The Prevalence of Autism Spectrum Disorders in the Russian Federation: A Retrospective Study
Natalia V. Ustinova , Leila S. Namazova-Baranova , Anna Ya. Basova , Margarita A. Soloshenko , Elena A. Vishneva , Zoya Ya. Suleymanova , Mikhail Sergeevich Lapshin
Consortium PSYCHIATRICUM ›› 2022, Vol. 3 ›› Issue (4) : 28 -37.
The Prevalence of Autism Spectrum Disorders in the Russian Federation: A Retrospective Study
BACKGROUND: There has been an increase in the prevalence of autism spectrum disorders (ASD) worldwide over the past decades. Studies have shown that the number of confirmed diagnoses correlates with the awareness of the disorder among the general public and the professional community, in particular, as well as the availability of formalized screening procedures and modern medical and educational tools for families raising children with ASD in regional population centers. Thus, comparing autism prevalence rates in regions of the same country helps identify regions with limited access to diagnostic services and adequate medical care.
AIM: To estimate the overall number of individuals meeting the diagnostic criteria for ASD in Russia and determine the differences in the number of registered individuals with established diagnosis in the constituent territories of the Russian Federation.
METHODS: We conducted a retrospective, observational study and analyzed data from official statistical reports (form 12 “Information on the Number of Diseases Registered in Patients Residing in the Service Area of a Healthcare Institution” for 2020–2021).
RESULTS: A steady upward trend in the number of individuals with autism has been observed since 2014 in the Russian Federation as a whole and in the federal districts, although the prevalence rates differ from the global median prevalence of ASD (all-Russian figure by almost 40 times). In addition, regional differences (by 104.5 times) in the frequency of the diagnosis have been revealed: from a minimum of 1.7 to a maximum of 177.7 per 100,000 population. The percentile distribution of the number of individuals with ASD that are followed-up at healthcare facilities in the constituent territories of the Russian Federation was in the interquartile range (25–75th percentile), below the 25th percentile, and above the 75th percentile in 38, 26 and 21 regions, respectively.
CONCLUSION: The study has shown significant differences in the ASD diagnosis rates by regions in the country against a backdrop of a low (compared to international data) number of registered cases of autism. The presented data suggest that, due to the lack of proper diagnosis, a significant number of individuals with ASD do not receive adequate medical care, nor do they receive social, psychological, or pedagogical support. Possible reasons for this probably include low awareness of new diagnostic approaches among psychiatrists; low level of involvement of pediatrics professionals in screening activities; and fear of stigmatization because of a psychiatric diagnosis in the absence of a developed medical care infrastructure that encompasses a social, psychological, and pedagogical support system for people with ASD.
autism / prevalence / diagnostics / screening
| [1] |
WHO. Informatsionnyi byulleten’ [Internet]. Autizm [cited 2022 March 30]. Available from: https://www.who.int/ru/news-room/fact-sheets/detail/autism-spectrum-disorders. Russian. |
| [2] |
Zeidan J, Fombonne E, Scorah J, et al. Global prevalence of autism: A systematic review update. Autism Res. 2022 May;15(5):778–790. doi: 10.1002/aur.2696. PMID: 35238171. PMCID: PMC9310578. |
| [3] |
Lotter V. Epidemiology of autistic conditions in young children. Social Psychiatry. 1966;1(3):124–135. doi: 10.1007/BF00584048. |
| [4] |
Treffert DA. Epidemiology of infantile autism. Arch Gen Psychiatry.1970 May;22(5):431–8. doi: 10.1001/archpsyc.1970.01740290047006. PMID: 5436867. |
| [5] |
Boat TF, Wu JT, editors. Mental disorders and disabilities among low-income children. Chapter 14. Prevalence of autism spectrum disorder. Washington: National Academies Press; 2015. р. 241–266. |
| [6] |
Fombonne E. Epidemiology of pervasive developmental disorders. Pediatr Res. 2009 Jun;65(6):591–8. doi: 10.1203/PDR.0b013e31819e7203. PMID: 19218885. |
| [7] |
Volkmar F, editor. Encyclopedia of autism spectrum disorders. New York: Springer; 2013. р. 3120–3125. doi: 10.1007/978-1-4419-1698-3. |
| [8] |
Rutter M. Aetiology of autism: Findings and questions. J Int Disabil Res. 2005 Apr;49(Pt 4):231–8. doi: 10.1111/j.1365-2788.2005.00676.x. PMID: 15816809. |
| [9] |
Van Naarden Braun K, Pettygrove S, Daniels J, et al. Evaluation of a methodology for a collaborative multiple source surveillance network for autism spectrum disorders--autism and developmental disabilities monitoring network, 14 sites, United States, 2002. MMWR Surveill Summ. 2007 Feb;56(1):29–40. PMID: 17287716. |
| [10] |
Wing L, Potter D. The epidemiology of autistic spectrum disorders: Is the prevalence rising? Ment Retard Dev Disabil Res Rev. 2002;8(3):151–61. doi: 10.1002/mrdd.10029. PMID: 12216059. |
| [11] |
Hansen SN, Schendel DE, Parner ET. Explaining the increase in the prevalence of autism spectrum disorders: the proportion attributable to changes in reporting practices. JAMA Pediatr. 2015 Jan;169(1):56–62. doi: 10.1001/jamapediatrics.2014.1893. PMID: 25365033. |
| [12] |
King M, Bearman P. Diagnostic change and the increased prevalence of autism. Int J Epidemiol. 2009 Oct;38(5):1224–34. doi: 10.1093/ije/dyp261. PMID: 19737791. PMCID: PMC2800781. |
| [13] |
Schieve LA, Rice C, Devine O, et al. Have secular changes in perinatal risk factors contributed to the recent autism prevalence increase? Development and application of a mathematical assessment model. Ann Epidemiol. 2011 Dec;21(12):930–45. doi: 10.1016/j.annepidem.2011.08.009. PMID: 22000328. PMCID: PMC4351770. |
| [14] |
Durkin MS, Matthew J, Newschaffer CJ, et al. Advanced parental age and the risk of autism spectrum disorder. Am J Epidemiol. 2008 Dec;168(11):1268–76. doi: 10.1093/aje/kwn250. PMID: 18945690. PMCID: PMC2638544. |
| [15] |
Whitehouse AJ. Autism spectrum disorders are associated with fetal growth extremely below or above average for gestational age. Evid Based Ment Health. 2013 Aug;16(3):86. doi: 10.1136/eb-2013-101387. PMID: 23744459. |
| [16] |
Lyall K, Croen L, Daniels J, et al. The changing epidemiology of autism spectrum disorders. Annu Rev Public Health. 2017 Mar; 38:81–102. doi: 10.1146/annurev-publhealth-031816-044318. PMID: 28068486. PMCID: PMC6566093. |
| [17] |
Russell G, Stapley S, Newlove-Delgado T, et al. Time trends in autism diagnosis over 20 years: a UK population-based cohort study. J Child Psychol Psychiatry. 2022 Jun;63(6):674–82. doi: 10.1111/jcpp.13505. PMID: 34414570. |
| [18] |
Khaustov AV, Shumskikh MA. [Organization of education of students with autism spectrum disorders in the Russian Federation: results of the All-Russian monitoring of 2018]. Autizm i narusheniya razvitiya. 2019;17(3)3–11. doi: 10.17759/authd.2019170301. Russian. |
| [19] |
Maenner MJ, Shaw KA, Bakian AV, et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network, 11 sites, United States, 2018. MMWR Surveill Summ. 2021 Dec;70(11):1–16. doi: 10.15585/mmwr.ss7011a1. PMID: 34855725. PMCID: PMC8639024. |
| [20] |
Xu G, Strathearn L, Liu B, et al. Prevalence and treatment patterns of autism spectrum disorder in the United States, 2016. JAMA Pediatr. 2019 Feb;173(2):153–59. doi: 10.1001/jamapediatrics.2018.4208. PMID: 30508021. PMCID: PMC6439607. |
| [21] |
Makushkin EV, Makarov IV, Pashkovskii VE. [Prevalence of autism: real and imaginary]. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2019;(2):80–86. doi: 10.17116/jnevro201911902180. Russian. |
| [22] |
Mendelevich BD. [Regional peculiarities of the incidence of mental disorders of children in the Russian Federation]. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2010;110(7):48–52. Russian. |
| [23] |
Makarov IV, Avtenyuk AS. [Diagnosis of childhood autism: mistakes and difficulties]. Social and clinical psychiatry. 2018;28(3):74–81. Russian. |
| [24] |
Mottron L. [Is autism a different kind of intelligence? New insights from cognitive neurosciences]. Bull Acad Natl Med. 2016 Mar; 200(3):423–34; discussion 433-4. French. PMID: 28632360. |
| [25] |
Prigge MB, Bigler ED, Lange N, et al. Longitudinal Stability of intellectual functioning in autism spectrum disorder: from age 3 through mid-adulthood. J Autism Dev Disord. 2022; Oct;52(10):4490–4504. doi: 10.1007/s10803-021-05227-x. PMID: 34677753. PMCID: PMC9090201. |
| [26] |
Courchesne V, Meilleur AA, Poulin-Lord MP, et al. Autistic children at risk of being underestimated: School-based pilot study of a strength-informed assessment. Mol Autism. 2015 Mar;6:12. doi: 10.1186/s13229-015-0006-3. PMID: 25774281. PMCID: PMC4359559. |
| [27] |
Lai MC, Kassee C, Besney R, et al. Prevalence of co-occurring mental health diagnoses in the autism population: a systematic review and meta-analysis. Lancet Psychiatry. 2019 Oct;6(10): 819–29. doi: 10.1016/S2215-0366(19)30289-5. PMID: 31447415. |
| [28] |
Simashkova NV, Koval’-Zaitsev AA. [Mul’tidistsiplinarnye kliniko-psikhologicheskie aspekty diagnostiki detskogo autizma i detskoi shizofrenii]. Collective monograph. Moscow State Psychological and Pedagogical University; 2016. р. 132–146. Russian. |
| [29] |
Antshel KM, Russo N. Autism Spectrum Disorders and ADHD: overlapping phenomenology, diagnostic issues, and treatment considerations. Curr Psychiatry Rep. 2019 Mar;21(5):34. doi: 10.1007/s11920-019-1020-5. PMID: 30903299. |
| [30] |
Miodovnik A, Harstad E, Sideridis G, Huntington N. Timing of the diagnosis of attention-deficit/hyperactivity disorder and autism spectrum disorder. Pediatrics. 2015 Oct; 136(4):e830–e837. doi: 10.1542/peds.2015-1502. PMID: 26371198. |
| [31] |
Meier SM, Petersen L, Schendel DE, Mattheisen M, Mortensen PB, Mors O. Obsessive-compulsive disorder and autism spectrum disorders: longitudinal and offspring risk. PLoS One. 2015 Nov;10(11):e0141703. doi: 10.1371/journal.pone.0141703. PMID: 26558765. PMCID: PMC4641696. |
| [32] |
Wing L, Shah AA systematic examination of catatonia-like clinical pictures in autism spectrum disorders. Int Rev Neurobiol. 2006;72:21–39. doi: 10.1016/S0074-7742(05)72002-X. PMID: 16697289. |
| [33] |
Dhossche DM, van der Steen LF, Shettar SM. [Catatonia in autism spectrum disorders: review and case-report]. Tijdschr Psychiatr. 2015;57(2):89–93. PMID: 25669944. Dutch. |
| [34] |
Skokauskas N, Frodl T. Overlap between autism spectrum disorder and bipolar affective disorder. Psychopathology. 2015;48(4):209–16. doi: 10.1159/000435787. PMID: 26278909. |
| [35] |
Verhoeff B. Drawing borders of mental disorders: An interview with David Kupfer. BioSocieties. 2010 Dec;5:467–75. doi: 10.1057/biosoc.2010.24. |
| [36] |
Order of the Ministry of Health of the Russian Federation of June 13, 2019 N 396n “O vnesenii izmenenii v Poryadok provedeniya profilakticheskikh meditsinskikh osmotrov nesovershennoletnikh, utverzhdennyi prikazom Ministerstva zdravookhraneniya Rossiiskoi Federatsii ot 10 avgusta 2017 g. N 514n”. Available from: https://base.garant.ru/72817530/. Russian. |
| [37] |
Fond sodeistviya resheniyu problem autizma v Rossii [Internet]. Novosti Fonda [cited 2015 Jan 20]. Available from: https://outfund.ru/minzdrav-rf-ocenit-pervyj-rossijskij-proekt-po-rannemu-vyyavleniyu-autizma-v-voronezhskoj-oblasti/. Russian. |
Eco-Vector
/
| 〈 |
|
〉 |