Post-stroke hand synergy formation variant. Clinical case
Anton S. Klochkov , Anastasiya E. Khizhnikova , Ilya S. Bakulin , Elena I. Kremneva , Alexandra G. Poydasheva , Anna A. Fuks , Dmitry V. Gorlachev , Elena V. Gnedovskaya , Natalia A. Suponeva
Physical and rehabilitation medicine, medical rehabilitation ›› 2022, Vol. 4 ›› Issue (4) : 292 -303.
Post-stroke hand synergy formation variant. Clinical case
Pathological synergies are a frequent consequence of cerebrovascular accidents and hinders further recovery. The existing concept of the formation of pathological synergies considers them as a compensatory strategy in response to damage to the pyramidal tract, which, due to paresis and increased muscle tone, has acquired a pathological character. Recent studies in primates have shown that the contralateral hemisphere, in particular the reticulospinal and rubrospinal tracts, may be involved in motor control of the hand. The current hypothesis presents the corticoreticulospinal and corticorubrospinal tracts as a back-up system for neuronal reorganization due to injury.
This clinical case describes the role of the white matter of the contralateral hemisphere in the mechanism of formation of pathological flexion synergy, based on data from the analysis of movements and neuroimaging.
stroke / abnormal synergy / rehabilitation / case report / motor control
| [1] |
Knutsson E, Martensson A. Dynamic motor capacity in spastic paresis and its relation to prime mover dysfunction, spastic reflexes and antagonist co-activation. Scand J Rehabil Med. 1980;12(3):93–106. |
| [2] |
Knutsson E., Martensson A. Dynamic motor capacity in spastic paresis and its relation to prime mover dysfunction, spastic reflexes and antagonist co-activation // Scand J Rehabil Med. 1980. Vol. 12, N 3. Р. 93–106. |
| [3] |
Knutsson E, Dewalde PJ, Younge RR. Studies of gait control in patients with spastic paresis. Clinical Neurophysiology in Spasticity. New York: Elsevier; 1985. Р. 175–184. |
| [4] |
Knutsson E., Dewalde P.J., Younge R.R. Studies of gait control in patients with spastic paresis. Clinical Neurophysiology in Spasticity. New York: Elsevier, 1985. Р. 175–184. |
| [5] |
Chen J, Friesen WO, Iwasaki T. Mechanisms underlying rhythmic locomotion: interactions between activation, tension and body curvature waves. J Exp Biol. 2012;215(2):211–219. doi: 10.1242/jeb.058669 |
| [6] |
Chen J., Friesen W.O., Iwasaki T. Mechanisms underlying rhythmic locomotion: interactions between activation, tension and body curvature waves // J Exp Biol. 2012. Vol. 215, N 2. Р. 211–219. doi: 10.1242/jeb.058669 |
| [7] |
Owen M, Ingo C, Dewald JP. Upper extremity motor impairments and microstructural changes in bulbospinal pathways in chronic hemiparetic stroke. Front Neurol. 2017;13(8):257. doi: 10.3389/fneur.2017.00257 |
| [8] |
Owen M., Ingo C., Dewald J.P. Upper extremity motor impairments and microstructural changes in bulbospinal pathways in chronic hemiparetic stroke // Front Neurol. 2017. Vol. 13, N 8. Р. 257. doi: 10.3389/fneur.2017.00257 |
| [9] |
Mori S, Matsuyama K, Mori F, Nakajima K. Supraspinal sites that induce locomotion in the vertebrate central nervous system. Adv Neurol. 2001;(87):25–40. |
| [10] |
Mori S., Matsuyama K., Mori F., Nakajima K. Supraspinal sites that induce locomotion in the vertebrate central nervous system // Adv Neurol. 2001. Vol. 87. Р. 25–40. |
| [11] |
Schepens B, Stapley P, Drew T. Neurons in the pontomedullary reticular formation signal posture and movement both as an integrated behavior and independently. J Neurophysiol. 2008;100(4):2235–2253. doi: 10.1152/jn.01381.2007 |
| [12] |
Schepens B., Stapley P., Drew T. Neurons in the pontomedullary reticular formation signal posture and movement both as an integrated behavior and independently // J Neurophysiol. 2008. Vol. 100, N 4. Р. 2235–2253. doi: 10.1152/jn.01381.2007 |
| [13] |
Drew T, Dubuc R, Rossignol S. Discharge patterns of reticulospinal and other reticular neurons in chronic, unrestrained cats walking on a treadmill. J Neurophysiol. 1986;55(2):375–401. doi: 10.1152/jn.1986.55.2.375 |
| [14] |
Drew T., Dubuc R., Rossignol S. Discharge patterns of reticulospinal and other reticular neurons in chronic, unrestrained cats walking on a treadmill // J Neurophysiol. 1986. Vol. 55, N 2. Р. 375–401. doi: 10.1152/jn.1986.55.2.375 |
| [15] |
Matsuyama K, Drew T. Vestibulospinal and reticulospinal neuronal activity during locomotion in the intact cat. I. Walking on a level surface. J Neurophysiol. 2000;84(5):2237–2256. doi: 10.1152/jn.2000.84.5.2237 |
| [16] |
Matsuyama K., Drew T. Vestibulospinal and reticulospinal neuronal activity during locomotion in the intact cat. I. Walking on a level surface // J Neurophysiol. 2000. Vol. 84, N 5. Р. 2237–2256. doi: 10.1152/jn.2000.84.5.2237 |
| [17] |
Prentice SD, Drew T. Contributions of the reticulospinal system to the postural adjustments occurring during voluntary gait modifications. J Neurophysiol. 2001;85(2):679–698. doi: 10.1152/jn.2001.85.2.679 |
| [18] |
Prentice S.D., Drew T. Contributions of the reticulospinal system to the postural adjustments occurring during voluntary gait modifications // J Neurophysiol. 2001. Vol. 85, N 2. Р. 679–698. doi: 10.1152/jn.2001.85.2.679 |
| [19] |
Schepens B, Drew T. Independent and convergent signals from the pontomedullary reticular formation contribute to the control of posture and movement during reaching in the cat. J Neurophysiol. 2004;92(4):2217–2238. doi: 10.1152/jn.01189.2003 |
| [20] |
Schepens B., Drew T. Independent and convergent signals from the pontomedullary reticular formation contribute to the control of posture and movement during reaching in the cat // J Neurophysiol. 2004. Vol. 92, N 4. Р. 2217–2238. doi: 10.1152/jn.01189.2003 |
| [21] |
Riddle CN, Edgley SA, Baker SN. Direct and indirect connections with upper limb motoneurons from the primate reticulospinal tract. J Neurosci. 2009;29(15):4993–4999. doi: 10.1523/JNEUROSCI.3720-08.2009 |
| [22] |
Riddle C.N., Edgley S.A., Baker S.N. Direct and indirect connections with upper limb motoneurons from the primate reticulospinal tract // J Neurosci. 2009. Vol. 29, N 15. Р. 4993–4999. doi: 10.1523/JNEUROSCI.3720-08.2009 |
| [23] |
Owen M, Ingo C, Dewald JP. Upper extremity motor impairments and microstructural changes in bulbospinal pathways in chronic hemiparetic stroke. Front Neurol. 2017;(8):257. doi: 10.3389/fneur.2017.00257 |
| [24] |
Owen M., Ingo C., Dewald J.P. Upper extremity motor impairments and microstructural changes in bulbospinal pathways in chronic hemiparetic stroke // Front Neurol. 2017. Vol. 8. Р. 257. doi: 10.3389/fneur.2017.00257 |
| [25] |
Davidson AG, Buford JA. Bilateral actions of the reticulospinal tract on arm and shoulder muscles in the monkey: stimulus triggered averaging. Exp Brain Res. 2006;173(1):25–39. doi: 10.1007/s00221-006-0374-1 |
| [26] |
Davidson A.G., Buford J.A. Bilateral actions of the reticulospinal tract on arm and shoulder muscles in the monkey: stimulus triggered averaging // Exp Brain Res. 2006. Vol. 173, N 1. Р. 25–39. doi: 10.1007/s00221-006-0374-1 |
| [27] |
Baker SN. The primate reticulospinal tract, hand function and functional recovery. J Physiol. 2011;589(23):5603–5612. doi: 10.1113/jphysiol.2011.215160 |
| [28] |
Baker S.N. The primate reticulospinal tract, hand function and functional recovery // J Physiol. 2011. Vol. 589, N 23. Р. 5603–5612. doi: 10.1113/jphysiol.2011.215160 |
| [29] |
Zaaimi B, Edgley SA, Soteropoulos DS, Baker SN. Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey. Brain. 2012;135(7):2277–2289. doi: 10.1093/brain/aws115 |
| [30] |
Zaaimi B., Edgley S.A., Soteropoulos D.S., Baker S.N. Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey // Brain. 2012. Vol. 135, N 7. Р. 2277–2289. doi: 10.1093/brain/aws115 |
| [31] |
Khizhnikova AE, Klochkov AS, Kotov-Smolensky AM, et al. Dynamics of the kinematic portrait of post-stroke paresis of the hand against the background of rehabilitation. Bulletin of Russian state medical university. 2019(4):34–41. (In Russ). doi: 10.24075/vrgmu.2019.056 |
| [32] |
Хижникова А.Е., Клочков А.С., Котов-Смоленский А.М., и др. Динамика кинематического портрета постинсультного пареза руки на фоне реабилитации // Вестник российского государственного медицинского университета. 2019. № 4. С. 34–41. doi: 10.24075/vrgmu.2019.056 |
| [33] |
Suponeva NA, Yusupova DG, Ilyina KA, et al Validation of the Modified Ashworth scale in Russia. Annals of clinical and experimental neurology. 2020;14(1):89–96. (In Russ). doi: 10.25692/ACEN.2020.1.10 |
| [34] |
Супонева Н.А., Юсупова Д.Г., Ильина К.А., и др. Валидация Модифицированной шкалы Эшворта (Modified Ashworth Scale) в России // Анналы клинической и экспериментальной неврологии. 2020. Т. 14, № 1. С. 89–96. doi: 10.25692/ACEN.2020.1.10 |
| [35] |
Suponeva NA, Yusupova DG, Zimin AA, et al. Validation of the Russian version of the Fugl-Meyer Assessment of Physical Performance for assessment of patients with post-stroke paresis. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 2021; 121(8-2):86–90. (In Russ). |
| [36] |
Супонева Н.А., Юсупова Д.Г., Зимин А.А., и др. Валидация русскоязычной версии шкалы Фугл-Мейера для оценки состояния пациентов с постинсультным парезом // Журнал неврологии и психиатрии им. С.С. Корсакова. 2021. Т. 121, № 8-2. С. 86–90. doi: 10.17116/jnevro202112108286 |
| [37] |
Stinear C. Prediction of recovery of motor function after stroke. Lancet Neurol. 2010;9(12):1228–1232. doi: 10.1016/S1474-4422(10)70247-7 |
| [38] |
Stinear C. Prediction of recovery of motor function after stroke // Lancet Neurol. 2010. Vol. 9, N 12. Р. 1228–1232. doi: 10.1016/S1474-4422(10)70247-7 |
| [39] |
Stinear CM, Barber PA, Petoe M, et al. D.The PREP algorithm predicts potential for upper limb recovery after stroke. Brain. 2012;135(8):2527–2535. doi: 10.1093/brain/aws146 |
| [40] |
Stinear C.M., Barber P.A., Petoe M., et al. The PREP algorithm predicts potential for upper limb recovery after stroke // Brain. 2012. Vol. 135, N 8. Р. 2527–2535. doi: 10.1093/brain/aws146 |
| [41] |
Ziemann U, Ishii K, Borgheresi A, et al. Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles. J Physiol. 1999;1(518):895–906. doi: 10.1111/j.1469-7793.1999.0895p.x |
| [42] |
Ziemann U., Ishii K., Borgheresi A., et al. Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles // J Physiol. 1999. Vol. 1, N 518. Р. 895–906. doi: 10.1111/j.1469-7793.1999.0895p.x |
| [43] |
Xu J, Ejaz N, Hertler B, et al. Separable systems for recovery of finger strength and control after stroke. J Neurophysiol. 2017;118(2):1151–1163. doi: 10.1152/jn.00123.2017 |
| [44] |
Xu J., Ejaz N., Hertler B., et al. Separable systems for recovery of finger strength and control after stroke // J Neurophysiol. 2017. Vol. 118, N 2. Р. 1151–1163. doi: 10.1152/jn.00123.2017 |
Eco-Vector
/
| 〈 |
|
〉 |