The neurophysiological features of anticipation in schizophrenia: a cross-sectional study of event-related potentials
Ernest I. Rabinovich , Klavdiya Y. Telesheva
Consortium PSYCHIATRICUM ›› 2025, Vol. 6 ›› Issue (2) : 21 -34.
The neurophysiological features of anticipation in schizophrenia: a cross-sectional study of event-related potentials
BACKGROUND: It is known that disorders of mental activity in schizophrenia patients may be caused by an impairment in the actualization of past experience during anticipation (prediction), which leads to impairment in constructing predictions, comparing incoming sensory information with the predictions, and updating the predictions. Previous studies have shown that the probability of an expected event affects the components of event-related potentials in mentally healthy individuals. However, it has not yet been studied how changes in the probability of an expected stimulus influence the behavior of individuals with schizophrenia and their event-related potential measures.
AIM: To compare the influence of event probability on the characteristics of brain potentials in patients with schizophrenia and healthy individuals.
METHODS: The study included mentally healthy individuals and male schizophrenia patients. Electroencephalograms were recorded while participants performed a saccadic task within the Central Cue Posner’s Paradigm under conditions of varying probability (50% and 80%) of target stimulus presentation. Pre-stimulus (Contingent Negative Variation) and post-stimulus (Mismatch Negativity and P3) components of event-related potentials were analyzed upon the presentation of two types of target stimuli: standard (presented on the same side as the cue stimulus) and deviant (presented on the opposite side), under conditions of 50% and 80% stimulus congruence probability.
RESULTS: The study involved 20 mentally healthy individuals and 18 schizophrenia patients. In healthy subjects, the amplitude of the contingent negative variation increased with high stimulus congruence probability, while the amplitude of the Mismatch Negativity (MMN) and P3 component was higher for deviant stimuli under conditions of high (80%) probability. In schizophrenia patients, changes in probability demonstrated no impact on the amplitude of the contingent negative wave, MMN, or P3.
CONCLUSION: The characteristics of event-related potentials in patients with schizophrenia indicate impaired anticipation processes.
шизофрения / антиципация / прогностическое кодирование / связанные с событиями потенциалы мозга
| [1] |
Kritskaya VP, Meleshko TK. [Patopsihologija shizofrenii]. Moscow: Institut psihologii Rossijskoj akademii nauk; 2015. 392 p. Russian. |
| [2] |
Samylkin DV, Tkachenko AA. [Concepts of the level violation of regulatory processes in schizophrenia: from probabilistic forecasting to predictive coding]. Rossijskij psihiatricheskij zhurnal. 2020;(5):34–46. Russian. doi: 10.24411/1560-957Х-2020-10504 |
| [3] |
Millidge B, Seth A, Buckley CL. Predictive Coding: A Theoretical and Experimental Review [Preprint]. 2021 [cited 2025 March 2]. 56 p. Available from: https://www.researchgate.net/publication/ 353510198_Predictive_Coding_a_Theoretical_and_Experimental_Review. doi: 10.48550/arXiv.2107.12979 |
| [4] |
Sterzer P, Voss M, Schlagenhauf F, et al. Decision-making in schizophrenia: A predictive-coding perspective. Neuroimage. 2019;190:133–143. doi: 10.1016/j.neuroimage.2018.05.074 |
| [5] |
Friston K. A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci. 2005;360(1456):815–836. doi: 10.1098/rstb.2005.1622 |
| [6] |
Friston K. The free-energy principle: a unified brain theory? Nat Rev Neurosci. 2010;11(2):127–138. doi: 10.1038/nrn2787 |
| [7] |
Ficco L, Mancuso L, Manuello J, et al. Disentangling predictive processing in the brain: a meta-analytic study in favour of a predictive network. Sci Rep. 2021;11(1):16258. doi: 10.1038/s41598-021-95603-5 |
| [8] |
Liddle PF, Liddle EB. Imprecise Predictive Coding Is at the Core of Classical Schizophrenia. Front Hum Neurosci. 2022;16:818711. doi: 10.3389/fnhum.2022.818711 |
| [9] |
Näätänen R, Gaillard AW, Mäntysalo S. Early selective-attention effect on evoked potential reinterpreted. Acta Psychol (Amst). 1978;42(4):313–329. doi: 10.1016/0001-6918(78)90006-9 |
| [10] |
Fitzgerald K, Todd J. Making Sense of Mismatch Negativity. Front Psychiatry. 2020;11:468. doi: 10.3389/fpsyt.2020.00468 |
| [11] |
Avissar M, Xie S, Vail B, et al. Meta-analysis of mismatch negativity to simple versus complex deviants in schizophrenia. Schizophr Res. 2018;191:25–34. doi: 10.1016/j.schres.2017.07.009 |
| [12] |
Fong CY, Law WHC, Uka T, et al. Auditory Mismatch Negativity Under Predictive Coding Framework and Its Role in Psychotic Disorders. Front Psychiatry. 2020;11:557932. doi: 10.3389/fpsyt.2020.557932 |
| [13] |
Justen C, Herbert C. The spatio-temporal dynamics of deviance and target detection in the passive and active auditory oddball paradigm: a sLORETA study. BMC Neurosci. 2018;19(1):25. doi: 10.1186/s12868-018-0422-3 |
| [14] |
Kompus K, Volehaugen V, Todd J, et al. Hierarchical modulation of auditory prediction error signaling is independent of attention. Cogn Neurosci. 2020;11(3):132–142. doi: 10.1080/17588928.2019.1648404 |
| [15] |
Paavilainen P, Ilola M. Effects of attention on the processing of physical and abstract auditory regularities: An exploratory MMN study. Heliyon. 2024;10(12):e33182. doi: 10.1016/j.heliyon.2024.e33182 |
| [16] |
Hesse PN, Schmitt C, Klingenhoefer S, et al. Preattentive Processing of Numerical Visual Information. Front Hum Neurosci. 2017;11:70. doi: 10.3389/fnhum.2017.00070 |
| [17] |
Garrido MI, Kilner JM, Stephan KE, et al. The mismatch negativity: a review of underlying mechanisms. Clin Neurophysiol. 2009;120(3):453–463. doi: 10.1016/j.clinph.2008.11.029 |
| [18] |
Coy N, Bendixen A, Grimm S, et al. Conditional deviant repetition in the oddball paradigm modulates processing at the level of P3a but not MMN. Psychophysiology. 2024;61(6):e14545. doi: 10.1111/psyp.14545 |
| [19] |
Grundei M, Schröder P, Gijsen S, et al. EEG mismatch responses in a multimodal roving stimulus paradigm provide evidence for probabilistic inference across audition, somatosensation, and vision. Hum Brain Mapp. 2023;44(9):3644–3668. doi: 10.1002/hbm.26303 |
| [20] |
Mazer P, Carneiro F, Domingo J, et al. Systematic review and meta-analysis of the visual mismatch negativity in schizophrenia. Eur J Neurosci. 2024;59(11):2863–2874. doi: 10.1111/ejn.16355 |
| [21] |
Hamilton HK, Mathalon DH, Ford JM. P300 in schizophrenia: Then and now. Biol Psychol. 2024;187:108757. doi: 10.1016/j.biopsycho.2024.108757 |
| [22] |
Liaukovich K, Ukraintseva Y, Martynova O. Implicit auditory perception of local and global irregularities in passive listening condition. Neuropsychologia. 2022;165:108129. doi: 10.1016/j.neuropsychologia.2021.108129 |
| [23] |
Walter WG, Cooper R, Aldridge VJ, et al. Contingent negative variation: an electric sign of sensorimotor association and expectancy in the human brain. Nature. 1964;203:380–384. doi: 10.1038/203380a0 |
| [24] |
Chennu S, Noreika V, Gueorguiev D, et al. Expectation and attention in hierarchical auditory prediction. J Neurosci. 2013;33(27):11194–111205. doi: 10.1523/JNEUROSCI.0114-13.2013 |
| [25] |
Kononowicz TW, Penney TB. The contingent negative variation (CNV): Timing isn’t everything. Current Opinion in Behavioral Sciences. 2016;8:231–237. doi: 10.1016/j.cobeha.2016.02.022 |
| [26] |
Arjona A, Gómez CM. Sequential Effects in the Central Cue Posner Paradigm: On-line Bayesian Learning. In: Cognitive Electrophysiology of Attention. Cambridge: Academic Press; 2014. p. 45–57. doi: 10.1016/B978-0-12-398451-7.00004-X |
| [27] |
Gómez CM, Arjona A, Donnarumma F, et al. Tracking the Time Course of Bayesian Inference With Event-Related Potentials: A Study Using the Central Cue Posner Paradigm. Front Psychol. 2019;10:1424. doi: 10.3389/fpsyg.2019.01424 |
| [28] |
Kirenskaya AV, Tkachenco AA, Novototsky-Vlasov VY. The Study of the Antisaccade Performance and Contingent Negative Variation Characteristics in First-Episode and Chronic Schizophrenia Patients. Span J Psychol. 2017;20:E55. doi: 10.1017/sjp.2017.40 |
| [29] |
Akgül Ö, Fide E, Özel F, et al. Early and late contingent negative variation (CNV) reflect different aspects of deficits in schizophrenia. Eur J Neurosci. 2024;59(11):2875–2889. doi: 10.1111/ejn.16340 |
| [30] |
Osborne KJ, Kraus B, Lam PH, et al. Contingent Negative Variation Blunting and Psychomotor Dysfunction in Schizophrenia: A Systematic Review. Schizophr Bull. 2020;46(5):1144–1154. doi: 10.1093/schbul/sbaa043 |
| [31] |
Ford JM, Mathalon DH. Anticipating the future: automatic prediction failures in schizophrenia. Int J Psychophysiol. 2012;83(2):232–239. doi: 10.1016/j.ijpsycho.2011.09.004 |
| [32] |
Posner MI. Orienting of attention: Then and now. Q J Exp Psychol (Hove). 2016;69(10):1864–1875. doi: 10.1080/17470218.2014.937446 |
| [33] |
Arjona A, Rodríguez E, Morales M, et al. The influence of the global/local probability effect on the neural processing of cues and targets. A functional systems approach. Int J Psychophysiol. 2018;134:52–61. doi: 10.1016/j.ijpsycho.2018.10.005 |
| [34] |
Arjona A, Escudero M, Gómez CM. Cue validity probability influences neural processing of targets. Biol Psychol. 2016;119:171–183. doi: 10.1016/j.biopsycho.2016.07.001 |
| [35] |
Telesheva KYu, Rabinovich EI. [Developing a psychophysiological method to examine violations of predictive coding processes]. Psihologija. Psihofiziologija. 2024;17(3):114–126. Russian. doi: 10.14529/jpps240310 |
| [36] |
Cohen J, Polich J. On the number of trials needed for P300. Int J Psychophysiol. 1997;25(3):249–255. doi: 10.1016/s0167-8760(96)00743-x |
| [37] |
Ruchkin DS, Sutton S, Mahaffey D, et al. Terminal CNV in the absence of motor response. Electroencephalogr Clin Neurophysiol. 1986;63(5):445–463. doi: 10.1016/0013- 4694(86)90127-6 |
| [38] |
Gramfort A, Luessi M, Larson E, et al. MEG and EEG data analysis with MNE-Python. Front Neurosci. 2013;7:267. doi: 10.3389/fnins.2013.00267 |
| [39] |
Myles JB, Rossell SL, Phillipou A, et al. Insights to the schizophrenia continuum: A systematic review of saccadic eye movements in schizotypy and biological relatives of schizophrenia patients. Neurosci Biobehav Rev. 2017;72:278–300. doi: 10.1016/j.neubiorev.2016.10.034 |
| [40] |
Baran B, Karahanoğlu FI, Agam Y, et al. Failure to mobilize cognitive control for challenging tasks correlates with symptom severity in schizophrenia. Neuroimage Clin. 2016;12:887–893. doi: 10.1016/j.nicl.2016.10.020 |
| [41] |
Brunia CH. Neural aspects of anticipatory behavior. Acta Psychol (Amst). 1999;101(2–3):213–242. doi: 10.1016/s0001-6918(99)00006-2 |
| [42] |
Mento G. The passive CNV: carving out the contribution of task-related processes to expectancy. Front Hum Neurosci. 2013;7:827. doi: 10.3389/fnhum.2013.00827 |
| [43] |
Coull JT. Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology. Prog Neurobiol. 1998;55(4):343–361. doi: 10.1016/s0301-0082(98)00011-2 |
| [44] |
Corlett PR, Horga G, Fletcher PC, et al. Hallucinations and Strong Priors. Trends Cogn Sci. 2019;23(2):114–127. doi: 10.1016/j.tics.2018.12.001 |
| [45] |
Weilnhammer V, Röd L, Eckert AL, et al. Psychotic Experiences in Schizophrenia and Sensitivity to Sensory Evidence. Schizophr Bull. 2020;46(4):927–936. doi: 10.1093/schbul/sbaa003 |
| [46] |
Voineskos AN, Jacobs GR, Ameis SH. Neuroimaging Heterogeneity in Psychosis: Neurobiological Underpinnings and Opportunities for Prognostic and Therapeutic Innovation. Biol Psychiatry. 2020;88(1):95–102. doi: 10.1016/j.biopsych.2019.09.004 |
| [47] |
Muñoz-Caracuel M, Muñoz V, Ruiz-Martínez FJ, et al. Systemic neurophysiological signals of auditory predictive coding. Psychophysiology. 2024;61(6):e14544. doi: 10.1111/psyp.14544 |
| [48] |
Hauke DJ, Charlton CE, Schmidt A, et al. Aberrant Hierarchical Prediction Errors Are Associated With Transition to Psychosis: A Computational Single-Trial Analysis of the Mismatch Negativity. Biol Psychiatry Cogn Neurosci Neuroimaging. 2023;8(12):1176–1185. doi: 10.1016/j.bpsc.2023.07.011 |
| [49] |
Kremláček J, Kreegipuu K, Tales A, et al. Visual mismatch negativity (vMMN): A review and meta-analysis of studies in psychiatric and neurological disorders. Cortex. 2016;80:76–112. doi: 10.1016/j.cortex.2016.03.017 |
| [50] |
Tse CY, Shum YH, Xiao XZ, et al. Fronto-occipital mismatch responses in pre-attentive detection of visual changes: Implication on a generic brain network underlying Mismatch Negativity (MMN). Neuroimage. 2021;244:118633. doi: 10.1016/j.neuroimage.2021.118633 |
| [51] |
Barbalat G, Franck N. Dysfunctional connectivity in posterior brain regions involved in cognitive control in schizophrenia: A preliminary fMRI study. J Clin Neurosci. 2020;78:317–322. doi: 10.1016/j.jocn.2020.04.089 |
| [52] |
Kapur S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry. 2003;160(1):13–23. doi: 10.1176/appi.ajp.160.1.13 |
| [53] |
Kowalski J, Aleksandrowicz A, Dąbkowska M, et al. Neural Correlates of Aberrant Salience and Source Monitoring in Schizophrenia and At-Risk Mental States — A Systematic Review of fMRI Studies. J Clin Med. 2021;10(18):4126. doi: 10.3390/jcm10184126 |
| [54] |
Polich J. Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol. 2007;118(10):2128–2148. doi: 10.1016/j.clinph.2007.04.019 |
| [55] |
Bougrain L, Saavedra C, Ranta R. Finally, what is the best filter for P300 detection? In: TOBI Workshop III — Tools for Brain-Computer Interaction. Würzburg; 2012 [cited 2025 March 2]. [2] p. Available from: https://www.academia.edu/66432269/Finally_what_is_the_best_filter_for_P300_detection |
Rabinovich E.I., Telesheva K.Y.
/
| 〈 |
|
〉 |