Left atrial longitudinal strain analysis in diagnostic of cardiotoxicity

Anastasiya V. Yusupova , Einar S. Yusupov

Digital Diagnostics ›› 2022, Vol. 3 ›› Issue (2) : 119 -130.

PDF (742KB)
Digital Diagnostics ›› 2022, Vol. 3 ›› Issue (2) :119 -130. DOI: 10.17816/DD108243
Reviews
review-article

Left atrial longitudinal strain analysis in diagnostic of cardiotoxicity

Author information +
History +
PDF (742KB)

Abstract

A wide range of extremely effective chemotherapy drugs has a negative effect on the cardiovascular system, leveling oncological treatment success. Early diagnosis of cardiotoxicity is very important, allowing timely application of preventive and therapeutic measures. Left ventricular ejection fraction evaluation using echocardiography is the basic non-invasive instrumental method to assess cardiac function and the main guideline in cardiac dysfunction diagnosis during chemotherapy. However, if dysfunction is subclinical, the ejection fraction can remain normal for a long time, and also has a pronounced inter-operator variability and dependence on volumetric load. Specialists are constantly in search of optimal echocardiographic parameters that allow early-stage cardiac dysfunction diagnosis. Analysis of the global longitudinal deformation of the left atrium seems to be a promising method for these purposes. A large amount of accumulated data suggests that the left atrium is not just a conduit chamber, but a reflection of the filling pressure of the left ventricle, being a sensitive marker of its systolic and diastolic dysfunction. This review presents an analysis of currently available studies on applying the methodology for assessing global longitudinal deformation of the left atrium in cardiac dysfunction diagnosis in the use of cardiotoxic drugs.

Keywords

left atrial function / transthoracic echocardiography / cardiotoxic agent / left ventricular dysfunction / anthracycline

Cite this article

Download citation ▾
Anastasiya V. Yusupova, Einar S. Yusupov. Left atrial longitudinal strain analysis in diagnostic of cardiotoxicity. Digital Diagnostics, 2022, 3(2): 119-130 DOI:10.17816/DD108243

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Herrmann J, Lerman A, Sandhu NP, et al. Evaluation and management of patients with heart disease and cancer: cardio-oncology. Mayo Clin Proc. 2014;89(9):1287. doi: 10.1016/J.MAYOCP.2014.05.013

[2]

Herrmann J., Lerman A., Sandhu N.P., et al. Evaluation and management of patients with heart disease and cancer: cardio-oncology // Mayo Clin. Proc. 2014. Vol. 89, № 9. P. 1287. doi: 10.1016/J.MAYOCP.2014.05.013

[3]

Herrmann J, Lerman A, Sandhu NP, et al. Evaluation and management of patients with heart disease and cancer: cardio-oncology. Mayo Clin Proc. 2014;89(9):1287. doi: 10.1016/J.MAYOCP.2014.05.013

[4]

Okwuosa TM, Anzevino S, Rao R. Cardiovascular disease in cancer survivors. Postgrad Med J. 2017;93(1096):82–90. doi: 10.1136/POSTGRADMEDJ-2016-134417

[5]

Okwuosa T.M., Anzevino S., Rao R. Cardiovascular disease in cancer survivors // Postgrad Med J. 2017. Vol. 93, № 1096. P. 82–90. doi: 10.1136/POSTGRADMEDJ-2016-134417

[6]

Okwuosa TM, Anzevino S, Rao R. Cardiovascular disease in cancer survivors. Postgrad Med J. 2017;93(1096):82–90. doi: 10.1136/POSTGRADMEDJ-2016-134417

[7]

Fidler MM, Reulen RC, Henson K, et al. Population-based long-term cardiac-specific mortality among 34 489 five-year survivors of childhood cancer in Great Britain. Circulation. 2017;135(10):951–963. doi: 10.1161/CIRCULATIONAHA.116.024811

[8]

Fidler M.M., Reulen R.C., Henson K., et al. Population-based long-term cardiac-specific mortality among 34 489 five-year survivors of childhood cancer in Great Britain // Circulation. 2017. Vol. 135, № 10. P. 951–963. doi: 10.1161/CIRCULATIONAHA.116.024811

[9]

Fidler MM, Reulen RC, Henson K, et al. Population-based long-term cardiac-specific mortality among 34 489 five-year survivors of childhood cancer in Great Britain. Circulation. 2017;135(10):951–963. doi: 10.1161/CIRCULATIONAHA.116.024811

[10]

Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and s urvivorship statistics, 2019. CA Cancer J Clin. 2019;69(5):363–385. doi: 10.3322/CAAC.21565

[11]

Miller K.D., Nogueira L., Mariotto A.B., et al. Cancer treatment and survivorship statistics, 2019 // CA Cancer J Clin. 2019. Vol. 69, № 5. P. 363–385. doi: 10.3322/CAAC.21565

[12]

Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and s urvivorship statistics, 2019. CA Cancer J Clin. 2019;69(5):363–385. doi: 10.3322/CAAC.21565

[13]

Valero-Elizondo J, Chouairi F, Khera R, et al. Atherosclerotic cardiovascular disease, cancer, and financial toxicity among adults in the United States. JACC CardioOncology. 2021;3(2):236–246. doi: 10.1016/J.JACCAO.2021.02.006

[14]

Valero-Elizondo J., Chouairi F., Khera R., et al. Atherosclerotic cardiovascular disease, cancer, and financial toxicity among adults in the United States // JACC CardioOncology. 2021. Vol. 3, № 2. P. 236–246. doi: 10.1016/J.JACCAO.2021.02.006

[15]

Valero-Elizondo J, Chouairi F, Khera R, et al. Atherosclerotic cardiovascular disease, cancer, and financial toxicity among adults in the United States. JACC CardioOncology. 2021;3(2):236–246. doi: 10.1016/J.JACCAO.2021.02.006

[16]

Tajiri K, Aonuma K, Sekine I. Cardio-oncology: a multidisciplinary approach for detection, prevention and management of cardiac dysfunction in cancer patients. JJCO Japanese J Clin Oncol. 2017;47(8):678–682. doi: 10.1093/jjco/hyx068

[17]

Tajiri K., Aonuma K., Sekine I. Cardio-oncology: a multidisciplinary approach for detection, prevention and management of cardiac dysfunction in cancer patients // JJCO Japanese J Clin Oncol. 2017. Vol. 47, № 8. P. 678–682. doi: 10.1093/jjco/hyx068

[18]

Tajiri K, Aonuma K, Sekine I. Cardio-oncology: a multidisciplinary approach for detection, prevention and management of cardiac dysfunction in cancer patients. JJCO Japanese J Clin Oncol. 2017;47(8):678–682. doi: 10.1093/jjco/hyx068

[19]

Chang HM, Moudgil R, Scarabelli T, et al. Cardiovascular complications of cancer therapy: best practices in diagnosis, prevention, and management: part 1. J Am Coll Cardiol. 2017;70(20):2536–2551. doi: 10.1016/j.jacc.2017.09.1096

[20]

Chang H.M., Moudgil R., Scarabelli T., et al. Cardiovascular complications of cancer therapy: best practices in diagnosis, prevention, and management: part 1 // J Am College Cardiol. 2017. Vol. 70, № 20. P. 2536–2551. doi: 10.1016/j.jacc.2017.09.1096

[21]

Chang HM, Moudgil R, Scarabelli T, et al. Cardiovascular complications of cancer therapy: best practices in diagnosis, prevention, and management: part 1. J Am Coll Cardiol. 2017;70(20):2536–2551. doi: 10.1016/j.jacc.2017.09.1096

[22]

Armstrong GT, Ross JD. Late cardiotoxicity in aging adult survivors of childhood cancer. Prog Pediatr Cardiol. 2014;36(1-2):19. doi: 10.1016/J.PPEDCARD.2014.09.003

[23]

Armstrong G.T., Ross J.D. Late Cardiotoxicity in aging adult survivors of childhood cancer // Prog Pediatr Cardiol. 2014. Vol. 36, № 1–2. P. 19. doi: 10.1016/J.PPEDCARD.2014.09.003

[24]

Armstrong GT, Ross JD. Late cardiotoxicity in aging adult survivors of childhood cancer. Prog Pediatr Cardiol. 2014;36(1-2):19. doi: 10.1016/J.PPEDCARD.2014.09.003

[25]

Lati G, Heck SL, Ree AH, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2×2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J. 2016;37(21):1671–1680. doi: 10.1093/eurheartj/ehw022

[26]

Lati G., Heck S.L., Ree A.H., et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2×2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol // Eur Heart J. 2016. Vol. 37, № 21. P. 1671–1680. doi: 10.1093/eurheartj/ehw022

[27]

Lati G, Heck SL, Ree AH, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2×2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J. 2016;37(21):1671–1680. doi: 10.1093/eurheartj/ehw022

[28]

Lopez-Mattei JC, Hassan S. The SUCCOUR trial: a cardiovascular imager’s perspective ― American College of Cardiology [Electronic resource]. Available from: https://www.acc.org/latest-in-cardiology/articles/2021/04/16/13/09/the-succour-trial. Accessed: 15.02.2022.

[29]

Lopez-Mattei J.C., Hassan S. The SUCCOUR trial: a cardiovascular imager’s perspective ― American College of Cardiology [Electronic resource]. Режим доступа: https://www.acc.org/latest-in-cardiology/articles/2021/04/16/13/09/the-succour-trial. Дата обращения: 15.02.2022.

[30]

Lopez-Mattei JC, Hassan S. The SUCCOUR trial: a cardiovascular imager’s perspective ― American College of Cardiology [Electronic resource]. Available from: https://www.acc.org/latest-in-cardiology/articles/2021/04/16/13/09/the-succour-trial. Accessed: 15.02.2022.

[31]

Laufer-Perl M, Gilon D, Kapusta L, Iakobishvili Z. The role of speckle strain echocardiography in the diagnosis of early subclinical cardiac injury in cancer patients ― is there more than just left ventricle global longitudinal strain? J Clin Med. 2021;10(1):154. doi: 10.3390/JCM10010154

[32]

Laufer-Perl M., Gilon D., Kapusta L., et al. The role of speckle strain echocardiography in the diagnosis of early subclinical cardiac injury in cancer patients ― is there more than just left ventricle global longitudinal strain? // J Clin Med. 2021. Vol. 10, № 1. P. 154. doi: 10.3390/JCM10010154

[33]

Laufer-Perl M, Gilon D, Kapusta L, Iakobishvili Z. The role of speckle strain echocardiography in the diagnosis of early subclinical cardiac injury in cancer patients ― is there more than just left ventricle global longitudinal strain? J Clin Med. 2021;10(1):154. doi: 10.3390/JCM10010154

[34]

Laufer-Pearl M, Arnold JH, Mor L, et al. The association of reduced global longitudinal strain with cancer therapy-related cardiac dysfunction among patients receiving cancer therapy. Clin Res Cardiol. 2020;109(2):255–262. doi: 10.1007/S00392-019-01508-9

[35]

Laufer-Pearl M., Arnold J.H., Mor L., et al. The association of reduced global longitudinal strain with cancer therapy-related cardiac dysfunction among patients receiving cancer therapy // Clin Res Cardiol. 2020. Vol. 109, № 2. P. 255–262. doi: 10.1007/S00392-019-01508-9

[36]

Laufer-Pearl M, Arnold JH, Mor L, et al. The association of reduced global longitudinal strain with cancer therapy-related cardiac dysfunction among patients receiving cancer therapy. Clin Res Cardiol. 2020;109(2):255–262. doi: 10.1007/S00392-019-01508-9

[37]

Choi JO, Shin DH, Cho SW, et al. Effect of preload on left ventricular longitudinal strain by 2D speckle tracking. Echocardiography. 2008;25(8):873–879. doi: 10.1111/j.1540-8175.2008.00707.x

[38]

Choi J.O., Shin D.H., Cho S.W., et al. Effect of preload on left ventricular longitudinal strain by 2D speckle tracking // Echocardiography. 2008. Vol. 25, № 8. P. 873–879. doi: 10.1111/j.1540-8175.2008.00707.x

[39]

Choi JO, Shin DH, Cho SW, et al. Effect of preload on left ventricular longitudinal strain by 2D speckle tracking. Echocardiography. 2008;25(8):873–879. doi: 10.1111/j.1540-8175.2008.00707.x

[40]

Santoro C, Arpino G, Esposito R, et al. 2D and 3D strain for detection of subclinical anthracycline cardiotoxicity in breast cancer patients: a balance with feasibility. Eur Heart J Cardiovasc Imaging. 2017;18(8):930–936. doi: 10.1093/ehjci/jex033

[41]

Santoro C., Arpino G., Esposito R., et al. 2D and 3D strain for detection of subclinical anthracycline cardiotoxicity in breast cancer patients: a balance with feasibility // Eur Heart J Cardiovasc Imaging. 2017. Vol. 18, № 8. P. 930–936. doi: 10.1093/ehjci/jex033

[42]

Santoro C, Arpino G, Esposito R, et al. 2D and 3D strain for detection of subclinical anthracycline cardiotoxicity in breast cancer patients: a balance with feasibility. Eur Heart J Cardiovasc Imaging. 2017;18(8):930–936. doi: 10.1093/ehjci/jex033

[43]

Santoro C, Esposito R, Lembo M, et al. Strain-oriented strategy for guiding cardioprotection initiation of breast cancer patients experiencing cardiac dysfunction. Eur Heart J Cardiovasc Imaging. 2019;20(12):1345–1352. doi: 10.1093/ehjci/jez194

[44]

Santoro C., Esposito R., Lembo M., et al. Strain-oriented strategy for guiding cardioprotection initiation of breast cancer patients experiencing cardiac dysfunction // Eur Heart J Cardiovasc Imaging. 2019. Vol. 20, № 12. P. 1345–1352. doi: 10.1093/ehjci/jez194

[45]

Santoro C, Esposito R, Lembo M, et al. Strain-oriented strategy for guiding cardioprotection initiation of breast cancer patients experiencing cardiac dysfunction. Eur Heart J Cardiovasc Imaging. 2019;20(12):1345–1352. doi: 10.1093/ehjci/jez194

[46]

Thavendiranathan P, Negishi T, Somerset E, et al. Strain-guided management of potentially cardiotoxic cancer therapy. J Am Coll Cardiol. 2021;77(4):392–401. doi: 10.1016/j.jacc.2020.11.020

[47]

Thavendiranathan P., Negishi T., Somerset E., et al. Strain-guided management of potentially cardiotoxic cancer therapy // J Am Coll Cardiol. 2021. Vol. 77, № 4. P. 392–401. doi: 10.1016/j.jacc.2020.11.020

[48]

Thavendiranathan P, Negishi T, Somerset E, et al. Strain-guided management of potentially cardiotoxic cancer therapy. J Am Coll Cardiol. 2021;77(4):392–401. doi: 10.1016/j.jacc.2020.11.020

[49]

Dobson R, Ghosh AK, Ky B, et al. BSE and BCOS guideline for transthoracic echocardiographic assessment of adult cancer patients receiving anthracyclines and/or trastuzumab. JACC CardioOncology. 2021;3(1):1–16. doi: 10.1016/J.JACCAO.2021.01.011

[50]

Dobson R., Ghosh A.K., Ky B., et al. BSE and BCOS guideline for transthoracic echocardiographic assessment of adult cancer patients receiving anthracyclines and/or trastuzumab // JACC CardioOncology. 2021. Vol. 3, № 1. P. 1–16. doi: 10.1016/J.JACCAO.2021.01.011

[51]

Dobson R, Ghosh AK, Ky B, et al. BSE and BCOS guideline for transthoracic echocardiographic assessment of adult cancer patients receiving anthracyclines and/or trastuzumab. JACC CardioOncology. 2021;3(1):1–16. doi: 10.1016/J.JACCAO.2021.01.011

[52]

Kuznetsova T, Thijs L, Knez J, et al. Prognostic value of left ventricular diastolic dysfunction in a general population. J Am Hear Assoc Cardiovasc Cerebrovasc Dis. 2014;3(3):e000789. doi: 10.1161/JAHA.114.000789

[53]

Kuznetsova T., Thijs L., Knez J., et al. Prognostic value of left ventricular diastolic dysfunction in a general population // J Am Hear Assoc Cardiovasc Cerebrovasc Dis. 2014. Vol. 3, № 3. Р. e000789. doi: 10.1161/JAHA.114.000789

[54]

Kuznetsova T, Thijs L, Knez J, et al. Prognostic value of left ventricular diastolic dysfunction in a general population. J Am Hear Assoc Cardiovasc Cerebrovasc Dis. 2014;3(3):e000789. doi: 10.1161/JAHA.114.000789

[55]

Nagiub M, Nixon JV, Kontos MC. Ability of nonstrain diastolic parameters to predict doxorubicin-induced cardiomyopathy: a systematic review with meta-analysis. Cardiol Rev. 2018;26(1):29–34. doi: 10.1097/CRD.0000000000000161

[56]

Nagiub M., Nixon J.V., Kontos M.C. Ability of nonstrain diastolic parameters to predict doxorubicin-induced cardiomyopathy: a systematic review with meta-analysis // Cardiol Rev. 2018. Vol. 26, № 1. P. 29–34. doi: 10.1097/CRD.0000000000000161

[57]

Nagiub M, Nixon JV, Kontos MC. Ability of nonstrain diastolic parameters to predict doxorubicin-induced cardiomyopathy: a systematic review with meta-analysis. Cardiol Rev. 2018;26(1):29–34. doi: 10.1097/CRD.0000000000000161

[58]

Upshaw JN, Finkelman B, Hubbard RA, et al. Comprehensive assessment of changes in left ventricular diastolic function with contemporary breast cancer therapy. JACC Cardiovasc Imaging. 2020;13(1):198–210. doi: 10.1016/J.JCMG.2019.07.018

[59]

Upshaw J.N., Finkelman B., Hubbard R.A., et al. Comprehensive assessment of changes in left ventricular diastolic function with contemporary breast cancer therapy // JACC Cardiovasc. 2020. Vol. 13, № 1. P. 198–210. doi: 10.1016/J.JCMG.2019.07.018

[60]

Upshaw JN, Finkelman B, Hubbard RA, et al. Comprehensive assessment of changes in left ventricular diastolic function with contemporary breast cancer therapy. JACC Cardiovasc Imaging. 2020;13(1):198–210. doi: 10.1016/J.JCMG.2019.07.018

[61]

Mincu RI, Lampe LF, Mahabadi AA, et al. Left ventricular diastolic function following anthracycline-based chemotherapy in patients with breast cancer without previous cardiac disease ― a meta-analysis. J Clin Med. 2021;10(17):3890. doi: 10.3390/JCM10173890

[62]

Mincu R.I., Lampe L.F., Mahabadi A.A., et al. Left ventricular diastolic function following anthracycline-based chemotherapy in patients with breast cancer without previous cardiac disease ― a meta-analysis // J Clin Med. 2021. Vol. 10, № 17. P. 3890. doi: 10.3390/JCM10173890

[63]

Mincu RI, Lampe LF, Mahabadi AA, et al. Left ventricular diastolic function following anthracycline-based chemotherapy in patients with breast cancer without previous cardiac disease ― a meta-analysis. J Clin Med. 2021;10(17):3890. doi: 10.3390/JCM10173890

[64]

Rossi A, Temporelli PL, Quintana M, et al. Independent relationship of left atrial size and mortality in patients with heart failure: an individual patient meta-analysis of longitudinal data (MeRGE Heart Failure). Eur J Heart Fail. 2009;11(10):929–936. doi: 10.1093/EURJHF/HFP112

[65]

Rossi A., Temporelli P.L., Quintana M., et al. Independent relationship of left atrial size and mortality in patients with heart failure: an individual patient meta-analysis of longitudinal data (MeRGE Heart Failure) // Eur J Heart Fail. 2009. Vol. 11, № 10. P. 929–936. doi: 10.1093/EURJHF/HFP112

[66]

Rossi A, Temporelli PL, Quintana M, et al. Independent relationship of left atrial size and mortality in patients with heart failure: an individual patient meta-analysis of longitudinal data (MeRGE Heart Failure). Eur J Heart Fail. 2009;11(10):929–936. doi: 10.1093/EURJHF/HFP112

[67]

Benjamin E, D’Agostino R, Belanger A. Left atrial size and the risk of stroke and death. The Framingham Heart Study. Circulation. 1995;92(4):835–841. doi: 10.1161/01.CIR.92.4.835

[68]

Benjamin B., D’Agostino R., Belanger A., et al. Left atrial size and the risk of stroke and death. The Framingham Heart Study // Circulation. 1995. Vol. 92, № 4. P. 835–841. doi: 10.1161/01.CIR.92.4.835

[69]

Benjamin E, D’Agostino R, Belanger A. Left atrial size and the risk of stroke and death. The Framingham Heart Study. Circulation. 1995;92(4):835–841. doi: 10.1161/01.CIR.92.4.835

[70]

Thomas L, Marwick HT, Popescu AB, et al. Left atrial structure and function, and left ventricular diastolic dysfunction: JACC state of the art review. J Am Coll Cardiol. 2019;73(15):1961–1977. doi: 10.1016/J.JACC.2019.01.059

[71]

Thomas L., Marwick H.T., Popescu A.B., et al. Left atrial structure and function, and left ventricular diastolic dysfunction: JACC state of the art review // J Am Coll Cardiol. 2019. Vol. 73, № 15. P. 1961–1977. doi: 10.1016/J.JACC.2019.01.059

[72]

Thomas L, Marwick HT, Popescu AB, et al. Left atrial structure and function, and left ventricular diastolic dysfunction: JACC state of the art review. J Am Coll Cardiol. 2019;73(15):1961–1977. doi: 10.1016/J.JACC.2019.01.059

[73]

Serezhina EK, Obrezan AG. Significance of the echocardiographic evaluation of left atrial myocardial strain for early diagnosis of heart failure with preserved ejection fraction. Kardiologiia. 2021;61(8):68–75. (In Russ). doi: 10.18087/cardio.2021.8.n1418

[74]

Сережина Е.К., Обрезан А.Г. Значимость эхокардиогарфической оценки деформации миокарда левого предсердия в ранней диагностике сердечной недостаточности с сохраненной фракцией выброса // Кардиология. 2021. Т. 61, № 8. С. 68–75. doi: 10.18087/cardio.2021.8.n1418

[75]

Serezhina EK, Obrezan AG. Significance of the echocardiographic evaluation of left atrial myocardial strain for early diagnosis of heart failure with preserved ejection fraction. Kardiologiia. 2021;61(8):68–75. (In Russ). doi: 10.18087/cardio.2021.8.n1418

[76]

Kebed KY, Addetia K, Lang RM. Importance of the left atrium: more than a bystander? Heart Fail Clin. 2019;15(2):191–204. doi: 10.1016/j.hfc.2018.12.001

[77]

Kebed K.Y., Addetia K., Lang R.M. Importance of the left atrium: more than a bystander? // Heart Failure Clinics. 2019. Vol. 15, № 2. P. 191–204. doi: 10.1016/j.hfc.2018.12.001

[78]

Kebed KY, Addetia K, Lang RM. Importance of the left atrium: more than a bystander? Heart Fail Clin. 2019;15(2):191–204. doi: 10.1016/j.hfc.2018.12.001

[79]

Litwin SE. Left atrial strain: a single parameter for assessing the dark side of the cardiac cycle? JACC Cardiovasc Imaging. 2020;13(10):2114–2116. doi: 10.1016/j.jcmg.2020.07.037

[80]

Litwin S.E. Left atrial strain: a single parameter for assessing the dark side of the cardiac cycle? // JACC: Cardiovascular Imaging. 2020. Vol. 13, № 10. P. 2114–2116. doi: 10.1016/j.jcmg.2020.07.037

[81]

Litwin SE. Left atrial strain: a single parameter for assessing the dark side of the cardiac cycle? JACC Cardiovasc Imaging. 2020;13(10):2114–2116. doi: 10.1016/j.jcmg.2020.07.037

[82]

Alekhin МN, Kalinin АО. Diastolic function of the left ventricle: the meaning of left atrium longitudinal strain. Ultrasound Funct Diagnostics. 2020;(3):91–104. (In Russ). doi: 10.24835/1607-0771-2020-3-91-104

[83]

Алехин М.Н., Калинин А.О. Диастолическая функция левого желудочка: значение глобальной продольной деформации левого предсердия // Ультразвуковая и функциональная диагностика. 2020. № 3. P. 91–104. doi: 10.24835/1607-0771-2020-3-91-104

[84]

Alekhin МN, Kalinin АО. Diastolic function of the left ventricle: the meaning of left atrium longitudinal strain. Ultrasound Funct Diagnostics. 2020;(3):91–104. (In Russ). doi: 10.24835/1607-0771-2020-3-91-104

[85]

Szilveszter B, Nagy AI, Vattay B, et al. Left ventricular and atrial strain imaging with cardiac computed tomography: validation against echocardiography. J Cardiovasc Comput Tomogr. 2020;14(4):363–369. doi: 10.1016/j.jcct.2019.12.004

[86]

Szilveszter B., Nagy A.I., Vattay B., et al. Left ventricular and atrial strain imaging with cardiac computed tomography: validation against echocardiography // J Cardiovasc Comput Tomogr. 2020. Vol. 14, № 4. P. 363–369. doi: 10.1016/j.jcct.2019.12.004

[87]

Szilveszter B, Nagy AI, Vattay B, et al. Left ventricular and atrial strain imaging with cardiac computed tomography: validation against echocardiography. J Cardiovasc Comput Tomogr. 2020;14(4):363–369. doi: 10.1016/j.jcct.2019.12.004

[88]

Kim J, Yum B, Palumbo MC, et al. Left atrial strain impairment precedes geometric remodeling as a marker of post-myocardial infarction diastolic dysfunction. JACC Cardiovasc Imaging. 2020;13(10):2099–2113. doi: 10.1016/j.jcmg.2020.05.041

[89]

Kim J., Yum B., Palumbo M.C., et al. Left atrial strain impairment precedes geometric remodeling as a marker of post-myocardial infarction diastolic dysfunction // JACC Cardiovasc. Imaging. 2020. Vol. 13, № 10. P. 2099–2113. doi: 10.1016/j.jcmg.2020.05.041

[90]

Kim J, Yum B, Palumbo MC, et al. Left atrial strain impairment precedes geometric remodeling as a marker of post-myocardial infarction diastolic dysfunction. JACC Cardiovasc Imaging. 2020;13(10):2099–2113. doi: 10.1016/j.jcmg.2020.05.041

[91]

Pathan F, Zainal Abidin HA, Vo QH, et al. Left atrial strain: a multi-modality, multi-vendor comparison study. Eur Heart J Cardiovasc Imaging. 2021;22(1):102–110. doi: 10.1093/ehjci/jez303

[92]

Pathan F., Zainal Abidin H.A., Vo Q.H., et al. Left atrial strain: a multi-modality, multi-vendor comparison study // Eur Heart J Cardiovasc. 2021. Vol. 22, № 1. P. 102–110. doi: 10.1093/ehjci/jez303

[93]

Pathan F, Zainal Abidin HA, Vo QH, et al. Left atrial strain: a multi-modality, multi-vendor comparison study. Eur Heart J Cardiovasc Imaging. 2021;22(1):102–110. doi: 10.1093/ehjci/jez303

[94]

Genovese D, Singh A, Volpato V, et al. Load dependency of left atrial strain in normal subjects. J Am Soc Echocardiogr. 2018;31(11):1221–1228. doi: 10.1016/j.echo.2018.07.016

[95]

Genovese D., Singh A., Volpato V., et al. Load dependency of left atrial strain in normal subjects // J Am Soc Echocardiogr. 2018. Vol. 31, № 11. P. 1221–1228. doi: 10.1016/j.echo.2018.07.016

[96]

Genovese D, Singh A, Volpato V, et al. Load dependency of left atrial strain in normal subjects. J Am Soc Echocardiogr. 2018;31(11):1221–1228. doi: 10.1016/j.echo.2018.07.016

[97]

Brecht A, Oertelt-Prigione S, Seeland U, et al. Left Atrial function in preclinical diastolic dysfunction: two-dimensional speckle-tracking echocardiography ― derived results from the BEFRI trial. J Am Soc Echocardiogr. 2016;29(8):750–758. doi: 10.1016/j.echo.2016.03.013

[98]

Brecht A., Oertelt-Prigione S., Seeland U., et al. Left atrial function in preclinical diastolic dysfunction: two-dimensional speckle-tracking echocardiography ― derived results from the BEFRI Trial // J Am Soc Echocardiogr. 2016. Vol. 29, № 8. P. 750–758. doi: 10.1016/j.echo.2016.03.013

[99]

Brecht A, Oertelt-Prigione S, Seeland U, et al. Left Atrial function in preclinical diastolic dysfunction: two-dimensional speckle-tracking echocardiography ― derived results from the BEFRI trial. J Am Soc Echocardiogr. 2016;29(8):750–758. doi: 10.1016/j.echo.2016.03.013

[100]

Lundberg A, Johnson J, Hage C, et al. Left atrial strain improves estimation of filling pressures in heart failure: a simultaneous echocardiographic and invasive haemodynamic study. Clin Res Cardiol. 2019;108:703–715. doi: 10.1007/s00392-018-1399-8

[101]

Lundberg A., Johnson J., Hage C., et al. Left atrial strain improves estimation of filling pressures in heart failure: a simultaneous echocardiographic and invasive haemodynamic study // Clin Res Cardiol. 2019. Vol. 108. P. 703–715. doi: 10.1007/s00392-018-1399-8

[102]

Lundberg A, Johnson J, Hage C, et al. Left atrial strain improves estimation of filling pressures in heart failure: a simultaneous echocardiographic and invasive haemodynamic study. Clin Res Cardiol. 2019;108:703–715. doi: 10.1007/s00392-018-1399-8

[103]

Mandoli GE, Sisti N, Mondillo S, et al. Left atrial strain in left ventricular diastolic dysfunction: have we finally found the missing piece of the puzzle? Heart Fail Rev. 2020;25(3):409–417. doi: 10.1007/s10741-019-09889-9

[104]

Mandoli G.E., Sisti N., Mondillo S., et al. Left atrial strain in left ventricular diastolic dysfunction: have we finally found the missing piece of the puzzle? // Heart Fail Rev. 2020. Vol. 25, № 3. P. 409–417. doi: 10.1007/s10741-019-09889-9

[105]

Mandoli GE, Sisti N, Mondillo S, et al. Left atrial strain in left ventricular diastolic dysfunction: have we finally found the missing piece of the puzzle? Heart Fail Rev. 2020;25(3):409–417. doi: 10.1007/s10741-019-09889-9

[106]

Pathan F, D’Elia N, Nolan MT, et al. Normal ranges of left atrial strain by speckle-tracking echocardiography: a systematic review and meta-analysis. J Am Soc Echocardiogr. 2017;30(1):59–70.e8. doi: 10.1016/j.echo.2016.09.007

[107]

Pathan F., D’Elia N., Nolan M.T., et al. Normal ranges of left atrial strain by speckle-tracking echocardiography: a systematic review and meta-analysis // J Am Soc Echocardiogr. 2017. Vol. 30, № 1. P. 59–70.e8. doi: 10.1016/j.echo.2016.09.007

[108]

Pathan F, D’Elia N, Nolan MT, et al. Normal ranges of left atrial strain by speckle-tracking echocardiography: a systematic review and meta-analysis. J Am Soc Echocardiogr. 2017;30(1):59–70.e8. doi: 10.1016/j.echo.2016.09.007

[109]

Monte I, Bottari V, Buccheri S, et al. Chemotherapy-induced cardiotoxicity: subclinical cardiac dysfunction evidence using speckle tracking echocardiography. J Cardiovasc Echogr. 2013;23(1):33–38. doi: 10.4103/2211-4122.117983

[110]

Monte I., Bottari V., Buccheri S., et al. Chemotherapy-induced cardiotoxicity: subclinical cardiac dysfunction evidence using speckle tracking echocardiography // J Cardiovasc Echogr. 2013. Vol. 23, № 1. P. 33–38. doi: 10.4103/2211-4122.117983

[111]

Monte I, Bottari V, Buccheri S, et al. Chemotherapy-induced cardiotoxicity: subclinical cardiac dysfunction evidence using speckle tracking echocardiography. J Cardiovasc Echogr. 2013;23(1):33–38. doi: 10.4103/2211-4122.117983

[112]

Sonaglioni A, Albini A, Fossile E, et al. Speckle-tracking echocardiography for cardioncological evaluation in bevacizumab-treated colorectal cancer patients. Cardiovasc Toxicol. 2020;20(6):581–592. doi: 10.1007/s12012-020-09583-5

[113]

Sonaglioni A., Albini A., Fossile E., et al. Speckle-tracking echocardiography for cardioncological evaluation in bevacizumab-treated colorectal cancer patients // Cardiovasc Toxicol. 2020. Vol. 20, № 6. P. 581–592. doi: 10.1007/s12012-020-09583-5

[114]

Sonaglioni A, Albini A, Fossile E, et al. Speckle-tracking echocardiography for cardioncological evaluation in bevacizumab-treated colorectal cancer patients. Cardiovasc Toxicol. 2020;20(6):581–592. doi: 10.1007/s12012-020-09583-5

[115]

Meloche J, Nolan M, Amir E, et al. Temporal changes in left atrial function in women with HER2+ breast cancer receivig sequential anthracyclines and trastuzumab therapy. J Am Coll Cardiol. 2018;71(11):A1524. doi: 10.1016/s0735-1097(18)32065-5

[116]

Meloche J., Nolan M., Amir E., et al. Temporal changes in left atrial function in women with HER2+ breast cancer receivig sequential anthracyclines and trastuzumab therapy // J Am Coll Cardiol. 2018. Vol. 71, № 11. P. A1524. doi: 10.1016/s0735-1097(18)32065-5

[117]

Meloche J, Nolan M, Amir E, et al. Temporal changes in left atrial function in women with HER2+ breast cancer receivig sequential anthracyclines and trastuzumab therapy. J Am Coll Cardiol. 2018;71(11):A1524. doi: 10.1016/s0735-1097(18)32065-5

[118]

Emerson P, Stefani L, Terluk A, et al. Left atrial strain analysis in breast cancer patients post anthracycline (AC). Hear Lung Circ. 2021;30:S196. doi: 10.1016/j.hlc.2021.06.225

[119]

Emerson P., Stefani L., Terluk A., et al. Left atrial strain analysis in breast cancer patients post anthracycline (AC) // Hear Lung Circ. 2021. Vol. 30. P. S196. doi: 10.1016/j.hlc.2021.06.225

[120]

Emerson P, Stefani L, Terluk A, et al. Left atrial strain analysis in breast cancer patients post anthracycline (AC). Hear Lung Circ. 2021;30:S196. doi: 10.1016/j.hlc.2021.06.225

[121]

Laufer-Perl M, Arias O, Dorfman SS, et al. Left atrial strain changes in patients with breast cancer during anthracycline therapy. Int J Cardiol. 2021;330:238–244. doi: 10.1016/J.IJCARD.2021.02.013

[122]

Laufer-Perl M., Arias O., Dorfman S.S., et al. Left atrial strain changes in patients with breast cancer during anthracycline therapy // Int J Cardiol. 2021. Vol. 330. P. 238–244. doi: 10.1016/J.IJCARD.2021.02.013

[123]

Laufer-Perl M, Arias O, Dorfman SS, et al. Left atrial strain changes in patients with breast cancer during anthracycline therapy. Int J Cardiol. 2021;330:238–244. doi: 10.1016/J.IJCARD.2021.02.013

[124]

Moustafa S, Murphy K, Nelluri BK, et al. Temporal trends of cardiac chambers function with trastuzumab in human epidermal growth factor receptor ii-positive breast cancer patients. Echocardiography. 2016;33(3):406–415. doi: 10.1111/echo.13087

[125]

Moustafa S., Murphy K., Nelluri B.K., et al. Temporal trends of cardiac chambers function with trastuzumab in human epidermal growth factor receptor ii-positive breast cancer patients // Echocardiography. 2016. Vol. 33, № 3. P. 406–415. doi: 10.1111/echo.13087

[126]

Moustafa S, Murphy K, Nelluri BK, et al. Temporal trends of cardiac chambers function with trastuzumab in human epidermal growth factor receptor ii-positive breast cancer patients. Echocardiography. 2016;33(3):406–415. doi: 10.1111/echo.13087

[127]

Moreno J, García-Sáez JA, Clavero M, et al. Effect of breast cancer cardiotoxic drugs on left atrial myocardium mechanics. Searching for an early cardiotoxicity marker. Int J Cardiol. 2016;210:32–34. doi: 10.1016/j.ijcard.2016.02.093

[128]

Moreno J., García-Sáez J.A., Clavero M., et al. Effect of breast cancer cardiotoxic drugs on left atrial myocardium mechanics. Searching for an early cardiotoxicity marker // Int J Cardiol. 2016. Vol. 210. P. 32–34. doi: 10.1016/j.ijcard.2016.02.093

[129]

Moreno J, García-Sáez JA, Clavero M, et al. Effect of breast cancer cardiotoxic drugs on left atrial myocardium mechanics. Searching for an early cardiotoxicity marker. Int J Cardiol. 2016;210:32–34. doi: 10.1016/j.ijcard.2016.02.093

[130]

Setti E, Dolci G, Bergamini C, et al. P2460 prospective evaluation of atrial function by 2D speckle tracking analysis in HER-2 positive breast cancer patients during Trastuzumab therapy. Eur Heart J. 2019;40(Suppl 1):2460. doi: 10.1093/eurheartj/ehz748.0792

[131]

Setti E., Dolci G., Bergamini C., et al. P2460 prospective evaluation of atrial function by 2D speckle tracking analysis in HER-2 positive breast cancer patients during Trastuzumab therapy // Eur Heart J. 2019. Vol. 40, Suppl. 1. P. 2460. doi: 10.1093/eurheartj/ehz748.0792

[132]

Setti E, Dolci G, Bergamini C, et al. P2460 prospective evaluation of atrial function by 2D speckle tracking analysis in HER-2 positive breast cancer patients during Trastuzumab therapy. Eur Heart J. 2019;40(Suppl 1):2460. doi: 10.1093/eurheartj/ehz748.0792

[133]

Moustafa S, Ho TH, Shah P, et al. Predictors of Incipient dysfunction of all cardiac chambers after treatment of metastatic renal cell carcinoma by tyrosine kinase inhibitors. J Clin Ultrasound. 2016;44(4):221. doi: 10.1002/JCU.22333

[134]

Moustafa S., Ho T.H., Shah P., et al. Predictors of incipient dysfunction of all cardiac chambers after treatment of metastatic renal cell carcinoma by tyrosine kinase inhibitors // J Clin Ultrasound. 2016. Vol. 44, № 4. P. 221. doi: 10.1002/JCU.22333

[135]

Moustafa S, Ho TH, Shah P, et al. Predictors of Incipient dysfunction of all cardiac chambers after treatment of metastatic renal cell carcinoma by tyrosine kinase inhibitors. J Clin Ultrasound. 2016;44(4):221. doi: 10.1002/JCU.22333

[136]

Anqi Y, Yu Z, Mingjun X, et al. Use of echocardiography to monitor myocardial damage during anthracycline chemotherapy. Echocardiography. 2019;36(3):495–502. doi: 10.1111/echo.14252

[137]

Anqi Y., Yu Z., Mingjun X., et al. Use of echocardiography to monitor myocardial damage during anthracycline chemotherapy // Echocardiography. 2019. Vol. 36, № 3. P. 495–502. doi: 10.1111/echo.14252

[138]

Anqi Y, Yu Z, Mingjun X, et al. Use of echocardiography to monitor myocardial damage during anthracycline chemotherapy. Echocardiography. 2019;36(3):495–502. doi: 10.1111/echo.14252

[139]

Timóteo AT, Moura Branco L, Filipe F, et al. Cardiotoxicity in breast cancer treatment: What about left ventricular diastolic function and left atrial function? Echocardiography. 2019;36(10):1806–1813. doi: 10.1111/echo.14487

[140]

Timóteo A.T., Moura Branco L., Filipe F., et al. Cardiotoxicity in breast cancer treatment: what about left ventricular diastolic function and left atrial function? // Echocardiography. 2019. Vol. 36, № 10. P. 1806–1813. doi: 10.1111/echo.14487

[141]

Timóteo AT, Moura Branco L, Filipe F, et al. Cardiotoxicity in breast cancer treatment: What about left ventricular diastolic function and left atrial function? Echocardiography. 2019;36(10):1806–1813. doi: 10.1111/echo.14487

[142]

Park H, Kim KH, Kim HY, et al. Left atrial longitudinal strain as a predictor of cancer therapeutics-related cardiac dysfunction in patients with breast cancer. Cardiovasc Ultrasound. 2020;18(1):1–8. doi: 10.1186/S12947-020-00210-5

[143]

Park H., Kim K.H., Kim H.Y., et al. Left atrial longitudinal strain as a predictor of cancer therapeutics-related cardiac dysfunction in patients with breast cancer // BioMed Central. 2020. Vol. 18, № 1. P. 1–8. doi: 10.1186/S12947-020-00210-5

[144]

Park H, Kim KH, Kim HY, et al. Left atrial longitudinal strain as a predictor of cancer therapeutics-related cardiac dysfunction in patients with breast cancer. Cardiovasc Ultrasound. 2020;18(1):1–8. doi: 10.1186/S12947-020-00210-5

[145]

Di Lisi D, Cadeddu Dessalvi C, Manno G, et al. Left atrial strain and left atrial stiffness for early detection of cardiotoxicity in cancer patients. Eur Heart J. 2021;42(Suppl 1):2021. doi: 10.1093/eurheartj/ehab724.021

[146]

Di Lisi D., Cadeddu Dessalvi C., Manno G., et al. Left atrial strain and left atrial stiffness for early detection of cardiotoxicity in cancer patients // Eur Heart J. 2021. Vol. 42, Suppl. 1. P. 2021. doi: 10.1093/eurheartj/ehab724.021

[147]

Di Lisi D, Cadeddu Dessalvi C, Manno G, et al. Left atrial strain and left atrial stiffness for early detection of cardiotoxicity in cancer patients. Eur Heart J. 2021;42(Suppl 1):2021. doi: 10.1093/eurheartj/ehab724.021

[148]

Li VW, Lai CT, Liu AP, et al. Left atrial mechanics and integrated calibrated backscatter in anthracycline-treated long-term survivors of childhood cancers. Ultrasound Med Biol. 2017;43(9):1897–1905. doi: 10.1016/j.ultrasmedbio.2017.05.017

[149]

Li V.W., Lai C.T., Liu A.P, et al. Left atrial mechanics and integrated calibrated backscatter in anthracycline-treated long-term survivors of childhood cancers // Ultrasound Med Biol. 2017. Vol. 43, № 9. P. 1897–1905. doi: 10.1016/j.ultrasmedbio.2017.05.017

[150]

Li VW, Lai CT, Liu AP, et al. Left atrial mechanics and integrated calibrated backscatter in anthracycline-treated long-term survivors of childhood cancers. Ultrasound Med Biol. 2017;43(9):1897–1905. doi: 10.1016/j.ultrasmedbio.2017.05.017

[151]

Loar RW, Colquitt JL, Rainusso NC, et al. Assessing the left atrium of childhood cancer survivors. Int J Cardiovasc Imaging. 2021;37(1):155–162. doi: 10.1007/s10554-020-01970-x

[152]

Loar R.W., Colquitt J.L., Rainusso N.C., et al. Assessing the left atrium of childhood cancer survivors // Int J Cardiovasc. 2021. Vol. 37, № 1. P. 155–162. doi: 10.1007/s10554-020-01970-x

[153]

Loar RW, Colquitt JL, Rainusso NC, et al. Assessing the left atrium of childhood cancer survivors. Int J Cardiovasc Imaging. 2021;37(1):155–162. doi: 10.1007/s10554-020-01970-x

[154]

Patel NR, Chyu CK, Satou GM, et al. Left atrial function in children and young adult cancer survivors treated with anthracyclines. Echocardiography. 2018;35(10):1649–1656. doi: 10.1111/echo.14100

[155]

Patel N.R., Chyu C.K., Satou G.M., et al. Left atrial function in children and young adult cancer survivors treated with anthracyclines // Echocardiography. 2018. Vol. 35, № 10. P. 1649–1656. doi: 10.1111/echo.14100

[156]

Patel NR, Chyu CK, Satou GM, et al. Left atrial function in children and young adult cancer survivors treated with anthracyclines. Echocardiography. 2018;35(10):1649–1656. doi: 10.1111/echo.14100

[157]

Tadic M, Genger M, Cuspidi C, et al. Phasic left atrial function in cancer patients before initiation of anti-cancer therapy. J Clin Med. 2019;8(4):421. doi: 10.3390/JCM8040421

[158]

Tadic M., Genger M., Cuspidi C., et al. Phasic left atrial function in cancer patients before initiation of anti-cancer therapy // J Clin Med. 2019. Vol. 8. P. 421. doi: 10.3390/JCM8040421

[159]

Tadic M, Genger M, Cuspidi C, et al. Phasic left atrial function in cancer patients before initiation of anti-cancer therapy. J Clin Med. 2019;8(4):421. doi: 10.3390/JCM8040421

[160]

Liao JN, Chao TF, Kuo JY, et al. Age, sex, and blood pressure-related influences on reference values of left atrial deformation and mechanics from a large-scale asian population. Circ Cardiovasc Imaging. 2017;10(10):e006077. doi: 10.1161/CIRCIMAGING.116.006077

[161]

Liao J.N., Chao T.F., Kuo J.Y., et al. Age, sex, and blood pressure-related influences on reference values of left atrial deformation and mechanics from a large-scale asian population // Circ Cardiovasc Imaging. 2017. Vol. 10, № 10. Р. e006077. doi: 10.1161/CIRCIMAGING.116.006077

[162]

Liao JN, Chao TF, Kuo JY, et al. Age, sex, and blood pressure-related influences on reference values of left atrial deformation and mechanics from a large-scale asian population. Circ Cardiovasc Imaging. 2017;10(10):e006077. doi: 10.1161/CIRCIMAGING.116.006077

[163]

Cameli M, Mandoli GE, Loiacono F, et al. Left atrial strain: a new parameter for assessment of left ventricular filling pressure. Heart Fail Rev. 2016;21(1):65–76. doi: 10.1007/S10741-015-9520-9

[164]

Cameli M., Mandoli G.E., Loiacono F., et al. Left atrial strain: a new parameter for assessment of left ventricular filling pressure // Heart Fail Rev. 2016. Vol. 21, № 1. P. 65–76. doi: 10.1007/S10741-015-9520-9

[165]

Cameli M, Mandoli GE, Loiacono F, et al. Left atrial strain: a new parameter for assessment of left ventricular filling pressure. Heart Fail Rev. 2016;21(1):65–76. doi: 10.1007/S10741-015-9520-9

[166]

Singh A, El Hangouche N, McGee K, et al. Utilizing left atrial strain to identify patients at risk for atrial fibrillation on ibrutinib. Echocardiography. 2021;38(1):81–88. doi: 10.1111/echo.14946

[167]

Singh A., El Hangouche N., McGee K., et al. Utilizing left atrial strain to identify patients at risk for atrial fibrillation on ibrutinib // Echocardiography. 2021. Vol. 38, № 1. P. 81–88. doi: 10.1111/echo.14946

[168]

Singh A, El Hangouche N, McGee K, et al. Utilizing left atrial strain to identify patients at risk for atrial fibrillation on ibrutinib. Echocardiography. 2021;38(1):81–88. doi: 10.1111/echo.14946

RIGHTS & PERMISSIONS

Yusupova A.V., Yusupov E.S.

PDF (742KB)

163

Accesses

0

Citation

Detail

Sections
Recommended

/