Effectiveness of the Walkbot system in patients with infantile cerebral palsy
Darya L. Nefedeva , Leisan I. Abdrakhmanova , Rezeda A. Bodrova
Physical and rehabilitation medicine, medical rehabilitation ›› 2024, Vol. 6 ›› Issue (3) : 253 -262.
Effectiveness of the Walkbot system in patients with infantile cerebral palsy
BACKGROUND: Estimating the effectiveness of robotic mechanotherapy is crucial in the rehabilitation of children with cerebral palsy.
AIM: To evaluate the effectiveness of the Walkbot robotic complex (Walkbot, Korea) in children with cerebral palsy.
MATERIALS AND METHODS: The study included 35 patients with infantile cerebral palsy who received courses of rehabilitation therapy based on the state autonomous institution “City Children’s Polyclinic No. 7.” A comparative analysis of the functional motor outcomes between two groups of children with cerebral palsy was performed. Group 1 was treated with locomotor therapy on the Walkbot, whereas group 2 was not prescribed with the apparatus.
RESULTS: The effect of using the Walkbot mechanotherapeutic complex on functional motor outcomes in patients with infantile cerebral palsy was evaluated. Better dynamics of the level of motor skills development on the GMFM-66 scale was noted in group 1 (by 6.8% in group 1 and 4.1% in group 2; p=0.006). The Hauser index (p=0.05) indicated an improvement in locomotor function, which increased the level of independence in everyday life according to the FIM scale (p=0.044), compared to the data of children in the control group. Attaining the effect depends on the number of procedures and total number of rehabilitation courses.
CONCLUSION: Children with cerebral palsy who received the Walkbot therapy have better motor outcomes, primarily relating to locomotor function.
cerebral palsy / rehabilitation / robotic mechanotherapy
| [1] |
Physical and rehabilitation medicine for infantile paralysis in children. National leadership. Part 1. Ed. by T.T. Batysheva. Moscow; 2021. 260 p. (In Russ). |
| [2] |
Физическая и реабилитационная медицина при детском параличе у детей. Национальное руководство. Часть 1 / под ред. Т.Т. Батышевой. Москва, 2021. 260 с. |
| [3] |
Klochkova OA, Kurenkov AL. Botulinum therapy for cerebral palsy. Moscow: MEDpress-inform; 2020. 248 p. (In Russ). |
| [4] |
Клочкова О.А., Куренков А.Л. Ботулинотерапия при детском церебральном параличе. Москва: МЕДпресс-информ, 2020. 248 с. |
| [5] |
Semenova EV, Klochkova EV, Korshikova-Morozova AE, et al. Rehabilitation of children with cerebral palsy: An overview of modern approaches to help rehabilitation centers. Moscow: Lepta Kniga; 2018. 584 p. (In Russ). |
| [6] |
Семенова Е.В., Клочкова Е.В., Коршикова-Морозова А.Е., и др. Реабилитация детей с ДЦП: обзор современных подходов в помощь реабилитационным центрам. Москва: Лепта Книга, 2018. 584 с. |
| [7] |
Carlson HL, Craig BT, Hilderley AJ, et al. Structural and functional connectivity of motor circuits after perinatal stroke: A machine learning study. Neuroimage Clin. 2020;28:102508. doi: 10.1016/j.nicl.2020.102508 |
| [8] |
Carlson H.L., Craig B.T., Hilderley A.J., et al. Structural and functional connectivity of motor circuits after perinatal stroke: A machine learning study // Neuroimage Clin. 2020. Т. 28. P. 102508. doi: 10.1016/j.nicl.2020.102508 |
| [9] |
Johnston MV. Plasticity in the developing brain: Implications for rehabilitation. Developmental Dis Res Rev. 2009;15(2):94–101. EDN: MMTPPV doi: 10.1002/ddrr.64 |
| [10] |
Johnston M.V. Plasticity in the developing brain: Implications for rehabilitation // Developmental Dis Res Rev. 2009. Vol. 15, N 2. P. 94–101. EDN: MMTPPV doi: 10.1002/ddrr.64 |
| [11] |
Gulyaeva NV. Cerebral plasticity and connectopathies: Mechanisms of comorbidity of neurological diseases and depression. S.S. Korsakov J Neurol Psychiatry. 2016;11:157–162. EDN: XVOZBF doi: 10.17116/jnevro2016116111157-162 |
| [12] |
Гуляева Н.В. Пластичность мозга и коннектопатии: механизмы коморбидности неврологических заболеваний и депрессии // Журнал неврологии и психиатрии. 2016. № 11. С. 157–162. EDN: XVOZBF doi: 10.17116/jnevro2016116111157-162 |
| [13] |
Physical and rehabilitation medicine for infantile paralysis in children. National leadership. Part 2. Ed. by T.T. Batysheva. Moscow; 2021. 308 p. (In Russ). |
| [14] |
Физическая и реабилитационная медицина при детском параличе у детей. Национальное руководство. Часть 2 / под ред. Т.Т. Батышевой. Москва, 2021. 308 с. |
| [15] |
Novak I., Morgan K. High-risk follow-up: Early intervention and rehabilitation. Handb Clin Neurol. 2019;162:484–510. EDN: XBSIJN doi: 10.1016/B978-0-444-64029-1.00023-0 |
| [16] |
Novak I., Morgan K. High-risk follow-up: Early intervention and rehabilitation // Handb Clin Neurol. 2019. Vol. 162. P. 484–510. EDN: XBSIJN doi: 10.1016/B978-0-444-64029-1.00023-0 |
| [17] |
Voitenkov VB, Skripchenko NV, Ivanova MV, et al. Robotic mechanotherapy in children with motor disorders of different genesis. Genii Ortopedii. 2014;(2):95–99. EDN: SGMPHL |
| [18] |
Войтенков В.Б., Скрипченко Н.В., Иванова М.В., и др. Роботизированная механотерапия у детей с двигательными нарушениями различного генеза // Гений ортопедии. 2014. № 2. С. 95–99. EDN: SGMPHL |
| [19] |
Daminov VD. Robotic mechanotherapy in neurorehabilitation. Vestnik AGIUV. Special issue. 2013;(S3):83–88. EDN: WWBMGL |
| [20] |
Даминов В.Д. Роботизированная механотерапия в нейрореабилитации // Вестник АГИУВ. Спецвыпуск. 2013. С. 83–88. EDN: WWBMGL |
| [21] |
Mosina MO, Tikhonov SV, Selivanova EA, Batysheva TT. Exoskeletons in the complex rehabilitation of children with movement disorder. Detskaya i podrostkovaya reabilitatsiya. 2022;(1):27–38. EDN: DWFYZU |
| [22] |
Мосина М.О., Тихонов С.В., Селиванова Е.А., Батышева Т.Т. Экзоскелеты в комплексной реабилитации детей с нарушениями функции ходьбы // Детская и подростковая реабилитация. 2022. № 1. С. 27–38. EDN: DWFYZU |
| [23] |
Sveistrup H. Motor rehabilitation using virtual reality. J NeuroEngineering Rehab. 2004:1(1):10. doi: 10.1186/1743-0003-1-10 |
| [24] |
Sveistrup H. Motor rehabilitation using virtual reality // J Neuro Engineering Rehab. 2004. Vol. 1, N 1. P. 10. doi: 10.1186/1743-0003-1-10 |
| [25] |
Lee HY, Park JH, Kim TW. Comparisons between Locomat and Walkbot robotic gait training regarding balance and lower extremity function among nonambulatory chronic acquired brain injury survivors. Medicine. 2021;100(18):e25125. doi: 10.1097/MD.0000000000025125 |
| [26] |
Lee H.Y., Park J.H., Kim T.W. Comparisons between Locomat and Walkbot robotic gait training regarding balance and lower extremity function among nonambulatory chronic acquired brain injury survivors // Medicine. 2021. Vol. 100, N 18. P. e25125. doi: 10.1097/MD.0000000000025125 |
| [27] |
Baranov AA, Namazova-Baranova LS, Kurenkov AP, et al. Comprehensive assessment of motor functions in patients with cerebral palsy. Educational and methodical manual. Moscow: Pediatr””; 2014. 84 p. (In Russ). |
| [28] |
Баранов А.А., Намазова-Баранова Л.С., Куренков А.П., и др. Комплексная оценка двигательных функций у пациентов с детским церебральным параличом. Учебно-методическое пособие. Москва: ПедиатрЪ, 2014. 84 с. |
| [29] |
Belova AN. Scales, tests and questionnaires in neurology and neurosurgery. Moscow; 2004. 432 p. (In Russ). |
| [30] |
Белова А.Н. Шкалы, тесты и опросники в неврологии и нейрохирургии. Москва, 2004. 432 с. |
| [31] |
Certificate of state registration of the computer program No. 2010617487. 2010. (In Russ). dated December 01, 2010 [information updated on 30.06.2021]. Available from: https://reestr.digital.gov.ru/reestr/368878/. Accessed: 15.04.2024. |
| [32] |
Свидетельство о государственной регистрации программы для ЭВМ № 2010617487 от 1 декабря 2010. [Сведения обновлены 30.06.2021]. Режим доступа: https://reestr.digital.gov.ru/reestr/368878/. Дата обращения: 15.04.2024. |
| [33] |
Clinical recommendations for the rehabilitation of children with infantile cerebral palsy (ICP). Moscow: Union of Paediatricians of Russia, All-Russian Society of Neurologists et al.; 2017. 62 р. (In Russ). |
| [34] |
Клинические рекомендации по реабилитации детей с детским церебральным параличом (ДЦП). Москва: Союз педиатров России, Всероссийское общество неврологов и др., 2017. 62 с. |
| [35] |
Cramer SC, Sur M, Dobkin BH, et al. Harnessing neuroplasticity for clinical applications. Brain. 2011;34(6):1591–1609. EDN: ONFNNL doi: 10.1093/brain/awr039 |
| [36] |
Cramer S.C., Sur M., Dobkin B.H., et al. Harnessing neuroplasticity for clinical applications // Brain. 2011. Vol. 34, № 6. P. 1591–1609. EDN: ONFNNL doi: 10.1093/brain/awr039 |
| [37] |
Borggraefe I, Schaefer JS, Klaiber M, et al. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur J Paediatric Neurology. 2010;14(6):496–502. doi: 10.1016/j.ejpn.2010.01.002 |
| [38] |
Borggraefe I., Schaefer J.S., Klaiber M., et al. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy // Eur J Paediatric Neurology. 2010. Vol. 14, N 6. P. 496–502. doi: 10.1016/j.ejpn.2010.01.002 |
| [39] |
Carvalho I, Pinto SM, Chagas D, et al. Robotic gait training for individuals with cerebral palsy: A systematic review and meta-analysis. Arch Physical Med Rehab. 2017;98(11):2332–2344. doi: 10.1016/j.apmr.2017.06.018 |
| [40] |
Carvalho I., Pinto S.M., Chagas D., et al. Robotic gait training for individuals with cerebral palsy: A systematic review and meta-analysis // Arch Physical Med Rehabilitat. 2017. Vol. 98, N 11. P. 2332–2344. doi: 10.1016/j.apmr.2017.06.018 |
| [41] |
Lefmann S, Russo R, Hillier S. The effectiveness of robotic-assisted gait training for paediatric gait disorders: Systematic review. J NeuroEngineering Rehab. 2017;14(1):1. EDN: YWILFT doi: 10.1186/s12984-016-0214-x |
| [42] |
Lefmann S., Russo R., Hillier S. The effectiveness of robotic-assisted gait training for paediatric gait disorders: Systematic review // J NeuroEngineering Rehab. 2017. Vol. 14, N 1. P. 1. EDN: YWILFT doi: 10.1186/s12984-016-0214-x |
| [43] |
Hwang J, Shin Y, Park J, et al. Effects of Walkbot gait training on kinematics, kinetics, and clinical gait function in paraplegia and quadriplegia. NeuroRehab. 2018;42(4):481–489. doi: 10.3233/nre-172226 |
| [44] |
Hwang J., Shin Y., Park J., et al. Effects of Walkbot gait training on kinematics, kinetics, and clinical gait function in paraplegia and quadriplegia // NeuroRehab. 2018. Vol. 42, N 4. P. 481–489. doi: 10.3233/nre-172226 |
Eco-Vector
/
| 〈 |
|
〉 |