Ceramides: Shared Lipid Biomarkers of Cardiovascular Disease and Schizophrenia

Anna I. Tkachev , Elena A. Stekolshchikova , Anna Yu. Morozova , Nikolay A. Anikanov , Yana A. Zorkina , Polina N. Alekseyeva , Elena B. Khobta , Denis S. Andreyuk , Svetlana A. Zozulya , Alexandra N. Barkhatova , Tatiana P. Klyushnik , Alexander M. Reznik , Georgiy P. Kostyuk , Philipp E. Khaitovich

Consortium PSYCHIATRICUM ›› 2021, Vol. 2 ›› Issue (3) : 35 -43.

PDF (233KB)
Consortium PSYCHIATRICUM ›› 2021, Vol. 2 ›› Issue (3) :35 -43. DOI: 10.17816/CP101
RESEARCH
research-article

Ceramides: Shared Lipid Biomarkers of Cardiovascular Disease and Schizophrenia

Author information +
History +
PDF (233KB)

Abstract

INTRODUCTION: Schizophrenia, although a debilitating mental illness, greatly affects individuals’ physical health as well. One of the leading somatic comorbidities associated with schizophrenia is cardiovascular disease, which has been estimated to be one of the leading causes of excess mortality in patients diagnosed with schizophrenia. Although the shared susceptibility to schizophrenia and cardiovascular disease is well established, the mechanisms linking these two disorders are not well understood. Genetic studies have hinted toward shared lipid metabolism abnormalities co-occurring in the two disorders, while lipid compounds have emerged as prognostic markers for cardiovascular disease. In particular, three ceramide species in the blood plasma, Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1), have been robustly linked to the latter disorder.

AIM: We aimed to assess the differences in abundances of Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) in the blood plasma of schizophrenia patients compared to healthy controls.

METHODS: We measured the abundances of Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) in a cohort of 82 patients with schizophrenia and 138 controls without a psychiatric diagnosis and validated the results using an independent cohort of 26 patients with schizophrenia, 55 control individuals, and 19 patients experiencing a first psychotic episode.

RESULTS: We found significant alterations for all three ceramide species Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) and a particularly strong difference in concentrations between psychiatric patients and controls for the ceramide species Cer(d18:1/18:0).

CONCLUSIONS: The alteration of Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) levels in the blood plasma might be a manifestation of metabolic abnormalities common to both schizophrenia and cardiovascular disease.

Keywords

ceramide / schizophrenia / cardiovascular disease / lipid / blood plasma

Cite this article

Download citation ▾
Anna I. Tkachev, Elena A. Stekolshchikova, Anna Yu. Morozova, Nikolay A. Anikanov, Yana A. Zorkina, Polina N. Alekseyeva, Elena B. Khobta, Denis S. Andreyuk, Svetlana A. Zozulya, Alexandra N. Barkhatova, Tatiana P. Klyushnik, Alexander M. Reznik, Georgiy P. Kostyuk, Philipp E. Khaitovich. Ceramides: Shared Lipid Biomarkers of Cardiovascular Disease and Schizophrenia. Consortium PSYCHIATRICUM, 2021, 2(3): 35-43 DOI:10.17816/CP101

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mitchell AJ, Vancampfort D, Sweers K, et al. Prevalence of metabolic syndrome and metabolic abnormalities in schizophrenia and related disorders – a systematic review and meta-analysis. Schizophr Bull. 2013;39(2):306-318. doi:10.1093/schbul/sbr148

[2]

Correll CU, Solmi M, Veronese N, et al. Prevalence, incidence and mortality from cardiovascular disease in patients with pooled and specific severe mental illness: a large-scale meta-analysis of 3,211,768 patients and 113,383,368 controls. World Psychiatry. 2017;16(2):163-180. doi:10.1002/wps.20420

[3]

Walker ER, McGee RE, Druss BG. Mortality in mental disorders and global disease burden implications: a systematic review and meta-analysis. JAMA Psychiatry. 2015;72(4):334-341. doi:10.1001/jamapsychiatry.2014.2502

[4]

Olfson M, Gerhard T, Huang C, Crystal S, Stroup TS. Premature Mortality Among Adults With Schizophrenia in the United States. JAMA Psychiatry. 2015;72(12):1172-1181. doi:10.1001/jamapsychiatry.2015.1737

[5]

Ringen PA, Engh JA, Birkenaes AB, Dieset I, Andreassen OA. Increased mortality in schizophrenia due to cardiovascular disease - a non-systematic review of epidemiology, possible causes, and interventions. Front Psychiatry. 2014;5:137. doi:10.3389/fpsyt.2014.00137

[6]

Malan-Muller S, Kilian S, van den Heuvel LL, et al. A systematic review of genetic variants associated with metabolic syndrome in patients with schizophrenia. Schizophr Res. 2016;170(1):1-17. doi:10.1016/j.schres.2015.11.011

[7]

Hackinger S, Prins B, Mamakou V, et al. Evidence for genetic contribution to the increased risk of type 2 diabetes in schizophrenia. Transl Psychiatry. 2018;8(1):252. doi:10.1038/s41398-018-0304-6

[8]

Postolache TT, Del Bosque-Plata L, Jabbour S, et al. Co-shared genetics and possible risk gene pathway partially explain the comorbidity of schizophrenia, major depressive disorder, type 2 diabetes, and metabolic syndrome. Am J Med Genet B Neuropsychiatr Genet. 2019;180(3):186-203. doi:10.1002/ajmg.b.32712

[9]

Andreassen OA, Djurovic S, Thompson WK, et al. Improved detection of common variants associated with schizophrenia by leveraging pleiotropy with cardiovascular-disease risk factors. Am J Hum Genet. 2013;92(2):197-209. doi:10.1016/j.ajhg.2013.01.001

[10]

So HC, Chau KL, Ao FK, Mo CH, Sham PC. Exploring shared genetic bases and causal relationships of schizophrenia and bipolar disorder with 28 cardiovascular and metabolic traits. Psychol Med. 2019;49(8):1286-1298. doi:10.1017/S0033291718001812

[11]

Strawbridge RJ, Johnston KJA, Bailey MES, et al. The overlap of genetic susceptibility to schizophrenia and cardiometabolic disease can be used to identify metabolically different groups of individuals. Sci Rep. 2021;11(1):632. doi:10.1038/s41598-020-79964-x

[12]

Schneider M, Levant B, Reichel M, et al. Lipids in psychiatric disorders and preventive medicine. Neurosci Biobehav Rev. 2017;76(Pt B):336-362. doi:10.1016/j.neubiorev.2016.06.002

[13]

Soppert J, Lehrke M, Marx N, Jankowski J, Noels H. Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Adv Drug Deliv Rev. 2020;159:4-33. doi:10.1016/j.addr.2020.07.019

[14]

Vancampfort D, Wampers M, Mitchell AJ, et al. A meta-analysis of cardio-metabolic abnormalities in drug naive, first-episode and multi-episode patients with schizophrenia versus general population controls. World Psychiatry. 2013;12(3):240-250. doi:10.1002/wps.20069

[15]

Pillinger T, Beck K, Stubbs B, Howes OD. Cholesterol and triglyceride levels in first-episode psychosis: systematic review and meta-analysis. Br J Psychiatry. 2017;211(6):339-349. doi:10.1192/bjp.bp.117.200907

[16]

Misiak B, Stanczykiewicz B, Laczmanski L, Frydecka D. Lipid profile disturbances in antipsychotic-naive patients with first-episode non-affective psychosis: A systematic review and meta-analysis. Schizophr Res. 2017;190:18-27. doi:10.1016/j.schres.2017.03.031

[17]

Poss AM, Maschek JA, Cox JE, et al. Machine learning reveals serum sphingolipids as cholesterol-independent biomarkers of coronary artery disease. J Clin Invest. 2020;130(3):1363-1376. doi:10.1172/JCI131838

[18]

Mantovani A, Dugo C. Ceramides and risk of major adverse cardiovascular events: A meta-analysis of longitudinal studies. J Clin Lipidol. 2020;14(2):176-185. doi:10.1016/j.jacl.2020.01.005

[19]

Ivanova E, Khan A, Liharska L, et al. Validation of the Russian Version of the Positive and Negative Syndrome Scale (PANSS-Ru) and Normative Data. Innov Clin Neurosci. 2018;15(9-10):32-48. PMC6292716

[20]

Musunuru K, Hershberger RE, Day SM, et al. Genetic Testing for Inherited Cardiovascular Diseases: A Scientific Statement From the American Heart Association. Circ Genom Precis Med. 2020;13(4):e000067. doi:10.1161/HCG.0000000000000067

[21]

Tabassum R, Ramo JT, Ripatti P, et al. Genetic architecture of human plasma lipidome and its link to cardiovascular disease. Nat Commun. 2019;10(1):4329. doi:10.1038/s41467-019-11954-8

[22]

Cadby G, Melton PE, McCarthy NS, et al. Heritability of 596 lipid species and genetic correlation with cardiovascular traits in the Busselton Family Heart Study. J Lipid Res. 2020;61(4):537-545. doi:10.1194/jlr.RA119000594

[23]

Bellis C, Kulkarni H, Mamtani M, et al. Human plasma lipidome is pleiotropically associated with cardiovascular risk factors and death. Circ Cardiovasc Genet. 2014;7(6):854-863. doi:10.1161/CIRCGENETICS.114.000600

[24]

Kirov G, Zaharieva I, Georgieva L, et al. A genome-wide association study in 574 schizophrenia trios using DNA pooling. Mol Psychiatry. 2009;14(8):796-803. doi:10.1038/mp.2008.33

[25]

Yamada K, Iwayama Y, Hattori E, et al. Genome-wide association study of schizophrenia in Japanese population. PLoS One. 2011;6(6):e20468. doi:10.1371/journal.pone.0020468

[26]

Woodcock J. Sphingosine and ceramide signalling in apoptosis. IUBMB Life. 2006;58(8):462-466. doi:10.1080/15216540600871118

[27]

Gomez-Munoz A, Presa N, Gomez-Larrauri A, et al. Control of inflammatory responses by ceramide, sphingosine 1-phosphate and ceramide 1-phosphate. Prog Lipid Res. 2016;61:51-62. doi:10.1016/j.plipres.2015.09.002

[28]

Mencarelli C, Martinez-Martinez P. Ceramide function in the brain: when a slight tilt is enough. Cell Mol Life Sci. 2013;70(2):181-203. doi:10.1007/s00018-012-1038-x

[29]

Olsen ASB, Faergeman NJ. Sphingolipids: membrane microdomains in brain development, function and neurological diseases. Open Biol. 2017;7(5). doi:10.1098/rsob.170069

[30]

Hussain G, Wang J, Rasul A, et al. Role of cholesterol and sphingolipids in brain development and neurological diseases. Lipids Health Dis. 2019;18(1):26. doi:10.1186/s12944-019-0965-z

[31]

Kurz J, Parnham MJ, Geisslinger G, Schiffmann S. Ceramides as Novel Disease Biomarkers. Trends Mol Med. 2019;25(1):20-32. doi:10.1016/j.molmed.2018.10.009

[32]

Turpin-Nolan SM, Bruning JC. The role of ceramides in metabolic disorders: when size and localization matters. Nat Rev Endocrinol. 2020;16(4):224-233. doi:10.1038/s41574-020-0320-5

[33]

Dinoff A, Herrmann N, Lanctot KL. Ceramides and depression: A systematic review. J Affect Disord. 2017;213:35-43. doi:10.1016/j.jad.2017.02.008

[34]

Schwarz E, Prabakaran S, Whitfield P, et al. High throughput lipidomic profiling of schizophrenia and bipolar disorder brain tissue reveals alterations of free fatty acids, phosphatidylcholines, and ceramides. J Proteome Res. 2008;7(10):4266-4277. doi:10.1021/pr800188y

[35]

Castillo RI, Rojo LE, Henriquez-Henriquez M, et al. From Molecules to the Clinic: Linking Schizophrenia and Metabolic Syndrome through Sphingolipids Metabolism. Front Neurosci. 2016;10:488. doi:10.3389/fnins.2016.00488

[36]

Cao B, Wang D, Pan Z, et al. Characterizing acyl-carnitine biosignatures for schizophrenia: a longitudinal pre- and post-treatment study. Transl Psychiatry. 2019;9(1):19. doi:10.1038/s41398-018-0353-x

[37]

Wood PL, Unfried G, Whitehead W, Phillipps A, Wood JA. Dysfunctional plasmalogen dynamics in the plasma and platelets of patients with schizophrenia. Schizophr Res. 2015;161(2-3):506-510. doi:10.1016/j.schres.2014.11.032

[38]

He Y, Yu Z, Giegling I, et al. Schizophrenia shows a unique metabolomics signature in plasma. Transl Psychiatry. 2012;2:e149. doi:10.1038/tp.2012.76

[39]

Kaddurah-Daouk R, McEvoy J, Baillie R, et al. Impaired plasmalogens in patients with schizophrenia. Psychiatry Res. 2012;198(3):347-352. doi:10.1016/j.psychres.2012.02.019

[40]

Wang D, Sun X, Maziade M, et al. Characterising phospholipids and free fatty acids in patients with schizophrenia: A case-control study. World J Biol Psychiatry. 2021;22(3):161-174. doi:10.1080/15622975.2020.1769188

[41]

Kriisa K, Leppik L, Balotsev R, et al. Profiling of Acylcarnitines in First Episode Psychosis before and after Antipsychotic Treatment. J Proteome Res. 2017;16(10):3558-3566. doi:10.1021/acs.jproteome.7b00279

[42]

Leppik L, Parksepp M, Janno S, et al. Profiling of lipidomics before and after antipsychotic treatment in first-episode psychosis. Eur Arch Psychiatry Clin Neurosci. 2020;270(1):59-70. doi:10.1007/s00406-018-0971-6

[43]

Yan L, Zhou J, Wang D, et al. Unbiased lipidomic profiling reveals metabolomic changes during the onset and antipsychotics treatment of schizophrenia disease. Metabolomics. 2018;14(6):80. doi:10.1007/s11306-018-1375-3

[44]

Wang D, Cheng SL, Fei Q, et al. Metabolic profiling identifies phospholipids as potential serum biomarkers for schizophrenia. Psychiatry Res. 2019;272:18-29. doi:10.1016/j.psychres.2018.12.008

[45]

Oresic M, Seppanen-Laakso T, Sun D, et al. Phospholipids and insulin resistance in psychosis: a lipidomics study of twin pairs discordant for schizophrenia. Genome Med. 2012;4(1):1. doi:10.1186/gm300

[46]

McEvoy J, Baillie RA, Zhu H, et al. Lipidomics reveals early metabolic changes in subjects with schizophrenia: effects of atypical antipsychotics. PLoS One. 2013;8(7):e68717. doi:10.1371/journal.pone.0068717

[47]

Solberg DK, Bentsen H, Refsum H, Andreassen OA. Lipid profiles in schizophrenia associated with clinical traits: a five year follow-up study. BMC Psychiatry. 2016;16:299. doi:10.1186/s12888-016-1006-3

[48]

Cao B, Wang D, Pan Z, et al. Metabolic profiling for water-soluble metabolites in patients with schizophrenia and healthy controls in a Chinese population: A case-control study. World J Biol Psychiatry. 2020;21(5):357-367. doi:10.1080/15622975.2019.1615639

[49]

Tkachev A, Stekolshchikova E, Anikanov N, et al. Shorter Chain Triglycerides Are Negatively Associated with Symptom Improvement in Schizophrenia. Biomolecules. 2021;11(5). doi:10.3390/biom11050720

RIGHTS & PERMISSIONS

Tkachev A.I., Stekolshchikova E.A., Morozova A.Y., Anikanov N.A., Zorkina Y.A., Alekseyeva P.N., Khobta E.B., Andreyuk D.S., Zozulya S.A., Barkhatova A.N., Klyushnik T.P., Reznik A.M., Kostyuk G.P., Khaitovich P.E.

AI Summary AI Mindmap
PDF (233KB)

56

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/