Evolution of research and development in the field of artificial intelligence technologies for healthcare in the Russian Federation: results of 2021
Aleksander V. Gusev , Anton V. Vladzymyrskyy , Dariya E. Sharova , Kirill M. Arzamasov , Aleksander E. Khramov
Digital Diagnostics ›› 2022, Vol. 3 ›› Issue (3) : 178 -194.
Evolution of research and development in the field of artificial intelligence technologies for healthcare in the Russian Federation: results of 2021
The use of artificial intelligence technologies in Russian healthcare is a priority area for implementing a national strategy for the development of artificial intelligence in the country. The introduction of digital solutions based on artificial intelligence in healthcare facilities should improve the standard of living of the population and the quality of medical care, including areas of preventive examinations, diagnostics based on image analysis, prediction of disease development, selection of optimal drug dosages, reducing the threat of pandemics, and automating and increasing the accuracy of surgical interventions.
Policy management and technical regulation are under development in the field of artificial intelligence in healthcare. The domestic market for relevant solutions has been created, and some products have been certified as medical devices from Roszdravnadzor (Federal Service for Surveillance in Healthcare). Various teams of scientists are conducting research. However, Russia is still behind the leading countries in the field of artificial intelligence, such as the United States and China. Investments in healthcare products based on artificial intelligence decreased significantly in 2021. The major reasons for the lag, at least in terms of market indicators, are low demand and the inability of state medical organizations to fund artificial intelligence projects. There are also other issues related to trust in the safety and effectiveness of such solutions.
digital health / artificial intelligence / machine learning / big data / decision support systems / software / medical devices
| [1] |
Deep medicine: how artificial intelligence can make healthcare human again by eric topol. New York: Basic Books; 2019. 341 p. |
| [2] |
Deep medicine: how artificial intelligence can make healthcare human again by eric topol. New York: Basic Books, 2019. 341 p. |
| [3] |
Deep medicine: how artificial intelligence can make healthcare human again by eric topol. New York: Basic Books; 2019. 341 p. |
| [4] |
Roberts M, Driggs D, Thorpe M, et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat Mach Intell. 2021;3(3):199–217. doi: 10.1038/s42256-021-00307-0 |
| [5] |
Roberts M., Driggs D., Thorpe M., et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans // Nat Mach Intel. 2021. Vol. 3, N 3. P. 199–217. doi: 10.1038/s42256-021-00307-0 |
| [6] |
Roberts M, Driggs D, Thorpe M, et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat Mach Intell. 2021;3(3):199–217. doi: 10.1038/s42256-021-00307-0 |
| [7] |
Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and prognosis of COVID-19: systematic review and critical appraisal. BMJ. 2020;369:m1328. doi: 10.1136/bmj.m1328 |
| [8] |
Wynants L., Van Calster B., Collins G.S., et al. Prediction models for diagnosis and prognosis of COVID-19: systematic review and critical appraisal // BMJ. 2020. Vol. 369. P. m1328. doi: 10.1136/bmj.m1328 |
| [9] |
Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and prognosis of COVID-19: systematic review and critical appraisal. BMJ. 2020;369:m1328. doi: 10.1136/bmj.m1328 |
| [10] |
Gusev AV, Morozov SP, Kutischev VA, Novitsky RE. Regulatory and legal regulation of software for healthcare created using artificial intelligence technologies in the Russian Federation. Medical Technologies. Evaluation Selection. 2021;(1):36–45. (In Russ). doi: 10.17116/medtech20214301136 |
| [11] |
Гусев А.В., Морозов С.П., Кутичев В.А., Новицкий Р.Э. Нормативно-правовое регулирование программного обеспечения для здравоохранения, созданного с применением технологий искусственного интеллекта, в Российской Федерации // Медицинские технологии. Оценка и выбор. 2021. № 1. С. 36–45. doi: 10.17116/medtech20214301136 |
| [12] |
Gusev AV, Morozov SP, Kutischev VA, Novitsky RE. Regulatory and legal regulation of software for healthcare created using artificial intelligence technologies in the Russian Federation. Medical Technologies. Evaluation Selection. 2021;(1):36–45. (In Russ). doi: 10.17116/medtech20214301136 |
| [13] |
Sharova DE, Zinchenko VV, Akhmad ES, et al. On the question of ethical aspects of the introduction of artificial intelligence systems in healthcare. Digital Diagnostics. 2021;2(3):356–368. (In Russ). doi: 10.17816/DD77446 |
| [14] |
Шарова Д.Е., Зинченко В.В., Ахмад Е.С., и др. К вопросу об этических аспектах внедрения систем искусственного интеллекта в здравоохранении // Digital Diagnostics. 2021. Т. 2, № 3. С. 356–368. doi: 10.17816/DD77446 |
| [15] |
Sharova DE, Zinchenko VV, Akhmad ES, et al. On the question of ethical aspects of the introduction of artificial intelligence systems in healthcare. Digital Diagnostics. 2021;2(3):356–368. (In Russ). doi: 10.17816/DD77446 |
| [16] |
Morozov SP, Zinchenko VV, Khoruzhaya AN, et al. Standardization of artificial intelligence in healthcare: Russia is becoming a leader. Doctor and information technology. 2021;(2):12–19. (In Russ). doi: 10.25881/18110193_2021_2_12 |
| [17] |
Морозов С.П., Зинченко В.В., Хоружая А.Н., и др. Стандартизация искусственного интеллекта в здравоохранении: Россия выходит в лидеры // Врач и информационные технологии. 2021. № 2. С. 12–19. doi: 10.25881/18110193_2021_2_12 |
| [18] |
Morozov SP, Zinchenko VV, Khoruzhaya AN, et al. Standardization of artificial intelligence in healthcare: Russia is becoming a leader. Doctor and information technology. 2021;(2):12–19. (In Russ). doi: 10.25881/18110193_2021_2_12 |
| [19] |
Morozov SP, Vladzimirsky AV, Sharova DE, et al. The first national standards of the Russian Federation for artificial intelligence systems in medicine. Quality Management Med. 2022;(1):58–62. (In Russ). |
| [20] |
Морозов С.П., Владзимирский А.В., Шарова Д.Е., и др. Первые национальные стандарты Российской Федерации на системы искусственного интеллекта в медицине // Менеджмент качества в медицине. 2022. № 1. С. 58–62. |
| [21] |
Morozov SP, Vladzimirsky AV, Sharova DE, et al. The first national standards of the Russian Federation for artificial intelligence systems in medicine. Quality Management Med. 2022;(1):58–62. (In Russ). |
| [22] |
Komar PA, Dmitriev VS, Ledneva AM, et al. Rating of artificial intelligence startups: prospects for Russian healthcare. Russ J Telemedicine E-Health. 2021;7(3)32–41. (In Russ). doi: 10.29188/2712-9217-2021-7-3-32-41 |
| [23] |
Комарь П.А., Дмитриев В.С., Ледяева А.М., и др. Рейтинг стартапов искусственного интеллекта: перспективы для здравоохранения России // Российский журнал телемедицины и электронного здравоохранения. 2021. Т. 7, № 3 С. 32–41. doi: 10.29188/2712-9217-2021-7-3-32-41 |
| [24] |
Komar PA, Dmitriev VS, Ledneva AM, et al. Rating of artificial intelligence startups: prospects for Russian healthcare. Russ J Telemedicine E-Health. 2021;7(3)32–41. (In Russ). doi: 10.29188/2712-9217-2021-7-3-32-41 |
| [25] |
Korsakov SN. The outline of a new method of research using machines comparing ideas. Transl. with French. Ed. by A.S. Mikhailov. Moscow: Moscow Institute of Engineering and Physics; 2009. 44 c. |
| [26] |
Корсаков С.Н. Начертание нового способа исследования при помощи машин, сравнивающих идеи / пер. с франц.; под ред. А.С. Михайлова. Москва: МИФИ, 2009. 44 c. |
| [27] |
Korsakov SN. The outline of a new method of research using machines comparing ideas. Transl. with French. Ed. by A.S. Mikhailov. Moscow: Moscow Institute of Engineering and Physics; 2009. 44 c. |
| [28] |
Gavrilova TA, Khoroshevsky VF. Knowledge bases of intelligent systems: study guide. Saint Petersburg: Piter; 2000. 384 p. |
| [29] |
Гаврилова Т.А., Хорошевский В.Ф. Базы знаний интеллектуальных систем: учебное пособие. Санкт-Петербург: Питер, 2000. 384 с. |
| [30] |
Gavrilova TA, Khoroshevsky VF. Knowledge bases of intelligent systems: study guide. Saint Petersburg: Piter; 2000. 384 p. |
| [31] |
Danilov VV, Proutski A, Karpovsky A, et al. Indirect supervision applied to COVID-19 and pneumonia classification. Informatics Medicine Unlocked. 2022;28:100835. doi: 10.1016/j.imu.2021.100835 |
| [32] |
Danilov V.V., Proutski A., Karpovsky A., et al. Indirect supervision applied to COVID-19 and pneumonia classification // Informatics Medicine Unlocked. 2022. Vol. 28. P. 100835. doi: 10.1016/j.imu.2021.100835 |
| [33] |
Danilov VV, Proutski A, Karpovsky A, et al. Indirect supervision applied to COVID-19 and pneumonia classification. Informatics Medicine Unlocked. 2022;28:100835. doi: 10.1016/j.imu.2021.100835 |
| [34] |
Mohammadi R, Salehi M, Ghaffari H, et al. Transfer learning-based automatic detection of coronavirus disease 2019 (COVID-19) from chest X-ray images. J Biomed Phys Eng. 2020;10(5) 559–568. doi: 10.31661/jbpe.v0i0.2008-1153 |
| [35] |
Mohammadi R., Salehi M., Ghaffari H., et al. Transfer learning-based automatic detection of coronavirus disease 2019 (COVID-19) from chest X-ray images // J Biomed Phys Eng. 2020. Vol. 10, N 5. Р. 559–568. doi: 10.31661/jbpe.v0i0.2008-1153 |
| [36] |
Mohammadi R, Salehi M, Ghaffari H, et al. Transfer learning-based automatic detection of coronavirus disease 2019 (COVID-19) from chest X-ray images. J Biomed Phys Eng. 2020;10(5) 559–568. doi: 10.31661/jbpe.v0i0.2008-1153 |
| [37] |
Neroev VV, Bragin AA, Zaitseva OV. Development of a prototype service for the diagnosis of diabetic retinopathy from fundus images using artificial intelligence methods. National Healthcare. 2021;2(2):64–72. (In Russ). doi: 10.47093/2713-069X.2021.2.2.64-7 |
| [38] |
Нероев В.В., Брагин А.А., Зайцева О.В. Разработка прототипа сервиса для диагностики диабетической ретинопатии по снимкам глазного дна с использованием методов искусственного интеллекта // Национальное здравоохранение. 2021. Т. 2, № 2. С. 64–72. doi: 10.47093/2713-069X.2021.2.2.64-7 |
| [39] |
Neroev VV, Bragin AA, Zaitseva OV. Development of a prototype service for the diagnosis of diabetic retinopathy from fundus images using artificial intelligence methods. National Healthcare. 2021;2(2):64–72. (In Russ). doi: 10.47093/2713-069X.2021.2.2.64-7 |
| [40] |
Nevzorova VA, Brodskaya TA, Shakhgeldyan KI, et al. Machine learning methods in predicting the risks of 5-year mortality (according to the ESSE-RF study in Primorsky Krai). Cardiovascular Therapy Prevention. 2022;21(1):2908. (In Russ). doi: 10.15829/1728-8800-2022-2908 |
| [41] |
Невзорова В.А., Бродская Т.А., Шахгельдян К.И., и др. Методы машинного обучения в прогнозировании рисков 5-летней смертности (по данным исследования ЭССЕ-РФ в Приморском крае) // Кардиоваскулярная терапия и профилактика. 2022. Т. 21, № 1. С. 2908. doi: 10.15829/1728-8800-2022-2908 |
| [42] |
Nevzorova VA, Brodskaya TA, Shakhgeldyan KI, et al. Machine learning methods in predicting the risks of 5-year mortality (according to the ESSE-RF study in Primorsky Krai). Cardiovascular Therapy Prevention. 2022;21(1):2908. (In Russ). doi: 10.15829/1728-8800-2022-2908 |
| [43] |
Gilyarevsky SR, Gavrilov DV, Gusev AV. The results of a retrospective analysis of records of electronic outpatient medical records of patients with chronic heart failure: the first Russian experience. Russ J Cardiology. 2021;26(5):4502. (In Russ). doi: 10.15829/1560-4071-2021-4502 |
| [44] |
Гиляревский С.Р., Гаврилов Д.В., Гусев А.В. Результаты ретроспективного анализа записей электронных амбулаторных медицинских карт пациентов с хронической сердечной недостаточностью: первый российский опыт // Российский кардиологический журнал. 2021. Т. 26, № 5. С. 4502. doi: 10.15829/1560-4071-2021-4502 |
| [45] |
Gilyarevsky SR, Gavrilov DV, Gusev AV. The results of a retrospective analysis of records of electronic outpatient medical records of patients with chronic heart failure: the first Russian experience. Russ J Cardiology. 2021;26(5):4502. (In Russ). doi: 10.15829/1560-4071-2021-4502 |
| [46] |
Karpov OE, Grubov VV, Maksimenko VA, et al. Noise amplification precedes extreme epileptic events on human EEG. Physical Review. 2021;103:022310. doi: 10.1103/PhysRevE.103.022310 |
| [47] |
Karpov O.E., Grubov V.V., Maksimenko V.A., et al. Noise amplification precedes extreme epileptic events on human EEG // Physical Review. 2021. Vol. 103. Р. 022310. doi: 10.1103/PhysRevE.103.022310 |
| [48] |
Karpov OE, Grubov VV, Maksimenko VA, et al. Noise amplification precedes extreme epileptic events on human EEG. Physical Review. 2021;103:022310. doi: 10.1103/PhysRevE.103.022310 |
| [49] |
Kuchin AS, Grubov VV, Maksimenko VA, Utyashev NP. Automated workplace of an epileptologist with the possibility of automatic search for epilepsy attacks. Doctor and information technology. 2021;(3):62–73. (In Russ). doi: 1025881/18110193_2021_3_62 |
| [50] |
Кучин А.С., Грубов В.В., Максименко В.А., Утяшев Н.П. Автоматизированное рабочее место врача-эпилептолога с возможностью автоматического поиска приступов эпилепсии // Врач и информационные технологии. 2021. № 3. Р. 62–73 doi: 1025881/18110193_2021_3_62 |
| [51] |
Kuchin AS, Grubov VV, Maksimenko VA, Utyashev NP. Automated workplace of an epileptologist with the possibility of automatic search for epilepsy attacks. Doctor and information technology. 2021;(3):62–73. (In Russ). doi: 1025881/18110193_2021_3_62 |
| [52] |
Kuc A, Korchagin S, Maksimenko VA, et al. Combining statistical analysis and machine learning for eeg scalp topograms classification. Frontiers Systems Neuroscience. 2021;15:716897. doi: 10.3389/fnsys.2021.716897 |
| [53] |
Kuc A., Korchagin S., Maksimenko V.A., et al. Combining statistical analysis and machine learning for eeg scalp topograms classification // Frontiers Systems Neuroscience. 2021. Vol. 15. Р. 716897. doi: 10.3389/fnsys.2021.716897 |
| [54] |
Kuc A, Korchagin S, Maksimenko VA, et al. Combining statistical analysis and machine learning for eeg scalp topograms classification. Frontiers Systems Neuroscience. 2021;15:716897. doi: 10.3389/fnsys.2021.716897 |
| [55] |
Hramov AE, Maksimenko VA, Pisarchik AN. Physical principles of brain-computer interfaces and their applications for rehabilitation, robotics and control of human brain states. Physics Reports. 2021;918:1–133. doi: 10.1016/j.physrep.2021.03.002 |
| [56] |
Hramov A.E., Maksimenko V.A., Pisarchik A.N. Physical principles of brain-computer interfaces and their applications for rehabilitation, robotics and control of human brain states // Physics Reports. 2021. Vol. 918. Р. 1–133. doi: 10.1016/j.physrep.2021.03.002 |
| [57] |
Hramov AE, Maksimenko VA, Pisarchik AN. Physical principles of brain-computer interfaces and their applications for rehabilitation, robotics and control of human brain states. Physics Reports. 2021;918:1–133. doi: 10.1016/j.physrep.2021.03.002 |
| [58] |
Morozov SP, Vladzimirsky AV, Shulkin IM, et al. Investigation of the feasibility of using artificial intelligence technologies in radiation diagnostics. Doctor and information technology. 2022;(1):12–29. (In Russ). |
| [59] |
Морозов С.П., Владзимирский А.В., Шулькин И.М., и др. Исследование целесообразности применения технологий искусственного интеллекта в лучевой диагностике // Врач и информационные технологии. 2022. № 1. С. 12–29. |
| [60] |
Morozov SP, Vladzimirsky AV, Shulkin IM, et al. Investigation of the feasibility of using artificial intelligence technologies in radiation diagnostics. Doctor and information technology. 2022;(1):12–29. (In Russ). |
Eco-vector
/
| 〈 |
|
〉 |