350. doi: 10.1016/S1470-2045(14)70387-0 |
| [13] |
Oudkerk M, Liu S, Heuvelmans MA, et al. Lung cancer LDCT screening and mortality reduction: Evidence, pitfalls and future perspectives. Nat Rev Clin Oncol. 2021;18(3):135–151. doi: 10.1038/s41571-020-00432-6 |
| [14] |
Oudkerk M., Liu S., Heuvelmans M.A., et al. Lung cancer LDCT screening and mortality reduction: Evidence, pitfalls and future perspectives // Nat Rev Clin Oncol. 2021. Vol. 18, N 3. Р. 135–151. doi: 10.1038/s41571-020-00432-6 |
| [15] |
Duffy SW, Field JK. Mortality reduction with low-dose CT screening for lung cancer. N Engl J Med. 2020;382(6):572–573. doi: 10.1056/NEJMe1916361 |
| [16] |
Duffy S.W., Field J.K. Mortality reduction with low-dose CT screening for lung cancer // New Eng J Med. 2020. Vol. 382, N 6. Р. 572–573. doi: 10.1056/NEJMe1916361 |
| [17] |
Morozov SP, Kuzmina ES, Vetsheva NN, et al. Moscow screening: Screening of lung cancer using low-dose computed tomography. Problems Social Hygiene Healthcare History Med. 2019;27(S):630–636. (In Russ). doi: 10.32687/0869-866X-2019-27-si1-630-636 |
| [18] |
Морозов С.П., Кузьмина Е.С., Ветшева Н.Н., и др. Московский скрининг: скрининг рака лёгкого с помощью низкодозовой компьютерной томографии // Проблемы социальной гигиены, здравоохранения и истории медицины. 2019. Т. 27, № S. С. 630–636. doi: 10.32687/0869-866X-2019-27-si1-630-636 |
| [19] |
Gombolevsky VA, Barchuk AA, Laipan AS, et al. Lung сancer screening with low-dose computed tomography: Management and efficiency. Radiology Practice. 2018;(1):28–36. (In Russ). |
| [20] |
Гомболевский В.А., Барчук А.А., Лайпан А.Ш., и др. Организация и эффективность скрининга злокачественных новообразований легких методом низкодозной компьютерной томографии // Радиология-практика. 2018. № 1. С. 28–36. |
| [21] |
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–174. |
| [22] |
Landis J.R., Koch G.G. The measurement of observer agreement for categorical data // Biometrics. 1977. Vol. 33, N 1. Р. 159–174. |
| [23] |
Revel MP, Bissery A, Bienvenu M, et al. Are two-dimensional ct measurements of small noncalcified pulmonary nodules reliable? Radiology. 2004;231(2):453–458. doi: 10.1148/radiol.2312030167 |
| [24] |
Revel M.P., Bissery A., Bienvenu M., et al. Are two-dimensional CT measurements of small noncalcified pulmonary nodules reliable? // Radiology. 2004. Vol. 231, N 2. Р. 453–458. doi: 10.1148/radiol.2312030167 |
| [25] |
Xie X, Willemink MJ, Zhao Y, et al. Inter- and intrascanner variability of pulmonary nodule volumetry on low-dose 64-row CT: an anthropomorphic phantom study. BJR. 2013;86(1029):20130160. doi: 10.1259/bjr.20130160 |
| [26] |
Xie X., Willemink M.J., Zhao Y., et al. Inter-and intrascanner variability of pulmonary nodule volumetry on low-dose 64-row CT: An anthropomorphic phantom study // Brit J Radiol. 2013. Vol. 86, N 1029. Р. 20130160. doi: 10.1259/bjr.20130160 |
| [27] |
Kulberg NS, Reshetnikov RV, Novik VP, et al. Inter-observer variability between readers of CT images: all for one and one for all. Digital Diagnostics. (In Russ). 2021;2(2):105–118 doi: 10.17816/DD60622 |
| [28] |
Кульберг Н.С., Решетников Р.В., Новик В.П., и др. Вариабельность заключений при интерпретации КТ-снимков: один за всех и все за одного // Digital Diagnostics. 2021. Т. 2, № 2. С. 105–118. doi: 10.17816/DD60622 |
Eco-Vector
/
| 〈 |
|
〉 |