Neuropsychological interpretation of disorders of consciousness using data from instrumental (neurophysiological) methods for diagnosing brain activity

L. I. Sedova , E. V. Erokhina , E. A. Baranova , V. M. Erikov , A. A. Nikulin , G. E. Ivanova , Yu. V. Mikadze

Physical and rehabilitation medicine, medical rehabilitation ›› 2024, Vol. 6 ›› Issue (2) : 157 -171.

PDF
Physical and rehabilitation medicine, medical rehabilitation ›› 2024, Vol. 6 ›› Issue (2) :157 -171. DOI: 10.36425/rehab624889
REVIEWS
review-article

Neuropsychological interpretation of disorders of consciousness using data from instrumental (neurophysiological) methods for diagnosing brain activity

Author information +
History +
PDF

Abstract

The relevance of the problem under consideration is determined by the need to develop and improve interdisciplinary approaches to the diagnosis and rehabilitation of disorders of consciousness in patients with brain pathology. The purpose of the article is an analytical review of the methods of neuropsychological and neurophysiological diagnostics and rehabilitation work with patients in reduced states of consciousness. It is noted that the neuropsychological content of the concept of "consciousness" is insufficiently developed and there is no unified point of view on the brain basis of consciousness, as well as on methodological and procedural limitations that arise when a neuropsychologist works with patients in a vegetative state of consciousness and in a state of minimal consciousness. The problem of consistency of the results of behavioral (neuropsychological) and instrumental (neurophysiological) methods for assessing the level of states of consciousness conducted by different specialists (neuropsychologists, neurologists, neurophysiologists) who are part of a multidisciplinary team is considered. The possibility of combining the procedure of neuropsychological examination and instrumental (neurophysiological) methods in the diagnosis of patients in a vegetative state of consciousness, in a state of minimal consciousness) and the prognosis of restoring the level of consciousness is analyzed. The possibility of an integrated approach to the diagnosis of a state of consciousness associated with a combination of behavioral (observation-based) and objective (instrumental) research methods is confirmed, and possible ways of its implementation are considered.

Keywords

consciousness disorders / neuropsychological tests / neurorehabilitation / electroencephalography / magnetic resonance imaging / positron-emission tomography

Cite this article

Download citation ▾
L. I. Sedova, E. V. Erokhina, E. A. Baranova, V. M. Erikov, A. A. Nikulin, G. E. Ivanova, Yu. V. Mikadze. Neuropsychological interpretation of disorders of consciousness using data from instrumental (neurophysiological) methods for diagnosing brain activity. Physical and rehabilitation medicine, medical rehabilitation, 2024, 6(2): 157-171 DOI:10.36425/rehab624889

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Belkin AA, Aleksandrova EV, Akhutina TV, et al. Chronic disorders of consciousness: Guidelines of the all-Russian public organization «Federation of Anesthesiologists and Reanimatologists». Alexander Saltanov intensive care herald. 2023;(3):7–42. EDN: SSLNAY doi: 10.21320/1818-474X-2023-3-7-42

[2]

Белкин А.А., Александрова Е.В., Ахутина Т.В., и др. Хронические нарушения сознания: клинические рекомендации Общероссийской общественной организации «Федерация анестезиологов и реаниматологов» // Вестник интенсивной терапии им. А.И. Салтанова. 2023. № 3. С. 7–42. EDN: SSLNAY doi: 10.21320/1818-474X-2023-3-7-42

[3]

Gibson RM, Fernández-Espejo D, Gonzalez-Lara LE, et al. Multiple tasks and neuroimaging modalities increase the likelihood of detecting covert awareness in patients with disorders of consciousness. Front Hum Neurosci. 2014;8:950. doi: 10.3389/fnhum.2014.00950

[4]

Gibson R.M., Fernández-Espejo D., Gonzalez-Lara L.E., et al. Multiple tasks and neuroimaging modalities increase the likelihood of detecting covert awareness in patients with disorders of consciousness // Front Hum Neurosci. 2014. Vol. 8. P. 950. doi: 10.3389/fnhum.2014.00950

[5]

Boly M, Laureys S. Functional «unlocking» bedside detection of covert awareness after severe brain damage. Brain. 2018;141(5):1239–1241. doi: 10.1093/brain/awy080

[6]

Boly M., Laureys S. Functional «unlocking» bedside detection of covert awareness after severe brain damage // Brain. 2018. Vol. 141, N 5. P. 1239–1241. doi: 10.1093/brain/awy080

[7]

Belkin VA, Pozdnyakov DG, Belkin AA. Diagnosis of the phenomenon of cognitive-motor dissociation in patients with chronic consciousness disorders. Neurology, Neuropsychiatry, Psychosomatics. 2019;11(3S): 46–51. doi: 10.14412/2074-2711-2019-3S-46-51

[8]

Белкин В.А., Поздняков Д.Г., Белкин А.А. Диагностика феномена когнитивно-моторного разобщения у пациентов с хроническими нарушениями сознания // Неврология, нейропсихиатрия, психосоматика. 2019. Т. 11, № 3S. С. 46–51. doi: 10.14412/2074-2711-2019-3S-46-51

[9]

Cherkasova AN, Yatsko KA, Kovyazina MS, et al. Development of paradigms for the diagnosis of «covert cognition» and cognitive motor dissociation in patients with chronic disorders of consciousness. Physical Rehab Medicine, Medical Rehabilitation. 2021;3(3):318–321. doi: 10.36425/rehab72308

[10]

Черкасова А.Н., Яцко К.А., Ковязина М.С., и др. Разработка парадигм с целью диагностики «скрытого сознания» и когнитивно-моторного разобщения у пациентов с хроническими нарушениями сознания // Физическая и реабилитационная медицина, медицинская реабилитация. 2021. Т. 3, № 3. С. 318–321. doi: 10.36425/rehab72308

[11]

Vygotsky LS. Thinking and speech. Collected Works. Vol. 2. Moscow: Pedagogika; 1982. P. 215. (In Russ).

[12]

Выготский Л.С. Мышление и речь. Собрание сочинений. Т. 2. Москва: Педагогика, 1982. С. 215.

[13]

Gordeeva OV. The problem of the structure of consciousness in the works of L.S. Vygotsky. World of psychology. 1999;(1):111–118. EDN: HOVLDZ

[14]

Гордеева О.В. Проблема структуры сознания в трудах Л.С. Выготского // Мир психологии. 1999. № 1. С. 111–118. EDN: HOVLDZ

[15]

Edelman GM. Neural darwinism: The theory of neuronal group selection. New York: Basic Books; 1987. 240 p.

[16]

Edelman G.M. Neural darwinism: The theory of neuronal group selection. New York: Basic Books, 1987. 240 p.

[17]

Khomskaya ED. Neuropsychology. 4th ed. Saint Petersburg: Piter; 2005. 496 p. (In Russ).

[18]

Хомская Е.Д. Нейропсихология. 4-е изд. Санкт-Петербург: Питер, 2005. 496 с.

[19]

Anokhin KV. Cognitome: In search of fundamental neuroscience theory of consciousness. I.P. Pavlov J Higher Nervous Activity. 2021;71(1):39–71. EDN: TTTGKL doi: 10.31857/s0044467721010032

[20]

Анохин К.В. Когнитом: в поисках фундаментальной нейронаучной теории сознания // Журнал высшей нервной деятельности им. И.П. Павлова. 2021. Т. 71, № 1. С. 39–71. EDN: TTTGKL doi: 10.31857/s0044467721010032

[21]

Luria AR. Language and consciousness. Ed. by E.D. Chomskaya. Moscow: Izdatel’stvo Moskovskogo universiteta; 1979. 320 р. (In Russ).

[22]

Лурия А.Р. Язык и сознание / под ред. Е.Д. Хомской. Москва: Издательство Московского университета, 1979. 320 с.

[23]

Luria AR. Higher cortical functions in man. Saint Petersburg: Piter; 2018.768 р. Series: Masters of Psychology. (In Russ).

[24]

Лурия А.Р. Высшие корковые функции человека. Санкт-Петербург: Питер, 2018. 768 с. (Серия: Мастера психологии).

[25]

Kalmar K, Giacino JT. The JFK coma recovery scale-revised. Neuropsychol Rehabil. 2005;15(3-4):454–460. doi: 10.1080/ 09602010443000425

[26]

Kalmar K., Giacino J.T. The JFK coma recovery scale-revised // Neuropsychol Rehabil. 2005. Vol. 15, N 3-4. P. 454–460. doi: 10.1080/ 09602010443000425

[27]

Mochalova EG, Legostaeva LA, Zimin AA, et al. The Russian version of coma recovery scale-revised: A standardized method for assessment of patients with disorders of consciousness. S.S. Korsakov J Neurology Psychiatry. 2018;118(3-2):25–31. doi: 10.17116/jnevro20181183225-31

[28]

Мочалова Е.Г., Легостаева Л.А., Зимин А.А., и др. Русскоязычная версия пересмотренной шкалы восстановления после комы — стандартизированный метод оценки пациентов с хроническими нарушениями сознания // Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2018. Т. 118, № 3-2. С. 25–31. doi: 10.17116/jnevro20181183225-31

[29]

Schnakers C, Vanhaudenhuyse A, Giacino J, et al. Diagnostic accuracy of the vegetative and minimally conscious state: Clinical consensus versus standardized neurobehavioral assessment. BMC Neurology. 2009;(9):35. EDN: ZULRYB doi: 10.1186/1471-2377-9-35

[30]

Schnakers C., Vanhaudenhuyse A., Giacino J., et al. Diagnostic accuracy of the vegetative and minimally conscious state: Clinical consensus versus standardized neurobehavioral assessment // BMC Neurology. 2009. N 9. P. 35. EDN: ZULRYB doi: 10.1186/1471-2377-9-35

[31]

Hirschberg R, Giacino JT. The vegetative and minimally conscious states: Diagnosis, prognosis and treatment. Neurol Clin. 2011;29(4):773–786. doi: 10.1016/j.ncl.2011.07.009

[32]

Hirschberg R., Giacino J.T. The vegetative and minimally conscious states: Diagnosis, prognosis and treatment // Neurol Clin. 2011. Vol. 29, N 4. P. 773–786. doi: 10.1016/j.ncl.2011.07.009

[33]

Giacino JT, Katz DI, Schiff ND, et al. Practice guideline update recommendations summary. Disorders of consciousness: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology; the American Congress of Rehabilitation Medicin and the National Institute on Disability, Independent Living, and Rehabilitation Research. Neurology. 2018;91(10):450–460. doi: 10.1212/wnl.0000000000005926

[34]

Giacino J.T., Katz D.I., Schiff N.D., et al. Practice guideline update recommendations summary. Disorders of consciousness: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology; the American Congress of Rehabilitation Medicin and the National Institute on Disability, Independent Living, and Rehabilitation Research // Neurology. 2018. Vol. 91, N 10. P. 450–460. doi: 10.1212/wnl.0000000000005926

[35]

Fingelkurts AA, Fingelkurts AA, Bagnato S, et al. EEG oscillatory states as neuro-phenomenology of consciousness as revealed from patients in vegetative and minimally conscious states. Conscious Cogn. 2012;21(1):149–169. EDN: PIKPID doi: 10.1016/j.concog.2011.10.004

[36]

Fingelkurts A.A., Fingelkurts A.A., Bagnato S., et al. EEG oscillatory states as neuro-phenomenology of consciousness as revealed from patients in vegetative and minimally conscious states // Conscious Cogn. 2012. Vol. 21, N 1. P. 149–169. EDN: PIKPID doi: 10.1016/j.concog.2011.10.004

[37]

Schnakers C, Bauer C, Formisano R, et al. What names for covert awareness? A systematic review. Front Hum Neurosci. 2022;16:971315. doi: 10.3389/fnhum.2022.971315

[38]

Schnakers C., Bauer C., Formisano R., et al. What names for covert awareness? A systematic review // Front Hum Neurosci. 2022. Vol. 16. P. 971315. doi: 10.3389/fnhum.2022.971315

[39]

Plaut Y, Weiss L. Electrodiagnostic evaluation of critical illness neuropathy [2022 Sep 26]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.

[40]

Plaut Y., Weiss L. Electrodiagnostic evaluation of critical illness neuropathy [2022 Sep 26]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2024.

[41]

Bekinschtein TA, Coleman MR, Niklison J, et al. Can electromyography objectively detect voluntary movement in disorders of consciousness? J Neurol Neurosurg Psychiatry. 2008;79:826–828.

[42]

Bekinschtein T.A., Coleman M.R., Niklison J., et al. Can electromyography objectively detect voluntary movement in disorders of consciousness? // J Neurol Neurosurg Psychiatry. 2008. Vol. 79. P. 826–828.

[43]

Lesenfants D, Habbal D, Chatelle C, et al. Electromyographic decoding of response to command in disorders of consciousness. Neurology. 2016;87(20):2099–2107. doi: 10.1212/WNL.0000000000003333

[44]

Lesenfants D., Habbal D., Chatelle C., et al. Electromyographic decoding of response to command in disorders of consciousness // Neurology. 2016. Vol. 87, N 20. P. 2099–2107. doi: 10.1212/WNL.0000000000003333

[45]

Habbal D, Gosseries O, Noirhomme Q, et al. Volitional electromyographic responses in disorders of consciousness. Brain Inj. 2014;28(9):1171–1179. doi: 10.3109/02699052.2014.920519

[46]

Habbal D., Gosseries O., Noirhomme Q., et al. Volitional electromyographic responses in disorders of consciousness // Brain Inj. 2014. Vol. 28, N 9. P. 1171–1179. doi: 10.3109/02699052.2014.920519

[47]

Ballanti S, Campagnini S, Liuzzi P, et al. EEG-based methods for recovery prognosis of patients with disorders of consciousness: A systematic review. Clin Neurophysiol. 2022;(144):98–114. EDN: SCZPFS doi: 10.1016/j.clinph.2022.09.017

[48]

Ballanti S., Campagnini S., Liuzzi P., et al. EEG-based methods for recovery prognosis of patients with disorders of consciousness: A systematic review // Clin Neurophysiol. 2022. N 144. P. 98–114. EDN: SCZPFS doi: 10.1016/j.clinph.2022.09.017

[49]

Gosseries O, Schnakers C, Ledoux D, et al. Automated EEG entropy measurements in coma, vegetative state/unresponsive wakefulness syndrome and minimally conscious state. Funct Neurol. 2011;26(1):25–30. EDN: YBSDZD

[50]

Gosseries O., Schnakers C., Ledoux D., et al. Automated EEG entropy measurements in coma, vegetative state/unresponsive wakefulness syndrome and minimally conscious state // Funct Neurol. 2011. Vol. 26, N 1. P. 25–30. EDN: YBSDZD

[51]

Boly M, Garrido MI, Gosseries O, et al. Preserved feedforward but impaired top-down processes in the vegetative state. Science. 2011;332(6031):858–862. doi: 10.1126/science.1202043

[52]

Boly M., Garrido M.I., Gosseries O., et al. Preserved feedforward but impaired top-down processes in the vegetative state // Science. 2011. Vol. 332, N 6031. P. 858–862. doi: 10.1126/science.1202043

[53]

Scarpino M, Lolli F, Hakiki B, et al.; Intensive Rehabilitation Unit Study Group of the IRCCS Don Gnocchi Foundation, Italy. EEG and coma recovery scale-revised prediction of neurological outcome in disorder of consciousness patients. Acta Neurol Scand. 2020;142(3):221–228. doi: 10.1111/ane.13247

[54]

Scarpino M., Lolli F., Hakiki B., et al.; Intensive Rehabilitation Unit Study Group of the IRCCS Don Gnocchi Foundation, Italy. EEG and coma recovery scale-revised prediction of neurological outcome in disorder of consciousness patients // Acta Neurol Scand. 2020. Vol. 142, N 3. P. 221–228. doi: 10.1111/ane.13247

[55]

Naro A, Bramanti P, Leo A, et al. Towards a method to differentiate chronic disorder of consciousness patients’ awareness: The low-resolution brain electromagnetic tomography analysis. J Neurol Sci. 2016;(368):178–183. doi: 10.1016/j.jns.2016.07.016

[56]

Naro A., Bramanti P., Leo A., et al. Towards a method to differentiate chronic disorder of consciousness patients’ awareness: The low-resolution brain electromagnetic tomography analysis // J Neurol Sci. 2016. N 368. P. 178–183. doi: 10.1016/j.jns.2016.07.016

[57]

Bareham CA, Allanson J, Roberts N, et al. Longitudinal bedside assessments of brain networks in disorders of consciousness: Case reports from the field. Front Neurol. 2018;(9):676. doi: 10.3389/fneur.2018.00676

[58]

Bareham C.A., Allanson J., Roberts N., et al. Longitudinal bedside assessments of brain networks in disorders of consciousness: Case reports from the field // Front Neurol. 2018. N 9. P. 676. doi: 10.3389/fneur.2018.00676

[59]

Cavinato M, Freo U, Ori C, et al. Post-acute P300 predicts recovery of consciousness from traumatic vegetative state. Brain Inj. 2009;23(12):973–980. doi: 10.3109/02699050903373493

[60]

Cavinato M., Freo U., Ori C., et al. Post-acute P300 predicts recovery of consciousness from traumatic vegetative state // Brain Inj. 2009. Vol. 23, N 12. P. 973–980. doi: 10.3109/02699050903373493

[61]

Bagnato S, Prestandrea C, D’Agostino T, et al. Somatosensory evoked potential amplitudes correlate with long-term consciousness recovery in patients with unresponsive wakefulness syndrome. Clin Neurophysiol. 2021;132(3):793–799. doi: 10.1016/j.clinph.2021.01.006

[62]

Bagnato S., Prestandrea C., D’Agostino T., et al. Somatosensory evoked potential amplitudes correlate with long-term consciousness recovery in patients with unresponsive wakefulness syndrome // Clin Neurophysiol. 2021. Vol. 132, N 3. P. 793–799. doi: 10.1016/j.clinph.2021.01.006

[63]

Naro A, Russo M, Leo A, et al. Cortical responsiveness to nociceptive stimuli in patients with chronic disorders of consciousness: Do C-fiber laser evoked potentials have a role? PLoS One. 2015;10(12):e0144713. doi: 10.1371/journal.pone.0144713

[64]

Naro A., Russo M., Leo A., et al. Cortical responsiveness to nociceptive stimuli in patients with chronic disorders of consciousness: Do C-fiber laser evoked potentials have a role? // PLoS One. 2015. Vol. 10, N 12. P. e0144713. doi: 10.1371/journal.pone.0144713

[65]

Spataro R, Heilinger A, Allison B, et al. Preserved somatosensory discrimination predicts consciousness recovery in unresponsive wakefulness syndrome. Clin Neurophysiol. 2018;129(6):1130–1136. doi: 10.1016/j.clinph.2018.02.131

[66]

Spataro R., Heilinger A., Allison B., et al. Preserved somatosensory discrimination predicts consciousness recovery in unresponsive wakefulness syndrome // Clin Neurophysiol. 2018. Vol. 129, N 6. P. 1130–1136. doi: 10.1016/j.clinph.2018.02.131

[67]

Perrin F, Schnakers C, Schabus M, et al. Brain response to one’s own name in vegetative state, minimally conscious state, and locked-in syndrome. Arch Neurol. 2006;63(4):562–569. doi: 10.1001/archneur.63.4.562

[68]

Perrin F., Schnakers C., Schabus M., et al. Brain response to one’s own name in vegetative state, minimally conscious state, and locked-in syndrome // Arch Neurol. 2006. Vol. 63, N 4. P. 562–569. doi: 10.1001/archneur.63.4.562

[69]

Schnakers C, Giacino JT, Løvstad M, et al. Preserved covert cognition in noncommunicative patients with severe brain injury? Neurorehabil Neural Repair. 2015;29(4):308–317. doi: 10.1177/1545968314547767

[70]

Schnakers C., Giacino J.T., Løvstad M., et al. Preserved covert cognition in noncommunicative patients with severe brain injury? // Neurorehabil Neural Repair. 2015. Vol. 29, N 4. P. 308–317. doi: 10.1177/1545968314547767

[71]

Annen J, Wannez S, Ortner R, et al. MindBEAGLE: An EEG-based BCI developed for patients with disorders of consciousness. In: Conference: International Brain-Computer Interface (BCI) Meeting. May, 2016.

[72]

Annen J., Wannez S., Ortner R., et al. MindBEAGLE: An EEG-based BCI developed for patients with disorders of consciousness // Conference: International Brain-Computer Interface (BCI) Meeting. May, 2016.

[73]

Hauger SL, Schnakers C, Andersson S, et al. Neurophysiological indicators of residual cognitive capacity in the minimally conscious state. Behav Neurol. 2015;2015:145913. doi: 10.1155/2015/145913

[74]

Hauger S.L., Schnakers C., Andersson S., et al. Neurophysiological indicators of residual cognitive capacity in the minimally conscious state // Behav Neurol. 2015. Vol. 2015. P. 145913. doi: 10.1155/2015/145913

[75]

Duszyk A, Dovgialo M, Pietrzak M, et al. Event-related potentials in the odd-ball paradigm and behavioral scales for the assessment of children and adolescents with disorders of consciousness: A proof of concept study. Clin Neuropsychologist. 2019;33(2):419–437.

[76]

Duszyk A., Dovgialo M., Pietrzak M., et al. Event-related potentials in the odd-ball paradigm and behavioral scales for the assessment of children and adolescents with disorders of consciousness: A proof of concept study // Clin Neuropsychologist. 2019. Vol. 33, N 2. P. 419–437.

[77]

Annen J, Mertel I, Xu R, et al. Auditory and somatosensory p3 are complementary for the assessment of patients with disorders of consciousness. Brain Sci. 2020;10(10):748. doi: 10.3390/brainsci10100748

[78]

Annen J., Mertel I., Xu R., et al. Auditory and somatosensory p3 are complementary for the assessment of patients with disorders of consciousness // Brain Sci. 2020. Vol. 10, N 10. P. 748. doi: 10.3390/brainsci10100748

[79]

Rosanova M, Gosseries O, Casarotto S, et al. Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients. Brain. 2012;135(Pt 4):1308–1320. doi: 10.1093/brain/awr340

[80]

Rosanova M., Gosseries O., Casarotto S., et al. Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients // Brain. 2012. Vol. 135, Pt. 4. P. 1308–1320. doi: 10.1093/brain/awr340

[81]

Casali AG, Gosseries O, Rosanova M, et al. A theoretically based index of consciousness independent of sensory processing and behavior. Sci Transl Med. 2013;5(198):198ra105. doi: 10.1126/scitranslmed.3006294

[82]

Casali A.G., Gosseries O., Rosanova M., et al. A theoretically based index of consciousness independent of sensory processing and behavior // Sci Transl Med. 2013. Vol. 5, N 198. P. 198ra105. doi: 10.1126/scitranslmed.3006294

[83]

Casarotto S, Comanducci A, Rosanova M, et al. Stratification of unresponsive patients by an independently validated index of brain complexity. Ann Neurol. 2016;80(5):718–729. doi: 10.1002/ana.24779

[84]

Casarotto S., Comanducci A., Rosanova M., et al. Stratification of unresponsive patients by an independently validated index of brain complexity // Ann Neurol. 2016. Vol. 80, N 5. P. 718–729. doi: 10.1002/ana.24779

[85]

Sinitsyn D, Poydasheva A, Bakulin I, et al. Detecting the potential for consciousness in unresponsive patients using the perturbational complexity index. Brain Sci. 2020;10(12):917. doi: 10.917.10.3390/brainsci10120917

[86]

Sinitsyn D., Poydasheva A., Bakulin I., et al. Detecting the potential for consciousness in unresponsive patients using the perturbational complexity index // Brain Sci. 2020. Vol. 10, N 12. P. 917. doi: 10.917.10.3390/brainsci10120917

[87]

Poydasheva AG, Bakulin IS, Legostaeva LA, et al. TMS-EEG: Current possibilities and future prospects. I.P. Pavlov J Higher Nervous Activity. 2019;69(3):267–279. doi: 10.1134/S0044467719030092

[88]

Пойдашева А.Г., Бакулин И.С., Легостаева Л.А., и др. Метод ТМС-ЭЭГ: возможности и перспективы // Журнал высшей нервной деятельности им. И.П. Павлова. 2019. Т. 69, № 3. С. 267–279. doi: 10.1134/S0044467719030092

[89]

Comanducci A, Boly M, Claassen J, et al. Clinical and advanced neurophysiology in the prognostic and diagnostic evaluation of disorders of consciousness: Review of an IFCN-endorsed expert group. Clin Neurophysiol. 2020;131(11):2736–2765. doi: 10.1016/j.clinph.2020.07.015

[90]

Comanducci A., Boly M., Claassen J., et al. Clinical and advanced neurophysiology in the prognostic and diagnostic evaluation of disorders of consciousness: Review of an IFCN-endorsed expert group // Clin Neurophysiol. 2020. Vol. 131, N 11. P. 2736–2765. doi: 10.1016/j.clinph.2020.07.015

[91]

Raichle ME. Behind the scenes of functional brain imaging: A historical and physiological perspective. Proc Natl Acad Sci USA. 1998;95(3):765–772. EDN: LNDFIJ doi: 10.1073/pnas.95.3.765

[92]

Raichle M.E. Behind the scenes of functional brain imaging: A historical and physiological perspective // Proc Natl Acad Sci USA. 1998. Vol. 95, N 3. P. 765–772. EDN: LNDFIJ doi: 10.1073/pnas.95.3.765

[93]

Soddu A, Vanhaudenhuyse A, Bahri MA, et al. Identifying the default-mode component in spatial IC analyses of patients with disorders of consciousness. Hum Brain Mapp. 2012;33(4):778–796. doi: 10.1002/hbm.21249

[94]

Soddu A., Vanhaudenhuyse A., Bahri M.A., et al. Identifying the default-mode component in spatial IC analyses of patients with disorders of consciousness // Hum Brain Mapp. 2012. Vol. 33, N 4. P. 778–796. doi: 10.1002/hbm.21249

[95]

Vanhaudenhuyse A, Noirhomme Q, Tshibanda L, et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain. 2010;13(Pt 1): 161–171. doi: 10.1093/brain/awp313

[96]

Vanhaudenhuyse A., Noirhomme Q., Tshibanda L., et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients // Brain. 2010. Vol. 133, Pt. 1. P. 161–171. doi: 10.1093/brain/awp313

[97]

Demertzi A, Antonopoulos G, Heine L, et al. Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients. Brain. 2015;138(Pt 9):2619–2631. doi: 10.1093/brain/awv169

[98]

Demertzi A., Antonopoulos G., Heine L., et al. Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients // Brain. 2015. Vol. 138, Pt. 9. P. 2619–2631. doi: 10.1093/brain/awv169

[99]

Legostaeva LA, Kremneva EI, Sinitsyn DO, et al. Features of residual cerebral brain activity in patients with chronic disorders of consciousness on resting-state functional MRI. Ann Clin Exp Neurol. 2022;16(2):15–24. doi: 10.54101/ACEN.2022.2.2

[100]

Легостаева Л.А., Кремнева Е.И., Синицын Д.О., и др. Особенности резидуальной нейрональной активности у пациентов с хроническими нарушениями сознания по данным функциональной МРТ покоя // Анналы клинической и экспериментальной неврологии. 2022. Т. 16, № 2. С. 15–24. doi: 10.54101/ACEN.2022.2.2

[101]

Rodriguez MD, Schiff ND, Giacino J, et al. A network approach to assessing cognition in disorders of consciousness. Neurology. 2010;75(21):1871–1878. doi: 10.1212/WNL.0b013e3181feb259

[102]

Rodriguez M.D., Schiff N.D., Giacino J., et al. A network approach to assessing cognition in disorders of consciousness // Neurology. 2010. Vol. 75, N 21. P. 1871–1878. doi: 10.1212/WNL.0b013e3181feb259

[103]

Bardin JC, Fins JJ, Katz DI, et al. Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury. Brain. 2011;134(Pt 3):769–782. doi: 10.1093/brain/awr005

[104]

Bardin J.C., Fins J.J., Katz D.I., et al. Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury // Brain. 2011. Vol. 134, Pt. 3. P. 769–782. doi: 10.1093/brain/awr005

[105]

Owen AM, Coleman MR, Boly M, et al. Detecting awareness in the vegetative state. Science. 2006;313(5792):1402. doi: 10.1126/science.1130197

[106]

Owen A.M., Coleman M.R., Boly M., et al. Detecting awareness in the vegetative state // Science. 2006. Vol. 313, N 5792. P. 1402. doi: 10.1126/science.1130197

[107]

Monti MM, Vanhaudenhuyse A, Coleman MR, et al. Willful modulation of brain activity in disorders of consciousness. N Engl J Med. 2010;362(7):579–589. doi: 10.1056/NEJMoa0905370

[108]

Monti M.M., Vanhaudenhuyse A., Coleman M.R., et al. Willful modulation of brain activity in disorders of consciousness // N Engl J Med. 2010. Vol. 362, N 7. P. 579–589. doi: 10.1056/NEJMoa0905370

[109]

Owen AM, Coleman MR. Functional neuroimaging of the vegetative state. Nat Rev Neurosci. 2008;9(3):235–243. doi: 10.1038/nrn2330

[110]

Owen A.M., Coleman M.R. Functional neuroimaging of the vegetative state // Nat Rev Neurosci. 2008. Vol. 9, N 3. P. 235–243. doi: 10.1038/nrn2330

[111]

Laureys S, Owen AM, Schiff ND. Brain function in coma, vegetative state, and related disorders. Lancet Neurol. 2004;3(9):537–546. doi: 10.1016/S1474-4422(04)00852-X

[112]

Laureys S., Owen A.M., Schiff N.D. Brain function in coma, vegetative state, and related disorders // Lancet Neurol. 2004. Vol. 3, N 9. P. 537–546. doi: 10.1016/S1474-4422(04)00852-X

[113]

Stender J, Gosseries O, Bruno MA, et al. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: A clinical validation study. Lancet. 2014;384(9942):514–522. doi: 10.1016/S0140-6736(14)60042-8

[114]

Stender J., Gosseries O., Bruno M.A., et al. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: A clinical validation study // Lancet. 2014. Vol. 384, N 9942. P. 514–522. doi: 10.1016/S0140-6736(14)60042-8

[115]

Stender J, Kupers R, Rodell A, et al. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients. J Cereb Blood Flow Metab. 2014b;35(1):58–65. doi: 10.1038/jcbfm.2014.169

[116]

Stender J., Kupers R., Rodell A., et al. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients // J Cereb Blood Flow Metab. 2014b. Vol. 35, N 1. P. 58–65. doi: 10.1038/jcbfm.2014.169

[117]

Laureys S, Goldman S, Phillips C, et al. Impaired effective cortical connectivity in vegetative state: Preliminary investigation using PET. Neuroimage. 1999;9(4):377–382. doi: 10.1006/nimg.1998.0414

[118]

Laureys S., Goldman S., Phillips C., et al. Impaired effective cortical connectivity in vegetative state: Preliminary investigation using PET // Neuroimage. 1999. Vol. 9, N 4. P. 377–382. doi: 10.1006/nimg.1998.0414

[119]

Baars BJ, Ramsøy TZ, Laureys S. Brain, conscious experience and the observing self. Trends Neurosci. 2003;26(12):671–675. EDN: ETBMQP doi: 10.1016/j.tins.2003.09.015

[120]

Baars B.J., Ramsøy T.Z., Laureys S. Brain, conscious experience and the observing self // Trends Neurosci. 2003. Vol. 26, N 12. P. 671–675. EDN: ETBMQP doi: 10.1016/j.tins.2003.09.015

[121]

Laureys S, Lemaire C, Maquet P, et al. Cerebral metabolism during vegetative state and after recovery to consciousness. J Neurol Neurosurg Psychiatry. 1999;67(1):121. doi: 10.1136/jnnp.67.1.121

[122]

Laureys S., Lemaire C., Maquet P., et al. Cerebral metabolism during vegetative state and after recovery to consciousness // J Neurol Neurosurg Psychiatry. 1999. Vol. 67, N 1. P. 121. doi: 10.1136/jnnp.67.1.121

[123]

Laureys S, Faymonville ME, Luxen A, et al. Restoration of thalamocortical connectivity after recovery from persistent vegetative state. Lancet. 2000;355(9217):1790–1791. EDN: DHJJCT doi: 10.1016/s0140-6736(00)02271-6

[124]

Laureys S., Faymonville M.E., Luxen A., et al. Restoration of thalamocortical connectivity after recovery from persistent vegetative state // Lancet. 2000. Vol. 355, N 9217. P. 1790–1791. EDN: DHJJCT doi: 10.1016/s0140-6736(00)02271-6

[125]

Sharon H, Pasternak Y, Ben Simon E, et al. Emotional processing of personally familiar faces in the vegetative state. PLoS ONE. 2013;8(9):e74711. doi: 10.1371/journal.pone.0074711

[126]

Sharon H., Pasternak Y., Ben Simon E., et al. Emotional processing of personally familiar faces in the vegetative state // PLoS ONE. 2013. Vol. 8, N 9. P. e74711. doi: 10.1371/journal.pone.0074711

[127]

Laureys S, Faymonville ME, Peigneux P, et al. Cortical processing of noxious somatosensory stimuli in the persistent vegetative state. Neuroimage. 2002;17(2):732–741.

[128]

Laureys S., Faymonville M.E., Peigneux P., et al. Cortical processing of noxious somatosensory stimuli in the persistent vegetative state // Neuroimage. 2002. Vol. 17, N 2. P. 732–741.

[129]

Boly M, Faymonville ME, Peigneux P, et al. Auditory processing in severely brain injured patients: Differences between the minimally conscious state and the persistent vegetative state. Arch Neurol. 2004;61(2):233–238. doi: 10.1001/archneur.61.2.233

[130]

Boly M., Faymonville M.E., Peigneux P., et al. Auditory processing in severely brain injured patients: Differences between the minimally conscious state and the persistent vegetative state // Arch Neurol. 2004. Vol. 61, N 2. P. 233–238. doi: 10.1001/archneur.61.2.233

[131]

Laureys S, Faymonville ME, Degueldre C, et al. Auditory processing in the vegetative state. Brain. 2000;123(Pt 8): 1589–1601. EDN: ILZVNV doi: 10.1093/brain/123.8.1589

[132]

Laureys S., Faymonville M.E., Degueldre C., et al. Auditory processing in the vegetative state // Brain. 2000. Vol. 123, Pt. 8. P. 1589–1601. EDN: ILZVNV doi: 10.1093/brain/123.8.1589

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

58

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/