Possibilities of using innovative non-drug technologies in the rehabilitation of patients with early post-stroke cognitive impairment

Anastasya M. Tynterova , Natalia N. Shusharina , Evgenii R. Barantsevich

Physical and rehabilitation medicine, medical rehabilitation ›› 2024, Vol. 6 ›› Issue (3) : 230 -242.

PDF
Physical and rehabilitation medicine, medical rehabilitation ›› 2024, Vol. 6 ›› Issue (3) :230 -242. DOI: 10.36425/rehab633828
ORIGINAL STUDY ARTICLE
research-article

Possibilities of using innovative non-drug technologies in the rehabilitation of patients with early post-stroke cognitive impairment

Author information +
History +
PDF

Abstract

BACKGROUND: One of the leading factors complicating social adaptation after ischemic stroke is cognitive and motor impairment.

AIM: This study aimed to evaluate the effect of rehabilitation using virtual reality technologies and the influence of the main clinical and functional parameters on virtual reality (VR) therapy in patients with different degrees of cognitive decline in the acute period of ischemic stroke.

MATERIALS AND METHODS: This study examined 170 patients diagnosed with ischemic stroke with cognitive decline according to the Montreal Cognitive Assessment. Depending on the volume of therapy, the patients were divided into two groups: group 1 included 120 patients who received additional therapy using VR technologies (62 patients with moderate cognitive impairment, 58 patients with dementia), and group 2 consisted of 50 patients who received only basic therapy and standard methods of early rehabilitation. In group 1, on days 4–5 following basic therapy, rehabilitation using VR was performed. The Barthel Index (BI) scale, Rankin Scale (mRS), and National Institute of Health Stroke Scale (NIHSS) were used to examine cognitive and functional status, and tests were performed to assess cognitive functions, as well as neuroimaging scales ASPECTS, STRIVE, and MTA. The effectiveness of rehabilitation (ΔRE) was measured by the indicator of changes in the parameters of the VR system before and after treatment.

RESULTS: A more significant improvement of the patient’s independence and regression of perceptual and executive functions was demonstrated in group 1 than in the control group. In patients with MCI, significant improvement was observed in all cognitive and functional parameters except semantic information processing, attention, and constructive praxis. In patients with dementia, improvement was noted in NIHSS, speech and amnestic disorders. In group 1, ΔRE was found to be associated with the parameters of perception, attention, semantic information processing, IQCODE, and NIHSS and the presence of hypertension and repeated stroke. In patients with MCI, ΔRE was correlated with lesion size, attention level, BI, mRS, and NIHSS and with age, sex, degree of IQCODE and STRIVE, semantic aphasia, and perceptual impairment in patients with dementia.

CONCLUSION: The present study revealed a polymorphism of factors influencing the effectiveness of VR therapy in patients with varying degrees of cognitive decline. Modern approaches to VR rehabilitation of patients with post-stroke cognitive impairment require the development of individual methods of rehabilitation using immersion environment focused on the structure, etiology, and severity of cognitive deficit considering the degree of the patient’s functional state.

Keywords

ischemic stroke / cognitive impairment / functional outcome / virtual reality / rehabilitation

Cite this article

Download citation ▾
Anastasya M. Tynterova, Natalia N. Shusharina, Evgenii R. Barantsevich. Possibilities of using innovative non-drug technologies in the rehabilitation of patients with early post-stroke cognitive impairment. Physical and rehabilitation medicine, medical rehabilitation, 2024, 6(3): 230-242 DOI:10.36425/rehab633828

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Klochikhina OA, Shprakh VV, Stakhovskaya LV, et al. Dynamics of stroke incidence and mortality indicators over eight-year period in the territories included into the federal program of reorganization of care for patients with stroke. Acta Biomed Sci. 2021;6(1):75–80. EDN: WPNTHD doi: 10.29413/ABS.2021-6.1.10

[2]

Клочихина О.А., Шпрах В.В., Стаховская Л.В., и др. Динамика показателей заболеваемости инсультом и смертности от него за восьмилетний период на территориях, вошедших в федеральную программу реорганизации помощи пациентам с инсультом // Acta Biomed Sci. 2021. Т. 6, № 1. С. 75–80. EDN: WPNTHD doi: 10.29413/ABS.2021-6.1.10

[3]

Kabysh SS, Prokopenko SV, Golikova-Chereshkevich АV, et al. Cognitive functions in acute ischemic stroke period. Doctor. Ru. 2023;22(6):67–71. EDN: WAZWBW doi: 10.31550/1727-2378-2023-22-6-67-71

[4]

Кабыш С.С., Прокопенко С.В., Голикова-Черешкевич А.В., и др. Состояние когнитивных функций в остром периоде ишемического инсульта // Доктор. Ру. 2023. Т. 22, № 6. С. 67–71. EDN: WAZWBW doi: 10.31550/1727-2378-2023-22-6-67-71

[5]

Levin OS, Bogolepova AN. Poststroke motor and cognitive impairments: Clinical features and current approaches to rehabilitation. S.S. Korsakov J Neurol Psych. 2020;120(11):99–107. EDN: VZORCZ doi: 10.17116/jnevro202012011199

[6]

Левин О.С., Боголепова А.Н. Постинсультные двигательные и когнитивные нарушения: клинические особенности и современные подходы к реабилитации // Журнал неврологии и психиатрии им. C.C. Корсакова. 2020. Т. 120, № 11. С. 99–107. EDN: VZORCZ doi: 10.17116/jnevro202012011199

[7]

Koberskaya NN, Mkhitaryan EA, Lokshina AB, Grishina DA. Pre-dementia cognitive impairment. Russ J Geriatric Med. 2022;(1): 48–57. EDN: HDBTXJ doi: 10.37586/2686-8636-1-2022-48-57

[8]

Коберская Н.Н., Мхитарян Э.А., Локшина А.Б., Гришина Д.А. Додементные когнитивные расстройства // Российский журнал гериатрической медицины. 2022. № 1. С. 48–57. EDN: HDBTXJ doi: 10.37586/2686-8636-1-2022-48-57

[9]

Regier DA, Kuhl EA, Kupfer DJ. The DSM-5: Classification and criteria changes. World Psychiatry. 2013;12(2):92–98. doi: 10.1002/wps.20050

[10]

Regier D.A., Kuhl E.A., Kupfer D.J. The DSM-5: Classification and criteria changes // World Psychiatry. 2013. Vol. 12, N 2. P. 92–98. doi: 10.1002/wps.20050

[11]

Ivanova GE. Medical rehabilitation: Problems and solutions. Clinical Nutr Metabolism. 2020;1(1):8–9. EDN: GBKVHQ doi: 10.17816/clinutr33032

[12]

Иванова Г.Е. Медицинская реабилитация: задачи и пути решения // Клиническое питание и метаболизм. 2020. Т. 1, № 1. C. 8–9. EDN: GBKVHQ doi: 10.17816/clinutr33032

[13]

Demeco A, Zola L, Frizziero A, et al. Immersive virtual reality in post-stroke rehabilitation: A systematic review. Sensors (Basel). 2023;23(3):1712. EDN: JUYXAW doi: 10.3390/s23031712

[14]

Demeco A., Zola L., Frizziero A., et al. Immersive virtual reality in post-stroke rehabilitation: A systematic review // Sensors (Basel). 2023. Vol. 23, N 3. P. 1712. EDN: JUYXAW doi: 10.3390/s23031712

[15]

Liu Y, Tan W, Chen C, et al. A review of the application of virtual reality technology in the diagnosis and treatment of cognitive impairment. Front Aging Neurosci. 2019;11:280. doi: 10.3389/fnagi.2019.00280

[16]

Liu Y., Tan W., Chen C., et al. A review of the application of virtual reality technology in the diagnosis and treatment of cognitive impairment // Front Aging Neurosci. 2019. Vol. 11. P. 280. doi: 10.3389/fnagi.2019.00280

[17]

Lee HC, Huang CL, Ho SH, Sung WH. The effect of a virtual reality game intervention on balance for patients with stroke: A randomized controlled trial. Games Health J. 2017;6(5):303–311. doi: 10.1089/g4h.2016.0109

[18]

Lee H.C., Huang C.L., Ho S.H., Sung W.H. The effect of a virtual reality game intervention on balance for patients with stroke: A randomized controlled trial // Games Health J. 2017. Vol. 6, N 5. P. 303–311. doi: 10.1089/g4h.2016.0109

[19]

Shen J, Gu X, Yao Y, et al. Effects of virtual reality-based exercise on balance in patients with stroke: A systematic review and meta-analysis. Am J Phys Med Rehabil. 2023;102(4):316–322. doi: 10.1097/PHM.0000000000002096

[20]

Shen J., Gu X., Yao Y., et al. Effects of virtual reality-based exercise on balance in patients with stroke: A systematic review and meta-analysis // Am J Phys Med Rehabil. 2023. Vol. 102, N 4. P. 316–322. doi: 10.1097/PHM.0000000000002096

[21]

Patsaki I, Dimitriadi N, Despoti A, et al. The effectiveness of immersive virtual reality in physical recovery of stroke patients: A systematic review. Front Syst Neurosci. 2022;16:880447. EDN: JMRIFL doi: 10.3389/fnsys.2022.880447

[22]

Patsaki I., Dimitriadi N., Despoti A., et al. The effectiveness of immersive virtual reality in physical recovery of stroke patients: A systematic review // Front Syst Neurosci. 2022. Vol. 16. P. 880447. EDN: JMRIFL doi: 10.3389/fnsys.2022.880447

[23]

Zhang T, Liu W, Bai Q, et al. Virtual reality technology in the rehabilitation of post-stroke cognitive impairment: An opinion article on recent findings. Front Psychol. 2023;14:1271458. EDN: VZXBOY doi: 10.3389/fpsyg.2023.1271458

[24]

Zhang T., Liu W., Bai Q., et al. Virtual reality technology in the rehabilitation of post-stroke cognitive impairment: An opinion article on recent findings // Front Psychol. 2023. Vol. 14. P. 1271458. EDN: VZXBOY doi: 10.3389/fpsyg.2023.1271458

[25]

Wiley E, Khattab S, Tang A. Examining the effect of virtual reality therapy on cognition post-stroke: A systematic review and meta-analysis. Disabil Rehabil Assist Technol. 2022;17(1):50–60. doi: 10.1080/17483107.2020.1755376

[26]

Wiley E., Khattab S., Tang A. Examining the effect of virtual reality therapy on cognition post-stroke: A systematic review and meta-analysis // Disabil Rehabil Assist Technol. 2022. Vol. 17, N 1. P. 50–60. doi: 10.1080/17483107.2020.1755376

[27]

Chen X, Liu F, Lin S, et al. Effects of virtual reality rehabilitation training on cognitive function and activities of daily living of patients with poststroke cognitive impairment: A systematic review and meta-analysis. Arch Phys Med Rehabil. 2022;103(7):1422–1435. EDN: JPXQKZ doi: 10.1016/j.apmr.2022.03.012

[28]

Chen X., Liu F., Lin S., et al. Effects of virtual reality rehabilitation training on cognitive function and activities of daily living of patients with post-stroke cognitive impairment: A systematic review and meta-analysis // Arch Phys Med Rehabil. 2022. Vol. 103, N 7. P. 1422–1435. EDN: JPXQKZ doi: 10.1016/j.apmr.2022.03.012

[29]

Razumnikova OM, Trubnikova OA. Use of virtual reality technologies to restore cognitive functions and quality of life: An application for cardiac patients with brain ischemia. Complex Issues Cardiovasc Dis. 2023;12(4):133–148. EDN: HOQPYM doi: 10.17802/2306-1278-2023-12-4-133-148

[30]

Разумникова О.М., Трубникова О.А. Технологии виртуальной реальности для восстановления когнитивных функций и качества жизни: применение для кардиологических пациентов с ишемией мозга // Комплексные проблемы сердечно-сосудистых заболеваний. 2023. Т. 12, № 4. С. 133–148. EDN: HOQPYM doi: 10.17802/2306-1278-2023-12-4-133-148

[31]

Pinho J, Quintas-Neves M, Dogan I, et al. Incident stroke in patients with Alzheimer’s disease: Systematic review and meta-analysis. Sci Rep. 2021;11:16385. doi: 10.1038/s41598-021-95821-x

[32]

Pinho J., Quintas-Neves M., Dogan I., et al. Incident stroke in patients with Alzheimer’s disease: Systematic review and meta-analysis // Sci Rep. 2021. Vol. 11. P. 16385. doi: 10.1038/s41598-021-95821-x

[33]

Hazelton C, Thomson K, Todhunter-Brown A, et al. Interventions for perceptual disorders following stroke. Cochrane Database Syst Rev. 2022; 11(11):CD007039. EDN: ODVTQM doi: 10.1002/14651858.CD007039.pub3

[34]

Hazelton C., Thomson K., Todhunter-Brown A., et al. Interventions for perceptual disorders following stroke // Cochrane Database Syst Rev. 2022. Vol. 11, N 11. P. CD007039. EDN: ODVTQM doi: 10.1002/14651858.CD007039.pub3

[35]

Vourvopoulos A, Pardo OM, Lefebvre S, et al. Effects of a brain-computer interface with virtual reality (VR) neurofeedback: A pilot study in chronic stroke patients. Front Hum Neurosci. 2019;13:210. doi: 10.3389/fnhum.2019.00210

[36]

Vourvopoulos A., Pardo O.M., Lefebvre S., et al. Effects of a brain-computer interface with virtual reality (VR) neurofeedback: A pilot study in chronic stroke patients // Front Hum Neurosci. 2019. Vol. 13. P. 210. doi: 10.3389/fnhum.2019.00210

[37]

Giachero A, Calati M, Pia L, et al. Conversational therapy through semi-immersive virtual reality environments for language recovery and psychological well-being in post stroke aphasia. Behav Neurol. 2020;2020:2846046. EDN: BYVAHO doi: 10.1155/2020/2846046

[38]

Giachero A., Calati M., Pia L., et al. Conversational therapy through semi-immersive virtual reality environments for language recovery and psychological well-being in post stroke aphasia // Behav Neurol. 2020. Vol. 2020. P. 2846046. EDN: BYVAHO doi: 10.1155/2020/2846046

[39]

Maximova MYu, Sazonova VYu, Ayrapetova AS. Gender features in cerebrovascular disorders in different age groups. Ann Clin Exp Neurol. 2019;13(3):11–19. EDN: JAFPMN doi: 10.25692/ACEN.2019.3.2

[40]

Максимова М.Ю., Сазонова В.Ю., Айрапетова А.С. // Анналы клинической и экспериментальной неврологии. 2019. Т. 13, № 3. С. 11–19. EDN: JAFPMN doi: 10.25692/ACEN.2019.3.2

[41]

Grefkes C, Fink GR. Recovery from stroke: Current concepts and future perspectives. Neurol Res Pract. 2020;2:17. doi: 10.1186/s42466-020-00060-6

[42]

Grefkes C., Fink G.R. Recovery from stroke: Current concepts and future perspectives // Neurol Res Pract. 2020. Vol. 2. P. 17. doi: 10.1186/s42466-020-00060-6

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

200

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/