Pathophysiological aspects of oxygen, hypoxia and free radical oxidation in critical conditions
Yurii P. Orlov , Sergey V. Sviridov , Evgeny N. Kakulya
Clinical nutrition and metabolism ›› 2021, Vol. 2 ›› Issue (2) : 66 -79.
Pathophysiological aspects of oxygen, hypoxia and free radical oxidation in critical conditions
Oxygen is the main regulator of metabolic processes in the body not only in the context of normal physiology, but also in the development of various critical conditions.
In recent years, the problem of pathogenesis of a number organs' and systems' diseases has been enriched by knowledge of the mechanism of damage to cellular structures. Oxygen turned out to be the main factor of damage — the very oxygen, due to the lack of which cell death occurs. It turned out that the so-called reactive oxygen species having an unpaired electron have a biological effect, which, depending on the concentration, can be regulatory or, conversely, toxic. Accordingly, interest has also been aroused in compounds that normally prevent the toxic effect of reactive oxygen species — antioxidants. Today it is generally recognized that oxidative stress plays an important and possibly a key role in the pathogenesis of critical conditions. Thus, on the one side, excessive production of free radicals is considered as one of the manifestations of the body's protective reaction to the effects of various environmental factors and living conditions (infections, injuries, toxins, ionizing radiation, physical stress, hypothermia, hypoxia, various types of stress), on the other ― increased production of free radicals quickly leads to irreversible damage: destruction of the erythrocytes' membranes with subsequent hemolysis, transformation of hemoglobin into methemoglobin, DNA damage, desensitization of plasma membrane receptors, inactivation of various hormones and enzymes, including antiradical and antiperoxide protection enzymes.
The problem of using oxygen in critical conditions is currently widely discussed in the periodical literature with an emphasis on the oxygen concentrations used in patients, both in operating rooms and in intensive care units. Oxygen used in the intensive care of acute respiratory failure and hypoxia should have a certain concentration range. The toxic effects of oxygen can occur with its prolonged use in high concentrations, which causes not only its direct toxic effect on the lungs, but also in the potentiation of the activation of free radical oxidation and excessive production of reactive oxygen species.
The review presents current data on the physiological role of oxygen, its participation in metabolic processes against the background of inflammation, hypoxia and under conditions of activation of free radical oxidation processes. The recent approach to oxygen therapy and the research data presented in the review urge to relate to oxygen as a drug in order to avoid manifestations of its toxic effects.
metabolism / oxygen / hypoxia / free radical oxidation
| [1] |
Bosco G, Paganini M, Giacon TA, et al. Oxidative stress and inflammation, MicroRNA, and hemoglobin variations after administration of oxygen at different pressures and concentrations: a randomized trial. Int J Environ Res Public Health. 2021;18(18):9755. doi: 10.3390/ijerph18189755 |
| [2] |
Bosco G., Paganini M., Giacon T.A., et al. Oxidative stress and inflammation, MicroRNA, and hemoglobin variations after administration of oxygen at different pressures and concentrations: a randomized trial // Int J Environ Res Public Health. 2021. Vol. 18, N 18. Р. 9755. doi: 10.3390/ijerph18189755 |
| [3] |
Douin DJ, Anderson EL, Dylla L, et al. Association between hyperoxia, supplemental oxygen, and mortality in critically injured patients. Critical Care Explorations. 2021;3(5):e0418. doi: 10.1097/CCE.0000000000000418 |
| [4] |
Douin D.J., Anderson E.L., Dylla L., et al. Association between hyperoxia, supplemental oxygen, and mortality in critically injured patients // Critical Care Explorations. 2021. Vol. 3, N 5. Р. e0418. doi: 10.1097/CCE.0000000000000418 |
| [5] |
Hsia CC, Schmitz WA, Lambertz M, et al. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Compr Physiol. 2013;3(2):849–915. doi: 10.1002/cphy.c120003 |
| [6] |
Hsia C.C., Schmitz W.A., Lambertz M., et al. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky // Compr Physiol. 2013. Vol. 3, N 2. Р. 849–915. doi: 10.1002/cphy.c120003 |
| [7] |
Vladimirov YA, Archakov AI. Lipid peroxidation in biological membranes. Moscow: Nauka; 1972. 252 p. (In Russ). |
| [8] |
Владимиров Ю.А., Арчаков А.И. Перекисное окисление липидов в биологических мембранах. Москва: Наука, 1972. 252 с. |
| [9] |
Karbyshev MS, Abdullaev ShP. Biochemistry of oxidative stress: an educational and methodical manual. Ed. by A.V. Shestopalov. Moscow; 2018. 60 p. (In Russ). |
| [10] |
Карбышев М.С., Абдуллаев Ш.П. Биохимия оксидативного стресса: учебно-методическое пособие / под ред. А.В. Шестопалова. Москва, 2018. 60 с. |
| [11] |
Vladimirov YuA, Azizova OA, Deev A.I. Free radicals in living systems. Results of science and technology. Biophysics series. Vol. 29. Moscow; 1992. 250 p. (In Russ). |
| [12] |
Владимиров Ю.А., Азизова О.А., Деев А.И. Свободные радикалы в живых системах. Итоги науки и техники. Серия биофизика. Т. 29. Москва, 1992. 250 с. |
| [13] |
Lysko AI, Dudchenko AM. Catalytic antioxidants: potential therapeutic agents for the correction of pathologies caused by oxidative stress. Pathogenesis. 2013;11(3):22–28. (In Russ). |
| [14] |
Лыско А.И., Дудченко А.М. Каталитические антиоксиданты: потенциальные терапевтические средства для коррекции патологий, вызываемых оксидативным стрессом // Патогенез. 2013. Т. 11, № 3. С. 22–28. |
| [15] |
Semenza GL. HIF-1 and human disease: one highly involved factor. Genes Dev. 2000;14(16):1983–1991. |
| [16] |
Semenza G.L. HIF-1 and human disease: one highly involved factor // Genes Dev. 2000. Vol. 14, N 16. Р. 1983–1991. |
| [17] |
Lukyanova LD. Modern problems of adaptation to hypoxia. Signaling mechanisms and their role in systemic regulation. Pathological Physiology Experimental Therapy. 2011(1):3–19. (In Russ). |
| [18] |
Лукьянова Л.Д. Современные проблемы адаптации к гипоксии. Сигнальные механизмы и их роль в системной регуляции // Патологическая физиология и экспериментальная терапия. 2011. № 1. С. 3–19. |
| [19] |
Bitterman H. Bench-to-bedside review: oxygen as a drug. Crit Care. 2009;1(1):205. doi: 10.1186/cc7151 |
| [20] |
Bitterman H. Bench-to-bedside review: oxygen as a drug // Crit Care. 2009. Vol. 13, N 1. Р. 205. doi: 10.1186/cc7151 |
| [21] |
Koskenkorva-Frank TS, Weiss G, Koppenol WH, Burckhardt S. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free Radic Biol Med. 2013;65:1174–1194. doi: 10.1016/j.freeradbiomed.2013.09.001 |
| [22] |
Koskenkorva-Frank T.S., Weiss G., Koppenol W.H., Burckhardt S. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress // Free Radic Biol Med. 2013. Vol. 65. Р. 1174–1194. doi: 10.1016/j.freeradbiomed.2013.09.001 |
| [23] |
Kalyanaraman B. Teaching the basics of redox biology to medical and graduate students: Oxidants, antioxidants and disease mechanisms. Redox Biol. 2013;1(1):244–257. doi: 10.1016/j.redox.2013.01.014 |
| [24] |
Kalyanaraman B. Teaching the basics of redox biology to medical and graduate students: Oxidants, antioxidants and disease mechanisms // Redox Biol. 2013. Vol. 1, N 1. Р. 244–257. doi: 10.1016/j.redox.2013.01.014 |
| [25] |
Morel O, Perret T, Delarche N, et al. Pharmacological approaches to reperfusion therapy. Cardiovasc Res. 2012;94(2):246–252. doi: 10.1093/cvr/cvs114 |
| [26] |
Morel O., Perret T., Delarche N., et al. Pharmacological approaches to reperfusion therapy // Cardiovasc Res. 2012. Vol. 94, N 2. Р. 246–252. doi: 10.1093/cvr/cvs114 |
| [27] |
Yankovsky OY. Oxygen toxicity and biological systems: evolutionary, ecological and biomedical aspects. Saint Petersburg: Game; 2000. 294 р. (In Russ). |
| [28] |
Янковский О.Ю. Токсичность кислорода и биологические системы: эволюционные, экологические и медико-биологические аспекты. Санкт-Петербург: Игра, 2000. 294 с. |
| [29] |
Vinchi F, Tolosano E. Therapeutic approaches to limit hemolysis driven endothelial dysfunction: scavenging free heme to preserve vasculature homeostasis. Oxid Med Cell Longev. 2013;2013:396527. doi: 10.1155/2013/396527 |
| [30] |
Vinchi F., Tolosano E. Therapeutic approaches to limit hemolysis driven endothelial dysfunction: scavenging free heme to preserve vasculature homeostasis // Oxid Med Cell Longev. 2013. Vol. 2013. Р. 396527. doi: 10.1155/2013/396527 |
| [31] |
Orlov YP, Govorova NV, Nocturnal YA, Rudnov VA. Anemia of inflammation: features, necessity and possibility of correction. Literature review. Bulletin Intensive Therapy Named After A.I. Saltanov. 2019;(1):20–35. (In Russ). doi: 10.21320/1818-474X-2019-1-20-35 |
| [32] |
Орлов Ю.П., Говорова Н.В., Ночная Ю.А., Руднов В.А. Анемия воспаления: особенности, необходимость и возможность коррекции. Обзор литературы // Вестник интенсивной терапии имени А.И. Салтанова. 2019. № 1. С. 20–35. doi: 10.21320/1818-474X-2019-1-20-35 |
| [33] |
Zaichik AS, Churilov LP. Fundamentals of pathochemistry. Textbook for medical university students. Saint Petersburg: ALBI; 2001. 688 р. (In Russ). |
| [34] |
Зайчик А.Ш., Чурилов Л.П. Основы патохимии. Учебник для студентов медицинских вузов. Санкт-Петербург: ЭЛБИ, 2001. 688 c. |
| [35] |
Moffett JW, Zika RG. Reaction kinetics of hydrogen peroxide with copper and iron in seawater. Environ Sci Technol. 1987;21(8): 804–810. doi: 10.1021/es00162a012 |
| [36] |
Moffett J.W., Zika R.G. Reaction kinetics of hydrogen peroxide with copper and iron in seawater // Environ Sci Technol. 1987. Vol. 21, N 8. Р. 804–810. doi: 10.1021/es00162a012 |
| [37] |
Aghajanyan NA, Bayevsky RM, Berseneva AP. Problems of adaptation and the doctrine of health. Moscow: RUDN; 2006. 284 p. (In Russ). |
| [38] |
Агаджанян Н.А., Баевский Р.М., Берсенева А.П. Проблемы адаптации и учение о здоровье. Москва: РУДН, 2006. 284 с. |
| [39] |
Litvitsky PF. Hypoxia. Issues Modern Pediatrics. 2016;15(1): 45–58. (In Russ). doi: 10.15690/vsp.v15i1.1499 |
| [40] |
Литвицкий П.Ф. Гипоксия // Вопросы современной педиатрии. 2016. Т. 15, № 1. С. 45–58. doi: 10.15690/vsp.v15i1.1499 |
| [41] |
Ke ZW, Jiang Y, Bao YP, et al. Intensivists’ response to hyperoxemia in mechanical ventilation patients: The status quo and related factors. World J Emerg Med. 2021;12(3):202–206. doi: 10.5847/wjem.j.1920-8642.2021.03.007 |
| [42] |
Ke Z.W., Jiang Y., Bao Y.P., et al. Intensivists’ response to hyperoxemia in mechanical ventilation patients: the status quo and related factors // World J Emerg Med. 2021. Vol. 12, N 3. Р. 202–206. doi: 10.5847/wjem.j.1920-8642.2021.03.007 |
| [43] |
Azad P, Stobdan T, Zhou D, et al. High-altitude adaptation in humans: from genomics to integrative physiology. J Mol Med (Berl). 2017;95(12):1269–1282. doi: 10.1007/s00109-017-1584-7 |
| [44] |
Azad P., Stobdan T., Zhou D., et al. High-altitude adaptation in humans: from genomics to integrative physiology // J Mol Med (Berl). 2017. Vol. 95, N 12. Р. 1269–1282. doi: 10.1007/s00109-017-1584-7 |
| [45] |
Pham K, Parikh K, Heinrich EC. Hypoxia and inflammation: insights from high-altitude physiology. Front Physiol. 2021;12:676782. doi: 10.3389/fphys.2021.676782 |
| [46] |
Pham K., Parikh K., Heinrich E.C. Hypoxia and inflammation: insights from high-altitude physiology // Front Physiol. 2021. Vol. 12. Р. 676782. doi: 10.3389/fphys.2021.676782 |
| [47] |
Longo LD. Sir Joseph Barcroft: one victorian physiologist’s contributions to a half century of discovery. J Physiol. 2016;594(5): 1113–1125. doi: 10.1113/JP270078 |
| [48] |
Longo L.D. Sir Joseph Barcroft: one victorian physiologist’s contributions to a half century of discovery // J Physiol. 2016. Vol. 594, N 5. Р. 1113–1125. doi: 10.1113/JP270078 |
| [49] |
Grocott MP, Martin DS, Levett DZ, et al.; Caudwell Xtreme Everest Research Group. Arterial blood gases and oxygen content in climbers on Mount Everest. N Engl J Med. 2009;360(2):140–149. doi: 10.1056/NEJMoa0801581 |
| [50] |
Grocott M.P., Martin D.S., Levett D.Z., et al.; Caudwell Xtreme Everest Research Group. Arterial blood gases and oxygen content in climbers on Mount Everest // N Engl J Med. 2009. Vol. 360, N 2. Р. 140–149. doi: 10.1056/NEJMoa0801581 |
| [51] |
Lukyanova LD. Signaling mechanisms of hypoxia. Moscow: RAS; 2019. 215 р. (In Russ). |
| [52] |
Лукьянова Л.Д. Сигнальные механизмы гипоксии. Москва: РАН, 2019. 215 с. |
| [53] |
Hirota K. Basic biology of hypoxic responses mediated by the transcription factor HIFs and its implication for medicine. Biomedicines. 2020;8(2):32. doi: 10.3390/biomedicines8020032 |
| [54] |
Hirota K. Basic biology of hypoxic responses mediated by the transcription factor HIFs and its implication for medicine // Biomedicines. 2020. Vol. 8, N 2. Р. 32. doi: 10.3390/biomedicines8020032 |
| [55] |
Hirota K. An intimate crosstalk between iron homeostasis and oxygen metabolism regulated by the hypoxia-inducible factors (HIFs). Free Radic Biol Med. 2019;133:118–129. doi: 10.1016/j.freeradbiomed.2018.07.018 |
| [56] |
Hirota K. An intimate crosstalk between iron homeostasis and oxygen metabolism regulated by the hypoxia-inducible factors (HIFs) // Free Radic Biol Med. 2019. Vol. 133. Р. 118–129. doi: 10.1016/j.freeradbiomed.2018.07.018 |
| [57] |
Chen TT, Maevsky EI, Uchitel ML. Maintenance of homeostasis in the aging hypothalamus: the central and peripheral roles of succinate. Front Endocrinol (Lausanne). 2015;6:7. doi: 10.3389/fendo.2015.00007 |
| [58] |
Chen T.T., Maevsky E.I., Uchitel M.L. Maintenance of homeostasis in the aging hypothalamus: the central and peripheral roles of succinate // Front Endocrinol (Lausanne). 2015. Vol. 6. Р. 7. doi: 10.3389/fendo.2015.00007 |
| [59] |
Singer M. The role of mitochondrial dysfunction in sepsis-induced multiorgan failure. Virulence. 2014;5(1):66–72. doi: 10.4161/viru.26907 |
| [60] |
Singer M. The role of mitochondrial dysfunction in sepsis-induced multiorgan failure // Virulence. 2014. Vol. 5, N 1. Р. 66–72. doi: 10.4161/viru.26907 |
| [61] |
Singer M, De Santis V, Vitale D, Jefcoate W. Multiorgan failure is an adaptive, endocrineemediated, metabolic response to overwhelming systemic infammation. Lancet. 2004;364(9433):545–548. doi: 10.1016/S0140-6736(04)16815-3 |
| [62] |
Singer M., de Santis V., Vitale D., Jefcoate W. Multiorgan failure is an adaptive, endocrineemediated, metabolic response to overwhelming systemic inflammation // Lancet. 2004. Vol. 364, N 9433. Р. 545–548. doi: 10.1016/S0140-6736(04)16815-3 |
| [63] |
Hirota K. Hypoxia-dependent signaling in perioperative and critical care medicine. J Anesth. 2021;35(5):741–756. doi: 10.1007/s00540-021-02940-w |
| [64] |
Hirota K. Hypoxia-dependent signaling in perioperative and critical care medicine // J Anesth. 2021. Vol. 35, N 5. Р. 741–756. doi: 10.1007/s00540-021-02940-w |
Orlov Y.P., Sviridov S.V., Kakulya E.N.
/
| 〈 |
|
〉 |