Current status, challenges and future prospects in computational psychiatry: a narrative review

Kirill F. Vasilchenko , Egor M. Chumakov

Consortium PSYCHIATRICUM ›› 2023, Vol. 4 ›› Issue (3) : 33 -42.

PDF (648KB)
Consortium PSYCHIATRICUM ›› 2023, Vol. 4 ›› Issue (3) :33 -42. DOI: 10.17816/CP11244
REVIEW
review-article

Current status, challenges and future prospects in computational psychiatry: a narrative review

Author information +
History +
PDF (648KB)

Abstract

BACKGROUND: Computational psychiatry is an area of scientific knowledge which lies at the intersection of neuroscience, psychiatry, and computer science. It employs mathematical models and computational simulations to shed light on the complexities inherent to mental disorders.

AIM: The aim of this narrative review is to offer insight into the current landscape of computational psychiatry, to discuss its significant challenges, as well as the potential opportunities for the field’s growth.

METHODS: The authors have carried out a narrative review of the scientific literature published on the topic of computational psychiatry. The literature search was performed in the PubMed, eLibrary, PsycINFO, and Google Scholar databases. A descriptive analysis was used to summarize the published information on the theoretical and practical aspects of computational psychiatry.

RESULTS: The article relates the development of the scientific approach in computational psychiatry since the mid-1980s. The data on the practical application of computational psychiatry in modeling psychiatric disorders and explaining the mechanisms of how psychopathological symptomatology develops (in schizophrenia, attention-deficit/hyperactivity disorder, autism spectrum disorder, anxiety disorders, obsessive-compulsive disorder, substance use disorders) are summarized. Challenges, limitations, and the prospects of computational psychiatry are discussed.

CONCLUSION: The capacity of current computational technologies in psychiatry has reached a stage where its integration into psychiatric practice is not just feasible but urgently needed. The hurdles that now need to be addressed are no longer rooted in technological advancement, but in ethics, education, and understanding.

Keywords

computational psychiatry / artificial intelligence / machine learning / ethics / education / diagnosis of psychiatric disorders

Cite this article

Download citation ▾
Kirill F. Vasilchenko, Egor M. Chumakov. Current status, challenges and future prospects in computational psychiatry: a narrative review. Consortium PSYCHIATRICUM, 2023, 4(3): 33-42 DOI:10.17816/CP11244

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Montague PR, Dolan RJ, Friston KJ, Dayan P. Computational psychiatry. Trends Cogn Sci. 2012;16(1):72–80. doi: 10.1016/j.tics.2011.11.018.

[2]

Wang XJ, Krystal JH. Computational psychiatry. Neuron. 2014;84(3):638–54. doi: 10.1016/j.neuron.2014.10.018.

[3]

Friston KJ, Stephan KE, Montague R, Dolan RJ. Computational psychiatry: the brain as a phantastic organ. Lancet Psychiatry. 2014;1(2):148–58. doi: 10.1016/S2215-0366(14)70275-5.

[4]

Huys QJ, Moutoussis M, Williams J. Are computational models of any use to psychiatry? Neural Netw. 2011;24(6):544–51. doi: 10.1016/j.neunet.2011.03.001.

[5]

Sutton RS, Barto AG. Reinforcement learning: an introduction. Cambridge, MA: MIT Press; 1998.

[6]

Clark A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav Brain Sci. 2013;36(3):181–204. doi: 10.1017/S0140525X12000477.

[7]

Bassett DS, Zurn P, Gold JI. On the nature and use of models in network neuroscience. Nat Rev Neurosci. 2018;19(9):566–78. doi: 10.1038/s41583-018-0038-8.

[8]

Breakspear M. Dynamic models of large-scale brain activity. Nat Neurosci. 2017;20(3):340–52. doi: 10.1038/nn.4497.

[9]

Fornito A, Zalesky A, Breakspear M. The connectomics of brain disorders. Nat Rev Neurosci. 2015;16(3):159–72. doi: 10.1038/nrn3901.

[10]

van den Heuvel MP, Sporns O. A cross-disorder connectome landscape of brain dysconnectivity. Nat Rev Neurosci. 2019;20(7):435–46. doi: 10.1038/s41583-019-0177-6.

[11]

Maia TV, Frank MJ. From reinforcement learning models to psychiatric and neurological disorders. Nat Neurosci. 2011;14(2):154–62. doi: 10.1038/nn.2723.

[12]

Stephan KE, Mathys C. Computational approaches to psychiatry. Curr Opin Neurobiol. 2014;25:85–92. doi: 10.1016/j.conb.2013.12.007.

[13]

Kessler RC. The costs of depression. Psychiatr Clin North Am. 2012;35(1):1–14. doi: 10.1016/j.psc.2011.11.005.

[14]

Woo CW, Chang LJ, Lindquist MA, Wager TD. Building better biomarkers: brain models in translational neuroimaging. Nat Neurosci. 2017;20(3):365–77. doi: 10.1038/nn.4478.

[15]

Paulus MP. Pragmatism instead of mechanism: a call for impactful biological psychiatry. JAMA Psychiatry. 2015;72(7):631–2. doi: 10.1001/jamapsychiatry.2015.0497.

[16]

Ferrante M, Redish AD, Oquendo MA, Averbeck BB, Kinnane ME, Gordon JA. Computational psychiatry: a report from the 2017 NIMH workshop on opportunities and challenges. Mol Psychiatry. 2019;24(4):479–83. doi: 10.1038/s41380-018-0063-z.

[17]

Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380(14):1347–358. doi: 10.1056/NEJMra1814259.

[18]

Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform. 2018;19(6):1236–46. doi: 10.1093/bib/bbx044.

[19]

Luxton DD. AI decision-support: a dystopian future of machine paternalism? J Med Ethics. 2022;48(4):232–3. doi: 10.1136/medethics-2022-108243.

[20]

Vasilchenko KF, Drozdovsky YuV. Internalized stigma and social adaptation levels among patients with first episode schizophrenia. Siberian Herald of Psychiatry and Addiction Psychiatry. 2018;1(98):30–5. doi: 10.26617/1810- 3111-2018-1(98)-30-35. Russian.

[21]

Petrova NN, Fedotov IA, Chumakov EM. The analysis of the dynamics of psychiatrists‘ opinions on continuing medical education. V.M. Bekhterev review of psychiatry and medical psychology. 2019;2:102–7. doi: 10.31363/2313-7053-2019-2-102-107. Russian

[22]

Vasilchenko KF, Chumakov EM. Comment on ‘Old dog, new tricks? Exploring the potential functionalities of ChatGPT in supporting educational methods in social psychiatry’. Int J Soc Psychiatry. 2023;0(0). doi: 10.1177/00207640231178464. Epub 2023 Jun 30.

[23]

Poldrack RA, Halchenko YO, Hanson SJ. Decoding the large-scale structure of brain function by classifying mental States across individuals. Psychol Sci. 2009;20(11):1364–72. doi: 10.1111/j.1467-9280.2009.02460.x.

[24]

Sullivan PF, Daly MJ, O’Donovan M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet. 2012;13(8):537–51. doi: 10.1038/nrg3240.

[25]

Caspi A, Hariri AR, Holmes A, Uher R, Moffitt TE. Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am J Psychiatry. 2010;167(5):509–27. doi: 10.1176/appi.ajp.2010.09101452.

[26]

Kendler KS, Neale MC. Endophenotype: a conceptual analysis. Mol Psychiatry. 2010;15(8):789–97. doi: 10.1038/mp.2010.8.

[27]

Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry. 2003 Apr;160(4):636–45. doi: 10.1176/appi.ajp.160.4.636.

[28]

Greist JH. Conservative radicalism: an approach to computers in mental health. In Schwanz MD, editor. Using computers in clinical practice: Psychotherapy and mental health applications. New York: The Haworth Press; 1984. p. 22–23.

[29]

Craig TJ. Overcoming clinicians’ resistance to computers. Hosp Community Psychiatry. 1984;35(2):121–2. doi: 10.1176/ps.35.2.121.

[30]

Desaire H. How (not) to generate a highly predictive biomarker panel using machine learning. J Proteome Res. 2022;21(9):2071–4. doi: 10.1021/acs.jproteome.2c00117.

[31]

Levman J, Ewenson B, Apaloo J, Berger D, Tyrrell PN. Error consistency for machine learning evaluation and validation with application to biomedical diagnostics. Diagnostics (Basel). 2023;13(7):1315. doi: 10.3390/diagnostics13071315.

[32]

Plass M, Kargl M, Kiehl TR, Regitnig P, Geißler C, Evans T, Zerbe N, Carvalho R, Holzinger A, Müller H. Explainability and causability in digital pathology. J Pathol Clin Res. 2023;9(4):251–60. doi: 10.1002/cjp2.322.

[33]

Portacolone E, Halpern J, Luxenberg J, Harrison KL, Covinsky KE. Ethical issues raised by the introduction of artificial companions to older adults with cognitive impairment: a call for interdisciplinary collaborations. J Alzheimers Dis. 2020;76(2):445–55. doi: 10.3233/JAD-190952.

[34]

Hedlund JL, Vieweg BW, Cho DW. Mental health computing in the 1980s. Comput Hum Services. 1985;1(2):1–31. doi: 10.1300/j407v01n02_01.

[35]

Moutoussis M, Bentall RP, El-Deredy W, Dayan P. Bayesian modelling of Jumping-to-Conclusions bias in delusional patients. Cogn Neuropsychiatry. 2011;16(5):422–47. doi: 10.1080/13546805.2010.548678.

[36]

Murray GK, Corlett PR, Clark L, Pessiglione M, Blackwell AD, Honey G, Jones PB, Bullmore ET, Robbins TW, Fletcher PC. Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Mol Psychiatry. 2008;13(3):239, 267–76. doi: 10.1038/sj.mp.4002058.

[37]

Gold JM, Waltz JA, Matveeva TM, Kasanova Z, Strauss GP, Herbener ES, Collins AG, Frank MJ. Negative symptoms and the failure to represent the expected reward value of actions: behavioral and computational modeling evidence. Arch Gen Psychiatry. 2012;69(2):129–38. doi: 10.1001/archgenpsychiatry.2011.1269.

[38]

Adams RA, Stephan KE, Brown HR, Frith CD, Friston KJ. The computational anatomy of psychosis. Front Psychiatry. 2013;4:47. doi: 10.3389/fpsyt.2013.00047.

[39]

Huys QJ, Pizzagalli DA, Bogdan R, Dayan P. Mapping anhedonia onto reinforcement learning: a behavioural meta-analysis. Biol Mood Anxiety Disord. 2013;3(1):12. doi: 10.1186/2045-5380-3-12.

[40]

Rutledge RB, Chekroud AM, Huys QJ. Machine learning and big data in psychiatry: toward clinical applications. Curr Opin Neurobiol. 2019;55:152–9. doi: 10.1016/j.conb.2019.02.006.

[41]

Goldway N, Eldar E, Shoval G, Hartley CA. Computational mechanisms of addiction and anxiety: a developmental perspective. Biol Psychiatry. 2023;93(8):739–50. doi: 10.1016/j.biopsych.2023.02.004.

[42]

van de Cruys S, Evers K, van der Hallen R, van Eylen L, Boets B, de-Wit L, Wagemans J. Precise minds in uncertain worlds: predictive coding in autism. Psychol Rev. 2014;121(4):649–75. doi: 10.1037/a0037665.

[43]

Vaghi MM, Vértes PE, Kitzbichler MG, Apergis-Schoute AM, van der Flier FE, Fineberg NA, Sule A, Zaman R, Voon V, Kundu P, Bullmore ET, Robbins TW. Specific frontostriatal circuits for impaired cognitive flexibility and goal-directed planning in obsessive-compulsive disorder: evidence from resting-state functional connectivity. Biol Psychiatry. 2017;81(8):708–17. doi: 10.1016/j.biopsych.2016.08.009.

[44]

Voon V, Derbyshire K, Rück C, Irvine MA, Worbe Y, Enander J, Schreiber LR, Gillan C, Fineberg NA, Sahakian BJ, Robbins TW, Harrison NA, Wood J, Daw ND, Dayan P, Grant JE, Bullmore ET. Disorders of compulsivity: a common bias towards learning habits. Mol Psychiatry. 2015;20(3):345–52. doi: 10.1038/mp.2014.44.

[45]

Grupe DW, Nitschke JB. Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat Rev Neurosci. 2013;14(7):488–501. doi: 10.1038/nrn3524.

[46]

Paulus MP, Thompson WK. Computational approaches and machine learning for individual-level treatment predictions. Psychopharmacology (Berl). 2021;238(5):1231–9. doi: 10.1007/s00213-019-05282-4.

[47]

Frank GK, Shott ME, Riederer J, Pryor TL. Altered structural and effective connectivity in anorexia and bulimia nervosa in circuits that regulate energy and reward homeostasis. Transl Psychiatry. 2016;6(11):e932. doi: 10.1038/tp.2016.199.

[48]

Paulus MP, Huys QJ, Maia TV. A roadmap for the development of applied computational psychiatry. Biol Psychiatry Cogn Neurosci Neuroimaging. 2016;1(5):386–92. doi: 10.1016/j.bpsc.2016.05.001.

[49]

Bogacz R. A tutorial on the free-energy framework for modelling perception and learning. J Math Psychol. 2017;76(Pt B):198–211. doi: 10.1016/j.jmp.2015.11.003.

[50]

Adams RA, Huys QJ, Roiser JP. Computational Psychiatry: towards a mathematically informed understanding of mental illness. J Neurol Neurosurg Psychiatry. 2016;87(1):53–63. doi: 10.1136/jnnp-2015-310737.

[51]

Yarkoni T, Westfall J. Choosing prediction over explanation in psychology: lessons from machine learning. Perspect Psychol Sci. 2017;12(6):1100–22. doi: 10.1177/1745691617693393.

[52]

Borsboom D, Cramer AO. Network analysis: an integrative approach to the structure of psychopathology. Annu Rev Clin Psychol. 2013;9:91–121. doi: 10.1146/annurev-clinpsy-050212-185608.

[53]

Dyson M. Combatting AI’s protectionism & totalitarian-coded hypnosis: the case for ai reparations & antitrust remedies in the ecology of collective self-determination. SMU Law Review. 2022;25:625–722. doi: 10.25172/smulr.75.3.7.

[54]

Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381(9875):1371–9. doi: 10.1016/S0140-6736(12)62129-1.

[55]

Vasilchenko KF. [Self-stigmatization, adaptation and quality of life of persons with the first psychotic episode of schizophrenia (typology, rehabilitation, prevention)] [dissertation]. Omsk; 2019. p. 232. Russian.

[56]

Bhugra D, Smith A, Ventriglio A, Hermans MHM, Ng R, Javed A, Chumakov E, Kar A, Ruiz R, Oquendo M, Chisolm MS, Werneke U, Suryadevara U, Jibson M, Hobbs J, Castaldelli-Maia J, Nair M, Seshadri S, Subramanyam A, Patil N, Chandra P, Liebrenz M. World psychiatric association-asian journal of psychiatry commission on psychiatric education in the 21st century. Asian J Psychiatr. 2023;88:103739. doi: 10.1016/j.ajp.2023.103739.

[57]

Kibitov AA, Chumakov EM, Nechaeva AI, Sorokin MY, Petrova NN, Vetrova MV. Professional values and educational needs among mental health specialists in Russia: survey results. Consortium Psychiatricum. 2022;3(3):36–45. doi: 10.17816/CP184.

RIGHTS & PERMISSIONS

Vasilchenko K.F., Chumakov E.M.

AI Summary AI Mindmap
PDF (648KB)

80

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/