Neurological manifestations in patients with new coronavirus infection COVID-19
Sergey G. Sсherbak , Aleksandr S. Golota , Tatyana A. Kamilova , Dmitry A. Vologzhanin , Stanislav V. Makarenko
Physical and rehabilitation medicine, medical rehabilitation ›› 2022, Vol. 4 ›› Issue (3) : 154 -180.
Neurological manifestations in patients with new coronavirus infection COVID-19
Most commonly, COVID-19 presents as a respiratory disease, but a growing body of clinical evidence shows that neurological symptoms and complications contribute significantly to the clinical spectrum of the disease, especially in patients with severe disease. The public health impact of the long-term (or even life-long) consequences of the disease may be much greater than the acute manifestations of SARS-CoV-2 infection. As the pandemic has evolved, the number of neurological manifestations as part of the clinical spectrum of the disease has increased. The diverse neurological manifestations of COVID-19 range from mild symptoms (myalgia, headache, fatigue, dizziness, anosmia, ageusia) to more severe manifestations such as encephalopathy, encephalitis, acute and chronic polyneuropathy. Neurological symptoms and complications of COVID-19 do not necessarily require direct infection of structures in the peripheral or central nervous system, but may occur secondary to a severe systemic reaction to SARS-CoV-2 infection outside the nervous system. The neurotoxicity of SARS-CoV-2 infection may be secondary to immune-mediated pathogenesis and coagulation dysfunction. To substantiate the therapeutic choice, it is necessary to study the pathophysiological processes and clinical trials.
COVID-19 / SARS-CoV-2 / neurological complications / infection / encephalopathy / polyneuropathy / hypercoagulability / thrombosis
| [1] |
WHO Coronavirus Disease (COVID-19) Dashboard [Internet]. Available from: https://covid19.who.int/. Accessed: 15.03.2022. |
| [2] |
WHO Coronavirus Disease (COVID-19) Dashboard [Internet]. Режим доступа: https://covid19.who.int/. Дата обращения: 15.03.2022. |
| [3] |
Taquet M, Geddes JR, Husain M, et al. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry. 2021;8(5):416–427. doi: 10.1016/S2215-0366(21)00084-5 |
| [4] |
Taquet M., Geddes J.R., Husain M., et al. 6-month neurological and psychiatric outcomes in 236379 survivors of COVID-19: a retrospective cohort study using electronic health records // Lancet Psychiatry. 2021. Vol. 8, N 5. Р. 416–427. doi: 10.1016/S2215-0366(21)00084-5 |
| [5] |
Quintanilla-Sánchez C, Salcido-Montenegro A, González-González JG, Rodríguez-Gutiérrez R. Acute cerebrovascular events in severe and nonsevere COVID-19 patients: a systematic review and meta-analysis. Rev Neurosci. 2022;33(6):631–639. doi: 10.1515/revneuro-2021-0130 |
| [6] |
Quintanilla-Sánchez C., Salcido-Montenegro A., González-González J.G., Rodríguez-Gutiérrez R. Acute cerebrovascular events in severe and nonsevere COVID-19 patients: a systematic review and meta-analysis // Rev Neurosci. 2022. Vol. 33, N 6. Р. 631–639. doi: 10.1515/revneuro-2021-0130 |
| [7] |
Shah W, Hillman T, Playford ED, Hishmeh L. Managing the long-term effects of COVID-19: summary of NICE, SIGN, and RCGP rapid guideline. Brit Med J. 2021;372:n136. doi: 10.1136/bmj.n136 |
| [8] |
Shah W., Hillman T., Playford E.D., Hishmeh L. Managing the long-term effects of COVID-19: summary of NICE, SIGN, and RCGP rapid guideline // Brit Med J. 2021. Vol. 372. Р. 136. doi: 10.1136/bmj.n136 |
| [9] |
Chen X, Laurent S, Onur OA, et al. A systematic review of neurological symptoms and complications of COVID-19. J Neurol. 2021;268(2):392–402. doi: 10.1007/s00415-020-10067-3 |
| [10] |
Chen X., Laurent S., Onur O.A., et al. A systematic review of neurological symptoms and complications of COVID-19 // J Neurol. 2021. Vol. 268, N 2. Р. 392–402. doi: 10.1007/s00415-020-10067-3 |
| [11] |
Mekkawy DA, Hamdy S, Abdel-Naseer M, et al. Neurological manifestations in a cohort of egyptian patients with COVID-19: a prospective, multicenter, observational study. Brain Sci. 2022;12(1):74. doi: 10.3390/brainsci12010074 |
| [12] |
Mekkawy D.A., Hamdy S., Abdel-Naseer M., et al. Neurological manifestations in a cohort of egyptian patients with COVID-19: a prospective, multicenter, observational study // Brain Sci. 2022. Vol. 12, N 1. Р. 74. doi: 10.3390/brainsci12010074 |
| [13] |
Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683–690. doi: 10.1001/jamaneurol.2020.1127 |
| [14] |
Mao L., Jin H., Wang M., et al. Neurologic manifestations of hospitalized patients with Coronavirus Disease 2019 in Wuhan, China // JAMA Neurol. 2020. Vol. 77, N 6. Р. 683–690. doi: 10.1001/jamaneurol.2020.1127 |
| [15] |
Romero-Sánchez CM, Díaz-Maroto I, Fernández-Díaz E, et al. Neurologic manifestations in hospitalized patients with COVID-19: the ALBACOVID registry. Neurology. 2020;95(8):e1060–e1070. doi: 10.1212/WNL.0000000000009937 |
| [16] |
Romero-Sánchez C.M., Díaz-Maroto I., Fernández-Díaz E., et al. Neurologic manifestations in hospitalized patients with COVID-19: the ALBACOVID registry // Neurology. 2020. Vol. 95, N 8. Р. e1060–e1070. doi: 10.1212/WNL.0000000000009937 |
| [17] |
Wong-Chew RM, Rodríguez Cabrera EX, Rodríguez Valdez CA, et al. Symptom cluster analysis of long COVID-19 in patients discharged from the temporary COVID-19 Hospital in Mexico City. Ther Adv Infect Dis. 2022;9:20499361211069264. doi: 10.1177/20499361211069264 |
| [18] |
Wong-Chew R.M., Rodríguez Cabrera E.X., Rodríguez Valdez C.A., et al. Symptom cluster analysis of long COVID-19 in patients discharged from the temporary COVID-19 Hospital in Mexico City // Ther Adv Infect Dis. 2022. Vol. 9. Р. 20499361211069264. doi: 10.1177/20499361211069264 |
| [19] |
Wang Q, Davis PB, Gurney ME, Xu R. COVID-19 and dementia: analyses of risk, disparity, and outcomes from electronic health records in the US. Alzheimers Dement. 2021;17(8):1297–1306. doi: 10.1002/alz.12296 |
| [20] |
Wang Q., Davis P.B., Gurney M.E., Xu R. COVID-19 and dementia: analyses of risk, disparity, and outcomes from electronic health records in the US // Alzheimers Dement. 2021. Vol. 17, N 8. Р. 1297–1306. doi: 10.1002/alz.12296 |
| [21] |
Vakili K, Fathi M, Hajiesmaeili M, et al. Neurological symptoms, comorbidities, and complications of COVID-19: a literature review and meta-analysis of observational studies. Eur Neurol. 2021;84(5): 307–324. doi: 10.1159/000516258 |
| [22] |
Vakili K., Fathi M., Hajiesmaeili M., et al. Neurological symptoms, comorbidities, and complications of COVID-19: a literature review and meta-analysis of observational studies // Eur Neurol. 2021. Vol. 84, N 5. Р. 307–324. doi: 10.1159/000516258 |
| [23] |
Leven Y, Bösel J. Neurological manifestations of COVID-19: an approach to categories of pathology. Neurol Res Pract. 2021;3(1):39. doi: 10.1186/s42466-021-00138-9 |
| [24] |
Leven Y., Bösel J. Neurological manifestations of COVID-19: an approach to categories of pathology // Neurol Res Pract. 2021. Vol. 3, N 1. Р. 39. doi: 10.1186/s42466-021-00138-9 |
| [25] |
Taquet M, Husain M, Geddes JR, et al. Cerebral venous thrombosis and portal vein thrombosis: a retrospective cohort study of 537,913 COVID-19 cases. Clinical Medicine. 2021;39:101061. doi: 10.1016/j.eclinm.2021.101061 |
| [26] |
Taquet M., Husain M., Geddes J.R., et al. Cerebral venous thrombosis and portal vein thrombosis: a retrospective cohort study of 537,913 COVID-19 cases // Clinical Medicine. 2021. Vol. 39. Р. 101061. doi: 10.1016/j.eclinm.2021.101061 |
| [27] |
Raveendran AV, Jayadevan R, Sashidharan S. Long COVID: an overview. Review Diabetes Metab Syndr. 2021;15(3):869–875. doi: 10.1016/j.dsx.2021.04.007 |
| [28] |
Raveendran A.V., Jayadevan R., Sashidharan S. Long COVID: an overview // Review Diabetes Metab Syndr. 2021. Vol. 15, N 3. Р. 869–875. doi: 10.1016/j.dsx.2021.04.007 |
| [29] |
Whiteside DM, Basso RM, Naini SM, et al. Outcomes in post-acute sequelae of COVID-19 at 6 months post-infection. Part 1: Cognitive functioning. Clin Neuropsychol. 2022;36(4):806–828. doi: 10.1080/13854046.2022.2030412 |
| [30] |
Whiteside D.M., Basso R.M., Naini S.M., et al. Outcomes in post-acute sequelae of COVID-19 at 6 months post-infection. Part 1: Cognitive functioning // Clin Neuropsychol. 2022. Vol. 36, N 4. Р. 806–828. doi: 10.1080/13854046.2022.2030412 |
| [31] |
Bungenberg J, Humkamp K, Hohenfeld C, et al. Long COVID-19: objectifying most self-reported neurological symptoms. Ann Clin Transl Neurol. 2022;9(2):141–154. doi: 10.1002/acn3.51496 |
| [32] |
Bungenberg J., Humkamp K., Hohenfeld C., et al. Long COVID-19: objectifying most self-reported neurological symptoms // Ann Clin Transl Neurol. 2022. Vol. 9, N 2. Р. 141–154. doi: 10.1002/acn3.51496 |
| [33] |
Kummer BR, Klang E, Stein LK, et al. History of stroke is independently associated with in-hospital death in patients with COVID-19. Stroke. 2020;51(10):3112–3114. doi: 10.1161/STROKEAHA.120.030685 |
| [34] |
Kummer B.R., Klang E., Stein L.K., et al. History of stroke is independently associated with in-hospital death in patients with COVID-19 // Stroke. 2020. Vol. 51, N 10. Р. 3112–3114. doi: 10.1161/STROKEAHA.120.030685 |
| [35] |
Beghi E, Helbok R, Crean M, et al. The European Academy of Neurology COVID-19 registry (ENERGY): an international instrument for surveillance of neurological complications in patients with COVID-19. Eur J Neurol. 2020;28(10):3303–3323. doi: 10.1111/ene.14652 |
| [36] |
Beghi E., Helbok R., Crean M., et al. The European Academy of Neurology COVID-19 registry (ENERGY): an international instrument for surveillance of neurological complications in patients with COVID-19 // Eur J Neurol. 2020. Vol. 28, N 10. Р. 3303–3323. doi: 10.1111/ene.14652 |
| [37] |
Beghi E, Helbok R, Oztur S, et al. Short- and long-term outcome and predictors in an international cohort of patients with neuro-COVID-19. Eur J Neurol. 2022;29(6):1663–1684. doi: 10.1111/ene.15293 |
| [38] |
Beghi E., Helbok R., Oztur S., et al. Short- and long-term outcome and predictors in an international cohort of patients with neuro-COVID-19 // Eur J Neurol. 2022. Vol. 29, N 6. Р. 1663–1684. doi: 10.1111/ene.15293 |
| [39] |
Sudre CH, Murray B, Varsavsky T, et al. Attributes and predictors of long COVID. Nat Med. 2021;27(4):626–631. doi: 10.1038/s41591-021-01292-y |
| [40] |
Sudre C.H., Murray B., Varsavsky T., et al. Attributes and predictors of long COVID // Nat Med. 2021. Vol. 27, N 4. Р. 626–631. doi: 10.1038/s41591-021-01292-y |
| [41] |
Dennis A, Wamil M, Alberts J, et al. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: a prospective, community-based study. BMJ Open. 2021;11(3):e048391. doi: 10.1136/bmjopen-2020-048391 |
| [42] |
Dennis A., Wamil M., Alberts J., et al. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: a prospective, community-based study // BMJ Open. 2021. Vol. 11, N 3. Р. e048391. doi: 10.1136/bmjopen-2020-048391 |
| [43] |
Garrigues E, Janvier P, Kherabi Y, et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J Infect. 2020;81(6):e4–e6. doi: 10.1016/j.jinf.2020.08.029 |
| [44] |
Garrigues E., Janvier P., Kherabi Y., et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19 // J Infect. 2020. Vol. 81, N 6. Р. e4–e6. doi: 10.1016/j.jinf.2020.08.029 |
| [45] |
Chopra V, Flanders SA, O’Malley M, et al. Sixty-day outcomes among patients hospitalized with COVID-19. Ann Intern Med. 2021;174(4):576–578. doi: 10.7326/M20-5661 |
| [46] |
Chopra V., Flanders S.A., O’Malley M., et al. Sixty-day outcomes among patients hospitalized with COVID-19 // Ann Intern Med. 2021. Vol. 174, N 4. Р. 576–578. doi: 10.7326/M20-5661 |
| [47] |
Stavem K, Ghanima W, Olsen MK, et al. Prevalence and determinants of fatigue after COVID-19 in non-hospitalized subjects: a population-based study. Int J Environ Res Public Health. 2021;18(4):2030. doi: 10.3390/ijerph18042030 |
| [48] |
Stavem K., Ghanima W., Olsen M.K., et al. Prevalence and determinants of fatigue after COVID-19 in non-hospitalized subjects: a population-based study // Int J Environ Res Public Health. 2021. Vol. 18, N 4. Р. 2030. doi: 10.3390/ijerph18042030 |
| [49] |
Logue JK, Franko NM, McCulloch DJ, et al. Sequelae in adults at 6 months after COVID-19 infection. JAMA Netw Open. 2021;4(2):e210830. doi: 10.1001/jamanetworkopen.2021.0830 |
| [50] |
Logue J.K., Franko N.M., McCulloch D.J., et al. Sequelae in adults at 6 months after COVID-19 infection // JAMA Netw Open. 2021. Vol. 4, N 2. Р. e210830. doi: 10.1001/jamanetworkopen.2021.0830 |
| [51] |
Franke C, Ferse C, Kreye J, et al. High frequency of cerebrospinal fluid autoantibodies in COVID-19 patients with neurological symptoms. Brain Behav Immun. 2021;93:415–419. doi: 10.1016/j.bbi.2020.12.022 |
| [52] |
Franke C., Ferse C., Kreye J., et al. High frequency of cerebrospinal fluid autoantibodies in COVID-19 patients with neurological symptoms // Brain Behav Immun. 2021. Vol. 93. Р. 415–419. doi: 10.1016/j.bbi.2020.12.022 |
| [53] |
Ziuzia-Januszewska А, Januszewski M. Pathogenesis of olfactory disorders in COVID-19. Brain Sci. 2022;12(4):449. doi: 10.3390/brainsci12040449 |
| [54] |
Ziuzia-Januszewska А., Januszewski M. Pathogenesis of olfactory disorders in COVID-19 // Brain Sci. 2022. Vol. 12, N 4. Р. 449. doi: 10.3390/brainsci12040449 |
| [55] |
Lean European Open Survey on SARS-CoV-2 Infected Patients ― Studying SARS-CoV-2 collectively [online]. Available from: https://leoss.net/. Accessed: 15.03.2022. |
| [56] |
Lean European Open Survey on SARS-CoV-2 Infected Patients ― Studying SARS-CoV-2 collectively [online]. Режим доступа: https://leoss.net/. Дата обращения: 15.03.2022. |
| [57] |
Pouga L. Encephalitic syndrome and anosmia in COVID-19: do these clinical presentations really reflect SARS-CoV-2 neurotropism? A theory based on the review of 25 COVID-19 cases. J Med Virol. 2021;93(1):550–558. doi: 10.1002/jmv.26309 |
| [58] |
Pouga L. Encephalitic syndrome and anosmia in COVID-19: do these clinical presentations really reflect SARS-CoV-2 neurotropism? A theory based on the review of 25 COVID-19 cases // J Med Virol. 2021. Vol. 93, N 1. Р. 550–558. doi: 10.1002/jmv.26309 |
| [59] |
Azim D, Nasim S, Kumar S, et al. Neurological consequences of 2019-nCoV infection: a comprehensive literature review. Cureus. 2020;12(6):e8790. doi: 10.7759/cureus.8790 |
| [60] |
Azim D., Nasim S., Kumar S., et al. Neurological consequences of 2019-nCoV infection: a comprehensive literature review // Cureus. 2020. Vol. 12, N 6. Р. e8790. doi: 10.7759/cureus.8790 |
| [61] |
Yang AC, Kern F, Losada PM, et al, Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature. 2021;595(7868):565–571. doi: 10.1038/s41586-021-03710-0 |
| [62] |
Yang A.C., Kern F., Losada P.M., et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19 // Nature. 2021. Vol. 595, N 7868. Р. 565–571. doi: 10.1038/s41586-021-03710-0 |
| [63] |
Glezer I, Bruni-Cardoso A, Schechtman D, Malnic B. Viral infection and smell loss: the case of COVID-19. J Neurochem. 2021;157(4):930–943. doi: 10.1111/jnc.15197 |
| [64] |
Glezer I., Bruni-Cardoso A., Schechtman D., Malnic B. Viral infection and smell loss: the case of COVID-19 // J Neurochem. 2021. Vol. 157, N 4. Р. 930–943. doi: 10.1111/jnc.15197 |
| [65] |
Menter T, Haslbauer JD, Nienhold R, et al. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology. 2020;77(2):198–209. doi: 10.1111/his.14134 |
| [66] |
Menter T., Haslbauer J.D., Nienhold R., et al. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction // Histopathology. 2020. Vol. 77, N 2. Р. 198–209. doi: 10.1111/his.14134 |
| [67] |
Politi LS, Salsano E, Grimaldi M. Magnetic resonance imaging alteration of the brain in a patient with coronavirus disease 2019 (COVID-19) and anosmia. JAMA Neurol. 2020;77(8):1028–1029. doi: 10.1001/jamaneurol.2020.2125 |
| [68] |
Politi L.S., Salsano E., Grimaldi M. Magnetic resonance imaging alteration of the brain in a patient with coronavirus disease 2019 (COVID-19) and anosmia // JAMA Neurol. 2020. Vol. 77, N 8. Р. 1028–1029. doi: 10.1001/jamaneurol.2020.2125 |
| [69] |
Laurendon T, Radulesco T, Mugnier J, et al. Bilateral transient olfactory bulb edema during COVID-19: related anosmia. Neurology. 2020;95(5):224–225. doi: 10.1212/WNL.0000000000009850 |
| [70] |
Laurendon T., Radulesco T., Mugnier J., et al. Bilateral transient olfactory bulb edema during COVID-19 related anosmia // Neurology. 2020. Vol. 95, N 5. Р. 224–225. doi: 10.1212/WNL.0000000000009850 |
| [71] |
Kandemirli SG, Altundag A, Yildirim D, et al. Olfactory bulb MRI and paranasal sinus CT findings in persistent COVID-19 anosmia. Acad Radiol. 2021;28(1):28–35. doi: 10.1016/j.acra.2020.10.006 |
| [72] |
Kandemirli S.G., Altundag A., Yildirim D., et al. Olfactory bulb MRI and paranasal sinus CT findings in persistent COVID-19 anosmia // Acad Radiol. 2021. Vol. 28, N 1. Р. 28–35. doi: 10.1016/j.acra.2020.10.006 |
| [73] |
Tsivgoulis G, Fragkou PC, Lachanis S, et al. Olfactory bulb and mucosa abnormalities in persistent COVID-19-induced anosmia: a magnetic resonance imaging study. Eur J Neurol. 2021;28(1):e6–e8. doi: 10.1111/ene.14537 |
| [74] |
Tsivgoulis G., Fragkou P.C., Lachanis S., et al. Olfactory bulb and mucosa abnormalities in persistent COVID-19-induced anosmia: a magnetic resonance imaging study // Eur J Neurol. 2021. Vol. 28, N 1. Р. e6–e8. doi: 10.1111/ene.14537 |
| [75] |
Akkaya H, Kiziloglu A, Dilek O, et al. Evaluation of the olfactory bulb volume and morphology in patients with coronavirus disease 2019: can differences create predisposition to anosmia? Rev Assoc Med Bras. 2021;67(10):1491–1497. doi: 10.1590/1806-9282.20210678 |
| [76] |
Akkaya H., Kiziloglu A., Dilek O., et al. Evaluation of the olfactory bulb volume and morphology in patients with coronavirus disease 2019: can differences create predisposition to anosmia? // Rev Assoc Med Bras. 2021. Vol. 67, N 10. Р. 1491–1497. doi: 10.1590/1806-9282.20210678 |
| [77] |
Esposito F, Cirillo M, De Micco R, et al. Olfactory loss and brain connectivity after COVID-19. Hum Brain Mapp. 2022;43(5):1548–1560. doi: 10.1002/hbm.25741 |
| [78] |
Esposito F., Cirillo M., De Micco R., et al. Olfactory loss and brain connectivity after COVID-19 // Hum Brain Mapp. 2022. Vol. 43, N 5. Р. 1548–1560. doi: 10.1002/hbm.25741 |
| [79] |
Meinhardt J, Radke J, Dittmayer C, et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci. 2021;24(2):168–175. doi: 10.1038/s41593-020-00758-5 |
| [80] |
Meinhardt J., Radke J., Dittmayer C., et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19 // Nat Neurosci. 2021. Vol. 24, N 2. Р. 168–175. doi: 10.1038/s41593-020-00758-5 |
| [81] |
Heneka MT, Golenbock D, Latz E, et al. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimers Res Ther. 2020;12(1):69. doi: 10.1186/s13195-020-00640-3 |
| [82] |
Heneka M.T., Golenbock D., Latz E., et al. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease // Alzheimers Res Ther. 2020. Vol. 12, N 1. Р. 69. doi: 10.1186/s13195-020-00640-3 |
| [83] |
Virhammar J, Nääs A, Fällmar D, et al. Biomarkers for central nervous system injury in cerebrospinal fluid are elevated in COVID-19 and associated with neurological symptoms and disease severity. Eur J Neurol. 2021;28(10):3324–3331. doi: 10.1111/ene.14703 |
| [84] |
Virhammar J., Nääs A., Fällmar D., et al. Biomarkers for central nervous system injury in cerebrospinal fluid are elevated in COVID-19 and associated with neurological symptoms and disease severity // Eur J Neurol. 2021. Vol. 28, N 10. Р. 3324–3331. doi: 10.1111/ene.14703 |
| [85] |
Aamodt AH, Hogestol EA, Popperud TH, et al. Blood neurofilament light concentration at admittance: a potential prognostic marker in COVID-19. J Neurol. 2021;268(10):3574–3583. doi: 10.1007/s00415-021-10517-6 |
| [86] |
Aamodt A.H., Hogestol E.A., Popperud T.H., et al. Blood neurofilament light concentration at admittance: a potential prognostic marker in COVID-19 // J Neurol. 2021. Vol. 268, N 10. Р. 3574–3583. doi: 10.1007/s00415-021-10517-6 |
| [87] |
Kanberg N, Simrén J, Edén A, et al. Neurochemical signs of astrocytic and neuronal injury in acute COVID-19 normalizes during long-term follow-up. BioMedicine. 2021;70:103512. doi: 10.1016/j.ebiom.2021.103512 |
| [88] |
Kanberg N., Simrén J., Edén A., et al. Neurochemical signs of astrocytic and neuronal injury in acute COVID-19 normalizes during long-term follow-up // BioMedicine. 2021. Vol. 70. Р. 103512. doi: 10.1016/j.ebiom.2021.103512 |
| [89] |
Douaud G, Lee S, Alfaro-Almagro F, et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature. 2022;604(7907):697–707. doi: 10.1038/s41586-022-04569-5 |
| [90] |
Douaud G., Lee S., Alfaro-Almagro F., et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank // Nature. 2022. Vol. 604, N 7907. Р. 697–707. doi: 10.1038/s41586-022-04569-5 |
| [91] |
Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-coronavirus-2. Int J Infect Dis. 2020;94:55–58. doi: 10.1016/j.ijid.2020.03.062 |
| [92] |
Moriguchi T., Harii N., Goto J., et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2 // Int J Infect Dis. 2020. Vol. 94. Р. 55–58. doi: 10.1016/j.ijid.2020.03.062 |
| [93] |
Puelles VG, Lütgehetmann M, Lindenmeyer MT, et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med. 2020;383(6): 590–592. doi: 10.1056/NEJMc2011400 |
| [94] |
Puelles V.G., Lütgehetmann M., Lindenmeyer M.T., et al. Multiorgan and renal tropism of SARS-CoV-2 // N Engl J Med. 2020. Vol. 383, N 6. Р. 590–592. doi: 10.1056/NEJMc2011400 |
| [95] |
Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020;11(7):995–998. doi: 10.1021/acschemneuro.0c00122 |
| [96] |
Baig A.M., Khaleeq A., Ali U., Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms // ACS Chem Neurosci. 2020. Vol. 11, N 7. Р. 995–998. doi: 10.1021/acschemneuro.0c00122 |
| [97] |
Bhattacharjee AS, Joshi SV, Naik S, et al. Quantitative assessment of olfactory dysfunction accurately detects asymptomatic COVID-19 carriers. Clinical Medicine. 2020;28:100575. doi: 10.1016/j.eclinm.2020 |
| [98] |
Bhattacharjee A.S., Joshi S.V., Naik S., et al. Quantitative assessment of olfactory dysfunction accurately detects asymptomatic COVID-19 carriers // Clinical Medicine. 2020. Vol. 28. Р. 100575. doi: 10.1016/j.eclinm.2020 |
| [99] |
Solomon T. Neurological infection with SARS-CoV-2: the story so far. Nat Rev Neurol. 2021;17(2):65–66. doi: 10.1038/s41582-020-00453-w |
| [100] |
Solomon T. Neurological infection with SARS-CoV-2: the story so far // Nat Rev Neurol. 2021. Vol. 17, N 2. Р. 65–66. doi: 10.1038/s41582-020-00453-w |
| [101] |
Butler M, Cross B, Hafeez D, et al. Emerging knowledge of the neurobiology of COVID-19. Psychiatr Clin North Am. 2022;45(1): 29–43. doi: 10.1016/j.psc.2021.11.001 |
| [102] |
Butler M., Cross B., Hafeez D., et al. Emerging knowledge of the neurobiology of COVID-19 // Psychiatr Clin North Am. 2022. Vol. 45, N 1. Р. 29–43. doi: 10.1016/j.psc.2021.11.001 |
| [103] |
Lewis A, Frontera J, Placantonakis DG, et al. Cerebrospinal fluid in COVID-19: a systematic review of the literature. J Neurol Sci. 2021;421:117316. doi: 10.1016/j.jns.2021.117316 |
| [104] |
Lewis A., Frontera J., Placantonakis D.G., et al. Cerebrospinal fluid in COVID-19: a systematic review of the literature // J Neurol Sci. 2021. Vol. 421. Р. 117316. doi: 10.1016/j.jns.2021.117316 |
| [105] |
Choutka J, Jansari V, Hornig M, Iwasaki A. Unexplained post-acute infection syndromes. Nat Med. 2022;28(5):911–923. doi: 10.1038/s41591-022-01810-6 |
| [106] |
Choutka J., Jansari V., Hornig M., Iwasaki A. Unexplained post-acute infection syndromes // Nat Med. 2022. Vol. 28, N 5. Р. 911–923. doi: 10.1038/s41591-022-01810-6 |
| [107] |
Gaebler C, Wang Z, Lorenzi JC, et al. Evolution of antibody immunity to SARS-CoV-2. Nature. 2021;591(7851):639–644. doi: 10.1038/s41586-021-03207-w |
| [108] |
Gaebler C., Wang Z., Lorenzi J.C., et al. Evolution of antibody immunity to SARS-CoV-2 // Nature. 2021. Vol. 591, N 7851. Р. 639–644. doi: 10.1038/s41586-021-03207-w |
| [109] |
Cheung CC, Goh D, Lim X, et al. Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from five recovered patients with COVID-19. Gut. 2022;71(1):226–229. doi: 10.1136/gutjnl-2021-324280 |
| [110] |
Cheung C.C., Goh D., Lim X., et al. Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from five recovered patients with COVID-19 // Gut. 2022. Vol. 71, N 1. Р. 226–229. doi: 10.1136/gutjnl-2021-324280 |
| [111] |
Gutiérrez-Ortiz C, Méndez A, Rodrigo-Rey S, et al. Miller Fisher syndrome and polyneuritis cranialis in COVID-19. Neurology. 2020; 95(5):e601–e605. doi: 10.1212/WNL.0000000000009619 |
| [112] |
Gutiérrez-Ortiz C., Méndez A., Rodrigo-Rey S., et al. Miller Fisher syndrome and polyneuritis cranialis in COVID-19 // Neurology. 2020. Vol. 95, N 5. Р. e601–e605. doi: 10.1212/WNL.0000000000009619 |
| [113] |
Singh S, Anshita D, Ravichandiran V. MCP-1: function, regulation, and involvement in disease. Int Immunopharmacol. 2021;101(Pt B):107598. doi: 10.1016/j.intimp.2021.107598 |
| [114] |
Singh S., Anshita D., Ravichandiran V. MCP-1: function, regulation, and involvement in disease // Int Immunopharmacol. 2021. Vol. 101, Pt B. Р. 107598. doi: 10.1016/j.intimp.2021.107598 |
| [115] |
Guasp М, Muñoz-Sánchez G, Martínez-Hernández E, et al. CSF biomarkers in COVID-19 associated encephalopathy and encephalitis predict long-term outcome. Front Immunol. 2022;13:866153. doi: 10.3389/fimmu.2022.866153 |
| [116] |
Guasp М., Muñoz-Sánchez G., Martínez-Hernández E., et al. CSF biomarkers in COVID-19 associated encephalopathy and encephalitis predict long-term outcome // Front Immunol. 2022. Vol. 13. Р. 866153. doi: 10.3389/fimmu.2022.866153 |
| [117] |
Moonis G, Filippi CG, Kirsch CF, et al. The spectrum of neuroimaging findings on CT and MRI in adults with COVID-19. Am J Roentgenol. 2021;217(4):959–974. doi: 10.2214/AJR.20.24839 |
| [118] |
Moonis G., Filippi C.G., Kirsch C.F., et al. The spectrum of neuroimaging findings on CT and MRI in adults with COVID-19 // Am J Roentgenol. 2021. Vol. 217, N 4. Р. 959–974. doi: 10.2214/AJR.20.24839 |
| [119] |
Cazzolla AP, Lovero R, Lo Muzio L, et al. Taste and smell disorders in COVID-19 patients: role of interleukin-6. ACS Chem Neurosci. 2020;11(17):2774–2781. doi: 10.1021/acschemneuro.0c00447 |
| [120] |
Cazzolla A.P., Lovero R., Lo Muzio L., et al. Taste and smell disorders in COVID-19 patients: role of interleukin-6 // ACS Chem Neurosci. 2020. Vol. 11, N 17. Р. 2774–2781. doi: 10.1021/acschemneuro.0c00447 |
| [121] |
Sanli DE, Altundag A, Kandemirli SG, et al. Relationship between disease severity and serum IL-6 levels in COVID-19 anosmia. Am J Otolaryngol. 2021;42(1):102796. doi: 10.1016/j.amjoto.2020.102796 |
| [122] |
Sanli D.E., Altundag A., Kandemirli S.G., et al. Relationship between disease severity and serum IL-6 levels in COVID-19 anosmia // Am J Otolaryngol. 2021. Vol. 42, N 1. Р. 102796. doi: 10.1016/j.amjoto.2020.102796 |
| [123] |
Schwabenland M, Salié H, Tanevski J, et al. Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions. Immunity. 2021;54(7):1594–1610. doi: 10.1016/j.immuni.2021.06.002 |
| [124] |
Schwabenland M., Salié H., Tanevski J., et al. Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions // Immunity. 2021. Vol. 54, N 7. Р. 1594–1610. doi: 10.1016/j.immuni.2021.06.002 |
| [125] |
Jarius S, Pache F, Körtvelyessy P, et al. Cerebrospinal fluid findings in COVID-19: a multicenter study of 150 lumbar punctures in 127 patients. J Neuroinflammation. 2022;19(1):19. doi: 10.1186/s12974-021-02339-0 |
| [126] |
Jarius S., Pache F., Körtvelyessy P., et al. Cerebrospinal fluid findings in COVID-19: a multicenter study of 150 lumbar punctures in 127 patients // J Neuroinflammation. 2022. Vol. 19, N 1. Р. 19. doi: 10.1186/s12974-021-02339-0 |
| [127] |
Paterson RW, Benjamin LA, Mehta PR, et al. Serum and cerebrospinal fluid biomarker profiles in acute SARS-CoV-2-associated neurological syndromes. Brain Commun. 2021;3(3):1–11. doi: 10.1093/braincomms/fcab099 |
| [128] |
Paterson R.W., Benjamin L.A., Mehta P.R., et al. Serum and cerebrospinal fluid biomarker profiles in acute SARS-CoV-2-associated neurological syndromes // Brain Commun. 2021. Vol. 3, N 3. Р. 1–11. doi: 10.1093/braincomms/fcab099 |
| [129] |
Reinhold D, Farztdinov V, Yan Y, et al. The brain reacting to COVID-19: analysis of the cerebrospinal fluid and serum proteome, transcriptome and inflammatory proteins. medRxiv. 2022. doi: 10.1101/2022.04.10.22273673 |
| [130] |
Reinhold D., Farztdinov V., Yan Y., et al. The brain reacting to COVID-19: analysis of the cerebrospinal fluid and serum proteome, transcriptome and inflammatory proteins // medRxiv. 2022. doi: 10.1101/2022.04.10.22273673 |
| [131] |
Bernard-Valnet R, Perriot S, Canales M, et al. Encephalopathies associated with severe COVID-19 present neurovascular unit alterations without evidence for strong neuroinflammation. Neurol Neuroimmunol Neuroinflamm. 2021;8(5):e1029. doi: 10.1212/NXI.0000000000001029 |
| [132] |
Bernard-Valnet R., Perriot S., Canales M., et al. Encephalopathies associated with severe COVID-19 present neurovascular unit alterations without evidence for strong neuroinflammation // Neurol Neuroimmunol Neuroinflamm. 2021. Vol. 8, N 5. Р. e1029. doi: 10.1212/NXI.0000000000001029 |
| [133] |
Pilotto A, Masciocchi S, Volonghi I, et al. SARS-CoV-2 encephalitis is a cytokine release syndrome: evidences from cerebrospinal fluid analyses. Clin Infect Dis. 2021;73(9):e3019–e3026. doi: 10.1093/cid/ciaa1933 |
| [134] |
Pilotto A., Masciocchi S., Volonghi I., et al. SARS-CoV-2 encephalitis is a cytokine release syndrome: evidences from cerebrospinal fluid analyses // Clin Infect Dis. 2021. Vol. 73, N 9. Р. e3019–e3026. doi: 10.1093/cid/ciaa1933 |
| [135] |
Espindola OM, Gomes YC, Brandao CO, et al. Inflammatory cytokine patterns associated with neurological diseases in Coronavirus Disease 2019. Ann Neurol. 2021;89(5):1041–1045. doi: 10.1002/ana.26041 |
| [136] |
Espindola O.M., Gomes Y.C., Brandao C.O., et al. Inflammatory cytokine patterns associated with neurological diseases in coronavirus disease 2019 // Ann Neurol. 2021. Vol. 89, N 5. Р. 1041–1045. doi: 10.1002/ana.26041 |
| [137] |
Young BE, Ong SW, Ng LF, et al. Viral dynamics and immune correlates of COVID-19 disease severity. Clin Infect Dis. 2021;73(9):e2932–e2942. doi: 10.1093/cid/ciaa1280 |
| [138] |
Young B.E., Ong S.W., Ng L.F., et al. Viral dynamics and immune correlates of COVID-19 disease severity // Clin Infect Dis. 2021. Vol. 73, N 9. Р. e2932–e2942. doi: 10.1093/cid/ciaa1280 |
| [139] |
Lee MH, Perl DP, Nair G, et al. Microvascular injury in the brains of patients with Covid-19. N Engl J Med. 2021;384(5):481–483. doi: 10.1056/NEJMc2033369 |
| [140] |
Lee M.H., Perl D.P., Nair G., et al. Microvascular injury in the brains of patients with Covid-19 // N Engl J Med. 2021. Vol. 384, N 5. Р. 481–483. doi: 10.1056/NEJMc2033369 |
| [141] |
Pugin D, Vargas MI, Thieffry C, et al. COVID-19-related encephalopathy responsive to high doses glucocorticoids. Neurology. 2020;95(12):543–546. doi: 10.1212/WNL.0000000000010354 |
| [142] |
Pugin D., Vargas M.I., Thieffry C., et al. COVID-19-related encephalopathy responsive to high doses glucocorticoids // Neurology. 2020. Vol. 95, N 12. Р. 543–546. doi: 10.1212/WNL.0000000000010354 |
| [143] |
Cao A, Rohaut B, Le Guennec L, et al. Severe COVID-19-related encephalitis can respond to immunotherapy. Brain. 2020;143(12):e102. doi: 10.1093/brain/awaa337 |
| [144] |
Cao A., Rohaut B., Le Guennec L., et al. Severe COVID-19-related encephalitis can respond to immunotherapy // Brain. 2020. Vol. 143, N 12. Р. e102. doi: 10.1093/brain/awaa337 |
| [145] |
Tankisi H. Critical illness myopathy and polyneuropathy in Covid-19: is it a distinct entity? Clin Neurophysiol. 2021;132(7): 1716–1717. doi: 10.1016/j.clinph.2021.04.001 |
| [146] |
Tankisi H. Critical illness myopathy and polyneuropathy in Covid-19: is it a distinct entity? // Clin Neurophysiol. 2021. Vol. 132, N 7. Р. 1716–1717. doi: 10.1016/j.clinph.2021.04.001 |
| [147] |
Oaklander AL, Mills AJ, Kelley M, et al. Peripheral neuropathy evaluations of patients with prolonged long COVID. Neurol Neuroimmunol Neuroinflamm. 2022;9(3):e1146. doi: 10.1212/NXI.0000000000001146 |
| [148] |
Oaklander A.L., Mills A.J., Kelley M., et al. Peripheral neuropathy evaluations of patients with prolonged long COVID // Neurol Neuroimmunol Neuroinflamm. 2022. Vol. 9, N 3. Р. e1146. doi: 10.1212/NXI.0000000000001146 |
| [149] |
Brugliera L, Filippi M, Del Carro U, et al. Nerve compression injuries after prolonged prone position ventilation in patients with SARS-CoV-2: a case series. Arch Phys Med Rehabil. 2021;102(3): 359–362. doi: 10.1016/j.apmr.2020.10.131 |
| [150] |
Brugliera L., Filippi M., Del Carro U., et al. Nerve compression injuries after prolonged prone position ventilation in patients with SARS-CoV-2: a case series // Arch Phys Med Rehabil. 2021. Vol. 102, N 3. Р. 359–362. doi: 10.1016/j.apmr.2020.10.131 |
| [151] |
Liu EA, Salazar T, Chiu E, et al. Focal peripheral neuropathies observed in patients diagnosed with COVID-19. Am J Phys Med Rehabil. 2022;101(2):164–169. doi: 10.1097/PHM.0000000000001924 |
| [152] |
Liu E.A., Salazar T., Chiu E., et al. Focal peripheral neuropathies observed in patients diagnosed with COVID-19 // Am J Phys Med Rehabil. 2022. Vol. 101, N 2. Р. 164–169. doi: 10.1097/PHM.0000000000001924 |
| [153] |
Zhou Y, Chi J, Lv W, et al. Obesity and diabetes as high-risk factors for severe coronavirus disease 2019 (Covid-19). Diabetes Metab Res Rev. 2021;37(2):e3377. doi: 10.1002/dmrr.3377 |
| [154] |
Zhou Y., Chi J., Lv W., et al. Obesity and diabetes as high-risk factors for severe coronavirus disease 2019 (Covid-19) // Diabetes Metab Res Rev. 2021. Vol. 37, N 2. Р. e3377. doi: 10.1002/dmrr.3377 |
| [155] |
Honardoost M, Janani L, Aghili R, et al. The association between presence of comorbidities and COVID-19 severity: a systematic review and meta-analysis. Cerebrovasc Dis. 2021;50(2):132–140. doi: 10.1159/000513288 |
| [156] |
Honardoost M., Janani L., Aghili R., et al. The association between presence of comorbidities and COVID-19 severity: a systematic review and meta-analysis // Cerebrovasc Dis. 2021. Vol. 50, N 2. Р. 132–140. doi: 10.1159/000513288 |
| [157] |
Bax F, Lettieri C, Marini A, et al. Clinical and neurophysiological characterization of muscular weakness in severe COVID-19. Neurol Sci. 2021;42(6):2173–2178. doi: 10.1007/s10072-021-05110-8 |
| [158] |
Bax F., Lettieri C., Marini A., et al. Clinical and neurophysiological characterization of muscular weakness in severe COVID-19 // Neurol Sci. 2021. Vol. 42, N 6. Р. 2173–2178. doi: 10.1007/s10072-021-05110-8 |
| [159] |
Malik G, Wolfe AR, Soriano R, et al. Injury-prone: peripheral nerve injuries associated with prone positioning for COVID-19-related acute respiratory distress syndrome. Br J Anaesth. 2020;125(6):e478–e480. doi: 10.1016/j.bja.2020.08.045 |
| [160] |
Malik G., Wolfe A.R., Soriano R., et al. Injury-prone: peripheral nerve injuries associated with prone positioning for COVID-19-related acute respiratory distress syndrome // Br J Anaesth. 2020. Vol. 125, N 6. Р. e478–e480. doi: 10.1016/j.bja.2020.08.045 |
| [161] |
Chang LG, Zar S, Seidel B, et al. COVID-19 proned ventilation and its possible association with foot drop: a case series. Cureus. 2021;13(4):e14374. doi: 10.7759/cureus.14374 |
| [162] |
Chang L.G., Zar S., Seidel B., et al. COVID-19 proned ventilation and its possible association with foot drop: a case series // Cureus. 2021. Vol. 13, N 4. Р. e14374. doi: 10.7759/cureus.14374 |
| [163] |
Bocci T, Campiglio L, Zardoni M, et al. Critical illness neuropathy in severe COVID-19: a case series. Neurol Sci. 2021;42(12): 4893–4898. doi: 10.1007/s10072-021-05471-0 |
| [164] |
Bocci T., Campiglio L., Zardoni M., et al. Critical illness neuropathy in severe COVID-19: a case series // Neurol Sci. 2021. Vol. 42, N 12. Р. 4893–4898. doi: 10.1007/s10072-021-05471-0 |
| [165] |
Bitirgen G, Korkmaz C, Zamani A, et al. Corneal confocal microscopy identifies corneal nerve fibre loss and increased dendritic cells in patients with long COVID. Br J Ophthalmol. 2021;bjophthalmol-2021-319450. doi: 10.1136/bjophthalmol-2021-319450 |
| [166] |
Bitirgen G., Korkmaz C., Zamani A., et al. Corneal confocal microscopy identifies corneal nerve fibre loss and increased dendritic cells in patients with long COVID // Br J Ophthalmol. 2021. Р. bjophthalmol-2021-319450. doi: 10.1136/bjophthalmol-2021-319450 |
| [167] |
Kacprzak A, Malczewski D, Domitrz I. Headache attributed to SARS-CoV-2 infection or COVID-19 related headache-not migraine-like problem-original research. Brain Sci. 2021;11(11):1406. doi: 10.3390/brainsci11111406 |
| [168] |
Kacprzak A., Malczewski D., Domitrz I. Headache attributed to SARS-CoV-2 infection or COVID-19 related headache-not migraine-like problem-original research // Brain Sci. 2021. Vol. 11, N 11. Р. 1406. doi: 10.3390/brainsci11111406 |
| [169] |
Racine N, McArthur BA, Cooke JE, et al. Global prevalence of depressive and anxiety symptoms in children and adolescents during COVID-19: a meta-analysis. JAMA Pediatr. 2021;175(11):1142–1150. doi: 10.1001/jamapediatrics.2021.2482 |
| [170] |
Racine N., McArthur B.A., Cooke J.E., et al. Global prevalence of depressive and anxiety symptoms in children and adolescents during COVID-19: a meta-analysis // JAMA Pediatr. 2021. Vol. 175, N 11. Р. 1142–1150. doi: 10.1001/jamapediatrics.2021.2482 |
| [171] |
Watson CJ, Thomas RH, Solomon T, et al. COVID-19 and psychosis risk: real or delusional concern? Neurosci Lett. 2021;741:135491. doi: 10.1016/j.neulet.2020.135491 |
| [172] |
Watson C.J., Thomas R.H., Solomon T., et al. COVID-19 and psychosis risk: real or delusional concern? // Neurosci Lett. 2021. Vol. 741. Р. 135491. doi: 10.1016/j.neulet.2020.135491 |
| [173] |
Wijeratne T, Gillard Crewther S, Sales C, Karimi L. COVID-19 pathophysiology predicts that ischemic stroke occurrence is an expectation, not an exception-a systematic review. Front Neurol. 2021;11:607221. doi: 10.3389/fneur.2020.607221 |
| [174] |
Wijeratne T., Crewther G.S., Sales C., Karimi L. COVID-19 pathophysiology predicts that ischemic stroke occurrence is an expectation, not an exception-a systematic review // Front Neurol. 2021. Vol. 11. Р. 607221. doi: 10.3389/fneur.2020.607221 |
| [175] |
Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601–615. doi: 10.1038/s41591-021-01283-z |
| [176] |
Nalbandian A., Sehgal K., Gupta A., et al. Post-acute COVID-19 syndrome // Nat Med. 2021. Vol. 27, N 4. Р. 601–615. doi: 10.1038/s41591-021-01283-z |
| [177] |
Perlis RH, Ognyanova K, Santillana M, et al. Association of acute symptoms of COVID-19 and symptoms of depression in adults. JAMA Netw Open. 2021;4(3):e213223. doi: 10.1001/jamanetworkopen.2021.3223 |
| [178] |
Perlis R.H., Ognyanova K., Santillana M., et al. Association of acute symptoms of COVID-19 and symptoms of depression in adults // JAMA Netw Open. 2021. Vol. 4, N 3. Р. e213223. doi: 10.1001/jamanetworkopen.2021.3223 |
| [179] |
Beaud V, Crottaz-Herbette S, Dunet V, et al. Pattern of cognitive deficits in severe COVID-19. J Neurol Neurosurg Psychiatry. 2021;92(5):567–568. doi: 10.1136/jnnp-2020-325173 |
| [180] |
Beaud V., Crottaz-Herbette S., Dunet V., et al. Pattern of cognitive deficits in severe COVID-19 // J Neurol Neurosurg Psychiatry. 2021. Vol. 92, N 5. Р. 567–568. doi: 10.1136/jnnp-2020-325173 |
| [181] |
Rizzo MR, Paolisso G. SARS-CoV-2 emergency and long-term cognitive impairment in older people. Aging Dis. 2021;12(2):345–352. doi: 10.14336/AD.2021.0109 |
| [182] |
Rizzo M.R., Paolisso G. SARS-CoV-2 emergency and long-term cognitive impairment in older people // Aging Dis. 2021. Vol. 12, N 2. Р. 345–352. doi: 10.14336/AD.2021.0109 |
| [183] |
Helms J, Kremer S, Merdji H, et al. Delirium and encephalopathy in severe COVID-19: a cohort analysis of ICU patients. Crit Care. 2020;24(1):491. doi: 10.1186/s13054-020-03200-1 |
| [184] |
Helms J., Kremer S., Merdji H., et al. Delirium and encephalopathy in severe COVID-19: a cohort analysis of ICU patients // Crit Care. 2020. Vol. 24, N 1. Р. 491. doi: 10.1186/s13054-020-03200-1 |
| [185] |
Qureshi AI, Baskett WI, Huang W, et al. New-onset dementia among survivors of pneumonia associated with severe acute respiratory syndrome coronavirus 2 infection. Open Forum Infect Dis. 2022;9(4):ofac115. doi: 10.1093/ofid/ofac115 |
| [186] |
Qureshi A.I., Baskett W.I., Huang W., et al. New-onset dementia among survivors of pneumonia associated with severe acute respiratory syndrome coronavirus 2 infection // Open Forum Infect Dis. 2022. Vol. 9, N 4. Р. ofac115. doi: 10.1093/ofid/ofac115 |
| [187] |
Mazza MG, Palladini M, De Lorenzo R, et al. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: effect of inflammatory biomarkers at three-month follow-up. Brain Behav Immun. 2021;94:138–147. doi: 10.1016/j.bbi.2021.02.021 |
| [188] |
Mazza M.G., Palladini M., De Lorenzo R., et al. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: effect of inflammatory biomarkers at three-month follow-up // Brain Behav Immun. 2021. Vol. 94. Р. 138–147. doi: 10.1016/j.bbi.2021.02.021 |
| [189] |
Parsons N, Outsikas A, Parish A, et al. Modelling the anatomic distribution of neurologic events in patients with COVID-19: a systematic review of MRI findings. AJNR Am J Neuroradiol. 2021;42(7):1190–1195. doi: 10.3174/ajnr.A7113 |
| [190] |
Parsons N., Outsikas A., Parish A., et al. Modelling the anatomic distribution of neurologic events in patients with COVID-19: a systematic review of MRI findings // AJNR Am J Neuroradiol. 2021. Vol. 42, N 7. Р. 1190–1195. doi: 10.3174/ajnr.A7113 |
| [191] |
Mondal R, Ganguly U, Deb S, et al. Meningoencephalitis associated with COVID-19: a systematic review. J Neurovirol. 2021;27(1):12–25. doi: 10.1007/s13365-020-00923-3 |
| [192] |
Mondal R., Ganguly U., Deb S., et al. Meningoencephalitis associated with COVID-19: a systematic review // J Neurovirol. 2021. Vol. 27, N 1. Р. 12–25. doi: 10.1007/s13365-020-00923-3 |
| [193] |
Sykes DL, Holdsworth L, Jawad N, et al. Post-COVID-19 symptom burden: what is long-COVID and how should we manage it? Lung. 2021;199(2):113–119. doi: 10.1007/s00408-021-00423-z |
| [194] |
Sykes D.L., Holdsworth L., Jawad N., et al. Post-COVID-19 symptom burden: what is long-COVID and how should we manage it? // Lung. 2021. Vol. 199, N 2. Р. 113–119. doi: 10.1007/s00408-021-00423-z |
| [195] |
Solomon IH, Normandin E, Bhattacharyya S, et al. Neuropathological features of COVID-19. N Engl J Med. 2020;383(10):989–992. doi: 10.1056/NEJMc2019373 |
| [196] |
Solomon I.H., Normandin E., Bhattacharyya S., et al. Neuropathological features of COVID-19 // N Engl J Med. 2020. Vol. 383, N 10. Р. 989–992. doi: 10.1056/NEJMc2019373 |
| [197] |
Coolen T, Lolli V, Sadeghi N, et al. Early postmortem brain MRI findings in COVID-19 non-survivors. Neurology. 2020;95(14): e2016–e2027. doi: 10.1212/WNL.0000000000010116 |
| [198] |
Coolen T., Lolli V., Sadeghi N., et al. Early postmortem brain MRI findings in COVID-19 non-survivors // Neurology. 2020. Vol. 95, N 14. Р. e2016–e2027. doi: 10.1212/WNL.0000000000010116 |
| [199] |
Kanberg N, Ashton NJ, Andersson LM, et al. Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology. 2020;95(12):e1754–e1759. doi: 10.1212/WNL.0000000000010111 |
| [200] |
Kanberg N., Ashton N.J., Andersson L.M., et al. Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19 // Neurology. 2020. Vol. 95, N 12. Р. e1754–e1759. doi: 10.1212/WNL.0000000000010111 |
| [201] |
Zhou Y, Xu J, Hou Y, et al. Network medicine links SARS-CoV-2/COVID-19 infection to brain microvascular injury and neuroinflammation in dementia-like cognitive impairment. Alzheimers Res Ther. 2021;13(1):110. doi: 10.1186/s13195-021-00850-3 |
| [202] |
Zhou Y., Xu J., Hou Y., et al. Network medicine links SARS-CoV-2/COVID-19 infection to brain microvascular injury and neuroinflammation in dementia-like cognitive impairment // Alzheimers Res Ther. 2021. Vol. 13, N 1. Р. 110. doi: 10.1186/s13195-021-00850-3 |
| [203] |
Phetsouphanh C, Darley D, Howe A, et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat Immunol. 2022;23(2):210–216. doi: 10.1038/s41590-021-01113-x |
| [204] |
Phetsouphanh C., Darley D., Howe A., et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection // Nat Immunol. 2022. Vol. 23, N 2. Р. 210–216. doi: 10.1038/s41590-021-01113-x |
| [205] |
Kremer S, Lersy F, Anheim А, et al. Neurologic and neuroimaging findings in patients with COVID-19: a retrospective multicenter study. Neurology. 2020;95(13):e1868–e1882. doi: 10.1212/WNL.0000000000010112 |
| [206] |
Kremer S., Lersy F., Anheim А., et al. Neurologic and neuroimaging findings in patients with COVID-19: a retrospective multicenter study // Neurology. 2020. Vol. 95, N 13. Р. e1868–e1882. doi: 10.1212/WNL.0000000000010112 |
| [207] |
Slooter AJ, Otte WM, Devlin JW, et al. Updated nomenclature of delirium and acute encephalopathy: statement of ten Societies. Intensive Care Med. 2020;46(5):1020–1022. doi: 10.1007/s00134-019-05907-4 |
| [208] |
Slooter A.J., Otte W.M., Devlin J.W., et al. Updated nomenclature of delirium and acute encephalopathy: statement of ten societies // Intensive Care Med. 2020. Vol. 46, N 5. Р. 1020–1022. doi: 10.1007/s00134-019-05907-4 |
| [209] |
Pun BT, Badenes R, La Calle GH, et al. Prevalence and risk factors for delirium in critically ill patients with COVID-19 (COVID-D): a multicentre cohort study. Lancet Respir Med. 2021;9(3):239–250. doi: 10.1016/S2213-2600(20)30552-X |
| [210] |
Pun B.T., Badenes R., La Calle G.H., et al. Prevalence and risk factors for delirium in critically ill patients with COVID-19 (COVID-D): a multicentre cohort study // Lancet Respir Med. 2021. Vol. 9, N 3. Р. 239–250. doi: 10.1016/S2213-2600(20)30552-X |
| [211] |
Pilotto A, Masciocchi S, Volonghi I, et al. Clinical presentation and outcomes of severe acute respiratory syndrome coronavirus 2-related encephalitis: the ENCOVID multicenter study. J Infect Dis. 2021;223(1):28–37. doi: 10.1093/infdis/jiaa609 |
| [212] |
Pilotto A., Masciocchi S., Volonghi I., et al. Clinical presentation and outcomes of severe acute respiratory syndrome coronavirus 2-related encephalitis: the ENCOVID multicenter study // J Infect Dis. 2021. Vol. 223, N 1. Р. 28–37. doi: 10.1093/infdis/jiaa609 |
| [213] |
Wichmann D, Sperhake JP, Lütgehetmann M, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med. 2020;173(4):268–277. doi: 10.7326/M20-2003 |
| [214] |
Wichmann D., Sperhake J.P., Lütgehetmann M., et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study // Ann Intern Med. 2020. Vol. 173, N 4. Р. 268–277. doi: 10.7326/M20-2003 |
| [215] |
Mukerji SS, Solomon IH. What can we learn from brain autopsies in COVID-19? Neurosci Lett. 2021;742:135528. doi: 10.1016/j.neulet.2020.135528 |
| [216] |
Mukerji S.S., Solomon I.H. What can we learn from brain autopsies in COVID-19? // Neurosci Lett. 2021. Vol. 742. Р. 135528. doi: 10.1016/j.neulet.2020.135528 |
| [217] |
Baker HA, Safavynia SA, Evered LA. The ‘third wave’: impending cognitive and functional decline in COVID-19 survivors. Br J Anaesth. 2021;126(1):44–47. doi: 10.1016/j.bja.2020.09.045 |
| [218] |
Baker H.A., Safavynia S.A., Evered L.A. The ‘third wave’: impending cognitive and functional decline in COVID-19 survivors // Br J Anaesth. 2021. Vol. 126, N 1. Р. 44–47. doi: 10.1016/j.bja.2020.09.045 |
| [219] |
Lingor P, Demleitner AF, Wolff WA, Feneberg E. SARS-CoV-2 and neurodegenerative diseases: what we know and what we don’t. J Neural Transm (Vienna). 2022;1:13. doi: 10.1007/s00702-022-02500-w |
| [220] |
Lingor P., Demleitner A.F., Wolff W.A., Feneberg E. SARS-CoV-2 and neurodegenerative diseases: what we know and what we don’t // J Neural Transm (Vienna). 2022. Vol. 1. Р. 13. doi: 10.1007/s00702-022-02500-w |
| [221] |
Conklin J, Frosch MP, Mukerji SS, et al. Susceptibility-weighted imaging reveals cerebral microvascular injury in severe COVID-19. J Neurol Sci. 2021;421:117308. doi: 10.1016/j.jns.2021.117308 |
| [222] |
Conklin J., Frosch M.P., Mukerji S.S., et al. Susceptibility-weighted imaging reveals cerebral microvascular injury in severe COVID-19 // J Neurol Sci. 2021. Vol. 421. Р. 117308. doi: 10.1016/j.jns.2021.117308 |
| [223] |
Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091. doi: 10.1136/bmj.m1091 |
| [224] |
Chen T., Wu D., Chen H., et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study // BMJ. 2020. Vol. 368. Р. m1091. doi: 10.1136/bmj.m1091 |
| [225] |
Poyiadji N, Shahin G, Noujaim D, et al. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology. 2020;296(2):E119–E120. doi: 10.1148/radiol.2020201187 |
| [226] |
Poyiadji N., Shahin G., Noujaim D., et al. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features // Radiology. 2020. Vol. 296, N 2. Р. E119–E120. doi: 10.1148/radiol.2020201187 |
| [227] |
Badenoch JB, Rengasamy ER, Watson CJ, et al. Persistent neuropsychiatric symptoms after COVID-19: a systematic review and meta-analysis. Psychiatry Clin Psychol. 2021;4(1):fcab297. doi: 10.1093/braincomms/fcab297 |
| [228] |
Badenoch J.B., Rengasamy E.R., Watson C.J., et al. Persistent neuropsychiatric symptoms after COVID-19: a systematic review and meta-analysis // Psychiatry Clin Psychol. 2021. Vol. 4, N 1. Р. fcab297. doi: 10.1093/braincomms/fcab297 |
| [229] |
Davis HE, Assaf GS, McCorkell L, et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. Clinical Medicine. 2021;38:101019. doi: 10.1016/j.eclinm.2021.101019 |
| [230] |
Davis H.E., Assaf G.S., McCorkell L., et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact // Clinical Medicine. 2021. Vol. 38. Р. 101019. doi: 10.1016/j.eclinm.2021.101019 |
| [231] |
Taboada M, Cariñena A, Moreno E, et al. Post-COVID-19 functional status six-months after hospitalization. J Infect. 2021; 82(4):e31–e33. doi: 10.1016/j.jinf.2020.12.022 |
| [232] |
Taboada M., Cariñena A., Moreno E., et al. Post-COVID-19 functional status six-months after hospitalization // J Infect. 2021. Vol. 82, N 4. Р. e31–e33. doi: 10.1016/j.jinf.2020.12.022 |
| [233] |
Mandal S, Barnett J, Brill SE, et al. Long-COVID’: a cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax. 2021;76(4):396–398. doi: 10.1136/thoraxjnl-2020-215818 |
| [234] |
Mandal S., Barnett J., Brill S.E., et al. Long-COVID’: a cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19 // Thorax. 2021. Vol. 76, N 4. Р. 396–398. doi: 10.1136/thoraxjnl-2020-215818 |
| [235] |
Altmann DM, Boyton RJ. Decoding the unknowns in long covid. BMJ. 2021;372:n132. doi: 10.1136/bmj.n132 |
| [236] |
Altmann D.M., Boyton R.J. Decoding the unknowns in long COVID // BMJ. 2021. Vol. 372. Р. 132. doi: 10.1136/bmj.n132 |
| [237] |
Dani M, Dirksen A, Taraborrelli P, et al. Autonomic dysfunction in ‘long COVID’: rationale, physiology and management strategies. Clin Med. 2021;21(1):e63–e67. doi: 10.7861/clinmed.2020-0896 |
| [238] |
Dani M., Dirksen A., Taraborrelli P., et al. Autonomic dysfunction in ‘long COVID’: rationale, physiology and management strategies // Clin Med. 2021. Vol. 21, N 1. Р. e63–e67. doi: 10.7861/clinmed.2020-0896 |
| [239] |
Del Brutto OH, Wu S, Mera RM, et al. Cognitive decline among individuals with history of mild symptomatic SARS-CoV-2 infection: a longitudinal prospective study nested to a population cohort. Eur J Neurol. 2021;28(10):3245–3253. doi: 10.1111/ene.14775 |
| [240] |
Del Brutto O.H., Wu S., Mera R.M., et al. Cognitive decline among individuals with history of mild symptomatic SARS-CoV-2 infection: a longitudinal prospective study nested to a population cohort // Eur J Neurol. 2021. Vol. 28, N 10. Р. 3245–3253. doi: 10.1111/ene.14775 |
| [241] |
Boldrini M, Canoll PD, Klein RS. How COVID-19 affects the brain. JAMA Psychiatry. 2021;78(6):682–683. doi: 10.1001/jamapsychiatry.2021.0500 |
| [242] |
Boldrini M., Canoll P.D., Klein R.S. How COVID-19 affects the brain // JAMA Psychiatry. 2021. Vol. 78, N 6. Р. 682–683. doi: 10.1001/jamapsychiatry.2021.0500 |
| [243] |
Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020;382(23): 2268–2270. doi: 10.1056/NEJMc2008597 |
| [244] |
Helms J., Kremer S., Merdji H., et al. Neurologic features in severe SARS-CoV-2 infection // N Engl J Med. 2020. Vol. 382, N 23. Р. 2268–2270. doi: 10.1056/NEJMc2008597 |
| [245] |
Ferrucci R, Dini M, Groppo E, et al. Long-lasting cognitive abnormalities after COVID-19. Brain Sci. 2021;11(2):235. doi: 10.3390/brainsci11020235 |
| [246] |
Ferrucci R., Dini M., Groppo E., et al. Long-lasting cognitive abnormalities after COVID-19 // Brain Sci. 2021. Vol. 11, N 2. Р. 235. doi: 10.3390/brainsci11020235 |
| [247] |
Guedj E, Campion JY, Dudouet P, et al. 18F-FDG brain PET hypometabolism in patients with long COVID. Eur J Nucl Med Mol Imaging. 2021;48(9):2823–2833. doi: 10.1007/s00259-021-05215-4 |
| [248] |
Guedj E., Campion J.Y., Dudouet P., et al. 18F-FDG brain PET hypometabolism in patients with long COVID // Eur J Nucl Med Mol Imaging. 2021. Vol. 48, N 9. Р. 2823–2833. doi: 10.1007/s00259-021-05215-4 |
| [249] |
Goss AL, Samudralwar RD, Das RR, et al. ANA Investigates: neurological complications of COVID-19 vaccines. Ann Neurol. 2021;89(5):856–857. doi: 10.1002/ana.26065 |
| [250] |
Goss A.L., Samudralwar R.D., Das R.R., et al. ANA investigates: neurological complications of COVID-19 vaccines // Ann Neurol. 2021. Vol. 89, N 5. Р. 856–857. doi: 10.1002/ana.26065 |
| [251] |
Ledford H. US authorization of first COVID vaccine marks new phase in safety monitoring. Nature. 2020;588(7838):377–378. doi: 10.1038/d41586-020-03542-4 |
| [252] |
Ledford H. US authorization of first COVID vaccine marks new phase in safety monitoring // Nature. 2020. Vol. 588, N 7838. Р. 377–378. doi: 10.1038/d41586-020-03542-4 |
| [253] |
Al-Mayhani T, Saber S, Stubbs MJ, et al. Ischaemic stroke as a presenting feature of ChAdOx1/nCoV-19 vaccine-induced immune thrombotic thrombocytopenia. J Neurol Neurosurg Psychiatry. 2021;92(11):1247–1248. doi: 10.1136/jnnp-2021-326984 |
| [254] |
Al-Mayhani T., Saber S., Stubbs M.J., et al. Ischaemic stroke as a presenting feature of ChAdOx1/nCoV-19 vaccine-induced immune thrombotic thrombocytopenia // J Neurol Neurosurg Psychiatry. 2021. Vol. 92, N 11. Р. 1247–1248. doi: 10.1136/jnnp-2021-326984 |
| [255] |
Cines DB, Bussel JB. SARS-CoV-2 vaccine-induced immune thrombotic thrombocytopenia. N Engl J Med. 2021;384(23): 2254–2256. doi: 10.1056/NEJMe2106315 |
| [256] |
Cines D.B., Bussel J.B. SARS-CoV-2 vaccine-induced immune thrombotic thrombocytopenia // N Engl J Med. 2021. Vol. 384, N 23. Р. 2254–2256. doi: 10.1056/NEJMe2106315 |
| [257] |
Suresh P, Petchey W. ChAdOx1/nCoV-19 vaccine-induced immune thrombotic thrombocytopenia and cerebral venous sinus thrombosis. BMJ Case Rep. 2021;14(6):e243931. doi: 10.1136/bcr-2021-243931 |
| [258] |
Suresh P., Petchey W. ChAdOx1/nCoV-19 vaccine-induced immune thrombotic thrombocytopenia and cerebral venous sinus thrombosis // BMJ Case Rep. 2021. Vol. 14, N 6. Р. e243931. doi: 10.1136/bcr-2021-243931 |
| [259] |
Douxfils J, Favresse J, Dogné JM, et al. Hypotheses behind the very rare cases of thrombosis with thrombocytopenia syndrome after SARS-CoV-2 vaccination. Thromb Res. 2021;203:163–171. doi: 10.1016/j.thromres.2021.05.010 |
| [260] |
Douxfils J., Favresse J., Dogné J.M., et al. Hypotheses behind the very rare cases of thrombosis with thrombocytopenia syndrome after SARS-CoV-2 vaccination // Thromb Res. 2021. Vol. 203. Р. 163–171. doi: 10.1016/j.thromres.2021.05.010 |
| [261] |
Schultz NH, Sorvoll IH, Michelsen AE, et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. N Engl J Med. 2021;384(22):2124–2130. doi: 10.1056/NEJMoa2104882 |
| [262] |
Schultz N.H., Sorvoll I.H., Michelsen A.E., et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination // N Engl J Med. 2021. Vol. 384, N 22. Р. 2124–2130. doi: 10.1056/NEJMoa2104882 |
| [263] |
Elalamy I, Gerotziafas G, Alamowitch S, et al. SARS-CoV-2 vaccine and thrombosis: an expert consensus on vaccine-induced immune thrombotic thrombocytopenia. Thromb Haemost. 2021;121(8):982–991. doi: 10.1055/a-1499-0119 |
| [264] |
Elalamy I., Gerotziafas G., Alamowitch S., et al. SARS-CoV-2 vaccine and thrombosis: an expert consensus on vaccine-induced immune thrombotic thrombocytopenia // Thromb Haemost. 2021. Vol. 121, N 8. Р. 982–991. doi: 10.1055/a-1499-0119 |
| [265] |
Pavord S, Scully M, Hunt BJ, et al. Clinical features of vaccine-induced immune thrombocytopenia and thrombosis. N Engl J Med. 2021;385(18):1680–1689. doi: 10.1056/NEJMoa2109908 |
| [266] |
Pavord S., Scully M., Hunt B.J., et al. Clinical features of vaccine-induced immune thrombocytopenia and thrombosis // N Engl J Med. 2021. Vol. 385, N 18. Р. 1680–1689. doi: 10.1056/NEJMoa2109908 |
| [267] |
Kakovan M, Shirkouhi SG, Zarei M, Andalib S. Stroke associated with COVID-19 vaccines. J Stroke Cerebrovasc Dis. 2022;31(6):106440. doi: 10.1016/j.jstrokecerebrovasdis.2022.106440 |
| [268] |
Kakovan M., Shirkouhi S.G., Zarei M., Andalib S. Stroke associated with COVID-19 vaccines // J Stroke Cerebrovasc Dis. 2022. Vol. 31, N 6. Р. 106440. doi: 10.1016/j.jstrokecerebrovasdis.2022.106440 |
| [269] |
Dubey S, Dubey MJ, Ghosh R, et al. The cognitive basis of psychosocial impact in COVID-19 pandemic. Does it encircle the default mode network of the brain? A pragmatic proposal. Med Res Arch. 2022;10(3):10.18103/mra.v10i3.2707. doi: 10.18103/mra.v10i3.2707 |
| [270] |
Dubey S., Dubey M.J., Ghosh R., et al. The cognitive basis of psychosocial impact in COVID-19 pandemic. Does it encircle the default mode network of the brain? A pragmatic proposal // Med Res Arch. 2022. Vol. 10, N 3. Р. 10.18103/mra.v10i3.2707. doi: 10.18103/mra.v10i3 .2707 |
Sсherbak S.G., Golota A.S., Kamilova T.A., Vologzhanin D.A., Makarenko S.V.
/
| 〈 |
|
〉 |