Forecasting the incidence of COVID-19 in Moscow: comparison of time series models

A. V. Solov’yev , M. R. Kodenko , R. V. Reshetnikov , T. D. Sukhikh , A. N. Mukhortova , I. A. Blokhin , A. P. Gonchar , D. V. Leonov , I. V. Abramova , O. V. Omelyanskaya

Digital Diagnostics ›› 2022, Vol. 3 ›› Issue (1S) : 8 -9.

PDF
Digital Diagnostics ›› 2022, Vol. 3 ›› Issue (1S) :8 -9. DOI: 10.17816/DD105651
Conference proceedings
research-article

Forecasting the incidence of COVID-19 in Moscow: comparison of time series models

Author information +
History +
PDF

Abstract

.

Cite this article

Download citation ▾
A. V. Solov’yev, M. R. Kodenko, R. V. Reshetnikov, T. D. Sukhikh, A. N. Mukhortova, I. A. Blokhin, A. P. Gonchar, D. V. Leonov, I. V. Abramova, O. V. Omelyanskaya. Forecasting the incidence of COVID-19 in Moscow: comparison of time series models. Digital Diagnostics, 2022, 3(1S): 8-9 DOI:10.17816/DD105651

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang R, Ouyang H, Fu L, et al. CT features of SARS-CoV-2 pneumonia according to clinical presentation: a retrospective analysis of 120 consecutive patients from Wuhan city // Eur Radiol. 2020;30(8):4417–4426. doi: 10.1007/s00330-020-06854-1

[2]

Морозов С.П., Проценко Д.Н., Сметанина С.В., и др.; Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения города Москвы. Лучевая диагностика коронавирусной болезни (COVID-19): организация, методология, интерпретация результатов. Методические рекомендации № 34. Серия «Лучшие практики лучевой и инструментальной диагностики». 2-е изд., перераб. и дополн. Москва, 2021. 108 с.

[3]

Ai T, Yang Z, Hou H, et al. Correlation of chest CT and RT-PCR testing for Coronavirus Disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology. 2020;296(2):E32–E40. doi: 10.1148/radiol.2020200642

[4]

Kucirka LM, Lauer SA, Laeyendecker O, et al. Variation in false-negative rate of reverse transcriptase polymerase chain reaction-based SARS-CoV-2 tests by time since exposure. Ann Intern Med. 2020;173(4):262–267. doi: 10.7326/M20-1495

[5]

Mahapatra DP, Triambak S. Towards predicting COVID-19 infection waves: A random-walk Monte Carlo simulation approach. Chaos Solitons Fractals. 2022;156:111785. doi: 10.1016/j.chaos.2021.111785

[6]

Perone G. Comparison of ARIMA, ETS, NNAR, TBATS and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy. Eur J Health Econ. 2021:1–24. doi: 10.1007/s10198-021-01347-4

RIGHTS & PERMISSIONS

Solov’yev A.V., Kodenko M.R., Reshetnikov R.V., Sukhikh T.D., Mukhortova A.N., Blokhin I.A., Gonchar A.P., Leonov D.V., Abramova I.V., Omelyanskaya O.V.

PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

/