Anti-RAGE targets in cachexia: HMGB1, S100B, S100A1

Olga A. Obukhova , Irina N. Mikhailova , Helen M. Treshalina , Irina V. Manina , Irina G. Markina , Ruslan A. Zukov

Clinical nutrition and metabolism ›› 2023, Vol. 4 ›› Issue (2) : 75 -82.

PDF
Clinical nutrition and metabolism ›› 2023, Vol. 4 ›› Issue (2) : 75 -82. DOI: 10.17816/clinutr492320
Reviews
review-article

Anti-RAGE targets in cachexia: HMGB1, S100B, S100A1

Author information +
History +
PDF

Abstract

Cachexia, mediated by the multiligand receptor RAGE (receptor for advanced glycation end products) and its ligands HMGB1, S100B, and S100A1, is a formidable multifactorial complication of the severe course of a number of somatic and malignant diseases. One of the most visualized symptoms of cachexia is a significant decrease in body weight, but the main one is the systemic shutdown of a number of regulatory centers that control the maintenance of homeostasis. Activation of these markers contributes to the launch and intensification of the destructive processes of cachexia, and blocking, in some cases, can reduce their intensity. Among known drugs from various therapeutic groups, there are blockers of one or more markers. For example, Papaverine antispasmodic as well as the nootropic anxiolytic Tenoten, antibacterial Pentamidine and antidepressant Duloxetine. This review describes in detail the significance of the listed markers in the pathogenesis of cachexia, especially in malignant pathology. An assumption was made about the possible control of cachectic progression with the help of such blockers to improve the quality of life of patients.

Keywords

somatic cachexia / cancer cachexia / pathogenesis / management / RAGE / HMGB1 / S100B / S100A1

Cite this article

Download citation ▾
Olga A. Obukhova, Irina N. Mikhailova, Helen M. Treshalina, Irina V. Manina, Irina G. Markina, Ruslan A. Zukov. Anti-RAGE targets in cachexia: HMGB1, S100B, S100A1. Clinical nutrition and metabolism, 2023, 4(2): 75-82 DOI:10.17816/clinutr492320

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Evans WJ, Morley JE, Argiles J, et al. Cachexia: a new definition. Clinical Nutrition. 2008;27(6):793–799. doi: 10.1016/j.clnu.2008.06.013

[2]

Evans W.J., Morley J.E., Argiles J., et al. Cachexia: a new definition // Clinical Nutrition. 2008. Vol. 27, N 6. P. 793–799. doi: 10.1016/j.clnu.2008.06.013

[3]

Rausch V, Sala V, Penna F, Porporato PE, Ghigo A. Understanding the common mechanisms of heart and skeletal muscle wasting in cancer cachexia. Oncogene. 2021;10:1–13. doi: 10.1038/s41389-020-00288-6

[4]

Rausch V., Sala V., Penna F., Porporato P.E., Ghigo A. Understanding the common mechanisms of heart and skeletal muscle wasting in cancer cachexia // Oncogene. 2021. Vol. 10. P. 1–13. doi: 10.1038/s41389-020-00288-6

[5]

Nishikawa H, Goto M, Fukunishi S, et al. Cancer Cachexia: Its Mechanism and Clinical Significance. International Journal of Molecular Sciences. 2021;22(16):8491. doi: 10.3390/ijms22168491

[6]

Nishikawa H., Goto M., Fukunishi S., et al. Cancer Cachexia: Its Mechanism and Clinical Significance // International Journal of Molecular Sciences. 2021. Vol. 22, N 16. P. 8491. doi: 10.3390/ijms22168491

[7]

Fearon KC, Glass DJ, Guttridge DC. Cancer cachexia: Mediators, signaling, and metabolic pathways. Cell Metabolism. 2012;16: 153–166. doi: 10.1016/j.cmet.2012.06.011

[8]

Fearon K.C., Glass D.J., Guttridge D.C. Cancer cachexia: Mediators, signaling, and metabolic pathways // Cell Metabolism. 2012. Vol. 16. P. 153–166. doi: 10.1016/j.cmet.2012.06.011

[9]

Petruzzelli M, Wagner EF. Mechanisms of metabolic dysfunction in cancer-associated cachexia. Genes Development. 2016;30(5): 489–501. doi: 10.1101/gad.276733.115

[10]

Petruzzelli M., Wagner E.F. Mechanisms of metabolic dysfunction in cancer-associated cachexia // Genes Development. 2016. Vol. 30, N 5. P. 489–501. doi: 10.1101/gad.276733.115

[11]

Sugaya K, Fukagawa T, Matsumoto K, et al. Three genes in the human MHC class III region near the junction with the class II: gene for receptor of advanced glycosylation end products, PBX2 homeobox gene and a notch homolog, human counterpart of mouse mammary tumor gene int-3. Genomics. 1994;23(2):408–19. doi: 10.1006/geno.1994.1517

[12]

Sugaya K., Fukagawa T., Matsumoto K., et al. Three genes in the human MHC class III region near the junction with the class II: gene for receptor of advanced glycosylation end products, PBX2 homeobox gene and a notch homolog, human counterpart of mouse mammary tumor gene int-3 // Genomics. 1994. Vol. 23, N 2. P. 408–419. doi: 10.1006/geno.1994.1517

[13]

Verweij CL. How RAGE turns in rage. Genes Immunity. 2002;3(3):117–118. doi: 10.1038/sj.gene.6363865

[14]

Verweij C.L. How RAGE turns in rage // Genes Immunity. 2002. Vol. 3, N 3. P. 117–118. doi: 10.1038/sj.gene.6363865

[15]

Kierdorf K, Fritz G. RAGE regulation and signaling in inflammation and beyond. Journal of Leukocyte Biology. 2013;94(1):55–68. doi: 10.1189/jlb.1012519

[16]

Kierdorf K., Fritz G. RAGE regulation and signaling in inflammation and beyond. // Journal of Leukocyte Biology. 2013. Vol. 94, N 1. P. 55–68. doi: 10.1189/jlb.1012519

[17]

Stogsdill JA, Stogsdill MP, Porter JL, et al. Embryonic overexpression of receptors for advanced glycation end products by alveolar epithelium induces an imbalance between proliferation and apoptosis. American Journal of Respiratory Cell and Molecular Biology. 2012;47(1):60–66. doi: 10.1165/rcmb.2011-0385OC

[18]

Stogsdill J.A., Stogsdill M.P., Porter J.L., et al. Embryonic overexpression of receptors for advanced glycation end products by alveolar epithelium induces an imbalance between proliferation and apoptosis // American Journal of Respiratory Cell and Molecular Biology. 2012. Vol. 47, N 1. P. 60–66. doi: 10.1165/rcmb.2011-0385OC

[19]

Rojas A, Figueroa H, Morales E. Fueling inflammation at tumor microenvironment: the role of multiligand RAGE axis. Carcinogenesis. 2010;31:334–341. doi: 10.1093/carcin/bgp322

[20]

Rojas A., Figueroa H., Morales E. Fueling inflammation at tumor microenvironment: the role of multiligand RAGE axis // Carcinogenesis. 2010. Vol. 31. P. 334–341. doi: 10.1093/carcin/bgp322

[21]

Uspenskaya YuA, Komleva YuK, Pozhilenkova EA, et al. Ligands of RAGE-Proteins: Role in Intercellular Communication and Pathogenesis of Inflammation. Annals of the Russian academy of medical sciences. 2015;70(6):694–703. (In Russ) doi: 10.15690/vramn566

[22]

Успенская Ю.А., Комлева Ю.К., Пожиленкова Е.А., и др. Лиганды RAGE-белков: роль в межклеточной коммуникации и патогенезе воспаления // Вестник РАМН. 2015. Т. 70, № 6. С. 694–703. doi: 10.15690/vramn566

[23]

Riuzzi F, Sorci G, Sagheddu R, et al. RAGE in the pathophysiology of skeletal muscle. Journal of Cachexia, Sarcopenia and Muscle. 2018;9(7):1213–1234. doi: 10.1002/jcsm.12350: 30334619

[24]

Riuzzi F., Sorci G., Sagheddu R., et al. RAGE in the pathophysiology of skeletal muscle // Journal of Cachexia, Sarcopenia and Muscle. 2018. Vol. 9, N 7. P. 1213–1234. doi: 10.1002/jcsm.12350: 30334619

[25]

Riuzzi F, Sorci G, Sagheddu R, Donato R. HMGB1-RAGE regulates muscle satellite cell homeostasis through p38-MAPK- and myogenin-dependent repression of Pax7 transcription. Journal Cell Science. 2012;125(Pt 6):1440–54. doi: 10.1242/jcs.092163

[26]

Riuzzi F., Sorci G., Sagheddu R., Donato R. HMGB1-RAGE regulates muscle satellite cell homeostasis through p38-MAPK- and myogenin-dependent repression of Pax7 transcription // Journal of Cell Science. 2012. Vol. 125(Pt 6). P. 1440–1454. doi: 10.1242/jcs.092163

[27]

Riuzzi F, Beccafico S, Sagheddu R, et al. Levels of S100B protein drive the reparative process in acute muscle injury and muscular dystrophy. Scientific Reports. 2017;7(1):12537. doi: 10.1038/s41598-017-12880-9

[28]

Riuzzi F., Beccafico S., Sagheddu R., et al. Levels of S100B protein drive the reparative process in acute muscle injury and muscular dystrophy // Scientific Reports. 2017. Vol. 7, N 1. P. 12537. doi: 10.1038/s41598-017-12880-9

[29]

Dormoy-Raclet V, Cammas A, Celona B, et al. HuR and miR-1192 regulate myogenesis by modulating the translation of HMGB1 mRNA. Nature Communications. 2013;4(1):2388. doi: 10.1038/ncomms3388

[30]

Dormoy-Raclet V., Cammas A., Celona B., et al. HuR and miR-1192 regulate myogenesis by modulating the translation of HMGB1 mRNA // Nature Communications. 2013. Vol. 4, N 1. P. 2388. doi: 10.1038/ncomms3388

[31]

Taneja S, Vetter SW, Leclerc E. Hypoxia and the Receptor for Advanced Glycation End Products (RAGE) Signaling in Cancer. International Journal of Molecular Sciences. 2021;22(15):8153. doi: 10.3390/ijms22158153

[32]

Taneja S., Vetter S.W., Leclerc E. Hypoxia and the Receptor for Advanced Glycation End Products (RAGE) Signaling in Cancer // International Journal of Molecular Sciences. 2021. Vol. 22, N 15. P. 8153. doi: 10.3390/ijms22158153

[33]

Tafani M, Schito L, Pellegrini L, et al. Hypoxia-increased RAGE and P2X7R expression regulates tumor cell invasion through phosphorylation of Erk1/2 and Akt and nuclear translocation of NF-κB. Carcinogenesis. 2011;32(8):1167–1175. doi: 10.1093/carcin/bgr101

[34]

Tafani M., Schito L., Pellegrini L., et al. Hypoxia-increased RAGE and P2X7R expression regulates tumor cell invasion through phosphorylation of Erk1/2 and Akt and nuclear translocation of NF-{kappa}B // Carcinogenesis. 2011. Vol. 32, N 8. P. 1167–1175. doi: 10.1093/carcin/bgr101

[35]

Kang R, Hou W, Zhang Q, et al. RAGE is essential for oncogenic KRAS-mediated hypoxic signaling in pancreatic cancer. Cell Death and Disease. 2014;5(10):e1480. doi: 10.1038/cddis.2014.445

[36]

Kang R., Hou W., Zhang Q., et al. RAGE is essential for oncogenic KRAS-mediated hypoxic signaling in pancreatic cancer // Cell Death and Disease. 2014. Vol. 5, N 10. P. e1480. doi: 10.1038/cddis.2014.445

[37]

Bierhaus A, Humpert PM, Morcos M, et al. Understanding RAGE, the receptor for advanced glycation end products. Journal of Molecular Medicine. 2005;83(11):876–886. doi: 10.1007/s00109-005-0688-7

[38]

Bierhaus A., Humpert P.M., Morcos M., et al. Understanding RAGE, the receptor for advanced glycation end products // Journal of Molecular Medicine. 2005. Vol. 83, N 11. P. 876–886. doi: 10.1007/s00109-005-0688-7

[39]

Ma W, Rai V, Hudson BI, et al. RAGE binds C1q and enhances C1q-mediated phagocytosis. Cellular Immunology. 2012; 274(1–2):72–82. doi: 10.1016/j.cellimm.2012.02.001

[40]

Ma W., Rai V., Hudson B.I., et al. RAGE binds C1q and enhances C1q-mediated phagocytosis // Cellular Immunology. 2012. Vol. 274, N 1–2. P. 72–82. doi: 10.1016/j.cellimm.2012.02.001

[41]

Ruan BH, Li X, Winkler AR, et al. Complement C3a, CpG oligos, and DNA/C3a complex stimulate IFN-α production in a receptor for advanced glycation end product-dependent manner. The Journal of Immunology. 2010;185(7):4213–4222. doi: 10.4049/jimmunol.1000863

[42]

Ruan B.H., Li X., Winkler A.R., et al. Complement C3a, CpG oligos, and DNA/C3a complex stimulate IFN-α production in a receptor for advanced glycation end product-dependent manner // The Journal of Immunology. 2010. Vol. 185, N 7. P. 4213–4222. doi: 10.4049/jimmunol.1000863

[43]

Schmidt AM, Hofmann M, Taguchi A, Yan SD, Stern DM. RAGE: a multiligand receptor contributing to the cellular response in diabetic vasculopathy and inflammation. Seminars in Thrombosis and Hemostasis. 2000;26(5):485–494. doi: 10.1055/s-2000-13204

[44]

Schmidt A.M., Hofmann M., Taguchi A., Yan S.D., Stern D.M. RAGE: a multiligand receptor contributing to the cellular response in diabetic vasculopathy and inflammation // Seminars in Thrombosis and Hemostasis. 2000. Vol. 26, N 5. P. 485–494. doi: 10.1055/s-2000-13204

[45]

Andersson U, Erlandsson-Harris H, Yang H, Tracey KJ. HMGB1 as a DNA-binding cytokine. Journal of Leukocyte Biology. 2002;72(6):1084–1091. doi: 10.1189/jlb.72.6.1084

[46]

Andersson U., Erlandsson-Harris H., Yang H., Tracey K.J. HMGB1 as a DNA-binding cytokine // Journal of Leukocyte Biology. 2002. Vol. 72, N 6. P. 1084–1091. doi: 10.1189/jlb.72.6.1084

[47]

Luo L, Wang S, Chen B, et al. Inhibition of inflammatory liver injury by the HMGB1-A box through HMGB1/TLR-4/NF-κB signaling in an acute liver failure mouse model. Frontiers in Pharmacology. 2022;13:990087. doi: 10.3389/fphar.2022.990087

[48]

Luo L., Wang S., Chen B., et al. Inhibition of inflammatory liver injury by the HMGB1-A box through HMGB1/TLR-4/NF-κB signaling in an acute liver failure mouse model // Frontiers in Pharmacology. 2022. Vol. 13. P. 990087. doi: 10.3389/fphar.2022.990087

[49]

Huber R, Meier B, Otsuka A, et al. Tumour hypoxia promotes melanoma growth and metastasis via High Mobility Group Box-1 and M2-like macrophages. Scientific Reports. 2016;6:29914. doi: 10.1038/srep29914

[50]

Huber R., Meier B., Otsuka A., et al. Tumour hypoxia promotes melanoma growth and metastasis via High Mobility Group Box-1 and M2-like macrophages // Scientific Reports. 2016. Vol. 6. P. 29914. doi: 10.1038/srep29914

[51]

Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. European Journal of Cancer. 2006;42(6):717–727. doi: 10.1016/j.ejca.2006.01.003

[52]

Sica A., Schioppa T., Mantovani A., Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy // European Journal of Cancer. 2006. Vol. 42, N 6. P. 717–727. doi: 10.1016/j.ejca.2006.01.003

[53]

Leclerc E, Fritz G, Vetter SW, Heizmann CW. Binding of S100 proteins to RAGE: an update. Biochimica et Biophysica Acta. 2009;1793(6):993–1007. doi: 10.1016/j.bbamcr.2008.11.016

[54]

Leclerc E., Fritz G., Vetter S.W., Heizmann C.W. Binding of S100 proteins to RAGE: an update // Biochimica et Biophysica Acta. 2009. Vol. 1793, N 6. P. 993–1007. doi: 10.1016/j.bbamcr.2008.11.016

[55]

Donato R. Intracellular and extracellular roles of S100 proteins. Microscopy Research and Technique. 2003;60(6):540–551. doi: 10.1002/jemt.10296

[56]

Donato R. Intracellular and extracellular roles of S100 proteins // Microscopy Research and Technique. 2003. Vol. 60, N 6. P. 540–551. doi: 10.1002/jemt.10296

[57]

Seta KA, Yuan Y, Spicer Z, et al. The role of calcium in hypoxia-induced signal transduction and gene expression. Cell Calcium. 2004;36(3–4):331–340. doi: 10.1016/j.ceca.2004.02.006

[58]

Seta K.A., Yuan Y., Spicer Z., et al. The role of calcium in hypoxia-induced signal transduction and gene expression // Cell Calcium. 2004. Vol. 36, N 3–4. P. 331–340. doi: 10.1016/j.ceca.2004.02.006

[59]

Lee HJ, Jung YH, Choi GE, et al. Role of HIF1α Regulatory Factors in Stem Cells. International Journal of Stem Cells. 2019;12(1):8–20. doi: 10.15283/ijsc18109

[60]

Lee H.J., Jung Y.H., Choi G.E., et al. Role of HIF1α Regulatory Factors in Stem Cells // International Journal of Stem Cells. 2019. Vol. 12, N 1. P. 8–20. doi: 10.15283/ijsc18109

[61]

Donato R, Cannon BR, Sorci G, et al. Functions of S100 proteins. Current Molecular Medicine. 2013;13(1):24–57. doi: 10.2174/156652413804486214

[62]

Donato R., Cannon B.R., Sorci G., et al. Functions of S100 proteins // Current Molecular Medicine. 2013. Vol. 13, N 1. P. 24–57. doi: 10.2174/156652413804486214

[63]

Chiappalupi S, Riuzzi F, Fulle S, Donato R, Sorci G. Defective RAGE activity in embryonal rhabdomyosarcoma cells results in high PAX7 levels that sustain migration and invasiveness. Carcinogenesis. 2014;35(10):2382–2392. doi: 10.1093/carcin/bgu176

[64]

Chiappalupi S., Riuzzi F., Fulle S., Donato R., Sorci G. Defective RAGE activity in embryonal rhabdomyosarcoma cells results in high PAX7 levels that sustain migration and invasiveness // Carcinogenesis. 2014. Vol. 35, N 10. P. 2382–2392. doi: 10.1093/carcin/bgu176

[65]

Chiu CY, Yang RS, Sheu ML, et al. Advanced glycation end-products induce skeletal muscle atrophy and dysfunction in diabetic mice via a RAGE-mediated, AMPK-down-regulated, Akt pathway. The Journal of Pathology. 2016;238(3):470–482. doi: 10.1002/path.4674

[66]

Chiu C.Y., Yang R.S., Sheu M.L., et al. Advanced glycation end-products induce skeletal muscle atrophy and dysfunction in diabetic mice via a RAGE-mediated, AMPK-down-regulated, Akt pathway // The Journal of Pathology. 2016. Vol. 238, N 3. P. 470–482. doi: 10.1002/path.4674

[67]

Sorci G, Riuzzi F, Arcuri C, Giambanco I, Donato R. Amphoterin stimulates myogenesis and counteracts the antimyogenic factors basic fibroblast growth factor and S100B via RAGE binding. Molecular and Cellular Biology. 2004;24(11):4880–4894. doi: 10.1128/MCB.24.11.4880-4894.2004

[68]

Sorci G., Riuzzi F., Arcuri C., Giambanco I., Donato R. Amphoterin stimulates myogenesis and counteracts the antimyogenic factors basic fibroblast growth factor and S100B via RAGE binding // Molecular and Cellular Biology. 2004. Vol. 24, N 11. P. 4880–4894. doi: 10.1128/MCB.24.11.4880-4894.2004

[69]

Chiappalupi S, Sorci G, Vukasinovic A, et al. Targeting RAGE prevents muscle wasting and prolongs survival in cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle. 2020;11(4):929–946. doi: 10.1002/jcsm.12561

[70]

Chiappalupi S., Sorci G., Vukasinovic A., et al. Targeting RAGE prevents muscle wasting and prolongs survival in cancer cachexia // Journal of Cachexia, Sarcopenia and Muscle. 2020. Vol. 11, N 4. P. 929–946. doi: 10.1002/jcsm.12561

[71]

Gebe JA, Kiener PA, Ring HZ, et al. Molecular cloning, mapping to human chromosome 1 q21-q23, and cell binding characteristics of Spalpha, a new member of the scavenger receptor cysteine-rich (SRCR) family of proteins. Journal of Biological Chemistry. 1997;272(10):6151–6158. doi: 10.1074/jbc.272.10.6151

[72]

Gebe J.A., Kiener P.A., Ring H.Z., et al. Molecular cloning, mapping to human chromosome 1 q21-q23, and cell binding characteristics of Spalpha, a new member of the scavenger receptor cysteine-rich (SRCR) family of proteins // Journal of Biological Chemistry. 1997. Vol. 272, N 10. P. 6151–6158. doi: 10.1074/jbc.272.10.6151

[73]

Iwamura M, Yamamoto Y, Kitayama Y, et al. Epidermal expression of receptor for advanced glycation end products (RAGE) is related to inflammation and apoptosis in human skin. Experimental Dermatology. 2016;25(3):235–237. doi: 10.1111/exd.12899

[74]

Iwamura M., Yamamoto Y., Kitayama Y., et al. Epidermal expression of receptor for advanced glycation end products (RAGE) is related to inflammation and apoptosis in human skin // Experimental Dermatology. 2016. Vol. 25, N 3. P. 235–237. doi: 10.1111/exd.12899

[75]

Tanuma SI, Oyama T, Okazawa M, et al. A Dual Anti-Inflammatory and Anti-Proliferative 3-Styrylchromone Derivative Synergistically Enhances the Anti-Cancer Effects of DNA-Damaging Agents on Colon Cancer Cells by Targeting HMGB1-RAGE-ERK1/2 Signaling. International Journal of Molecular Sciences. 2022;23(7):3426. doi: 10.3390/ijms23073426

[76]

Tanuma S.I., Oyama T., Okazawa M., et al. A Dual Anti-Inflammatory and Anti-Proliferative 3-Styrylchromone Derivative Synergistically Enhances the Anti-Cancer Effects of DNA-Damaging Agents on Colon Cancer Cells by Targeting HMGB1-RAGE-ERK1/2 Signaling // International Journal of Molecular Sciences. 2022. Vol. 23, N 7. P. 3426. doi: 10.3390/ijms23073426

[77]

Inada M, Sato A, Shindo M, Yamamoto Y, Akasaki Y, Ichimura K, Tanuma SI. Anticancer Non-narcotic Opium Alkaloid Papaverine Suppresses Human Glioblastoma Cell Growth. Anticancer Research. 2019;39(12):6743–6750. doi: 10.21873/anticanres.13889

[78]

Inada M., Sato A., Shindo M., et al. Anticancer Non-narcotic Opium Alkaloid Papaverine Suppresses Human Glioblastoma Cell Growth // Anticancer Research. 2019. Vol. 39, N 12. P. 6743–6750. doi: 10.21873/anticanres.13889

[79]

Tamada K, Nakajima S, Ogawa N, et al. Papaverine identified as an inhibitor of high mobility group box 1/receptor for advanced glycation end-products interaction suppresses high mobility group box 1-mediated inflammatory responses. Biochemical Biophysical Research Communications. 2019;511(3):665–670. doi: 10.1016/j.bbrc.2019.01.136

[80]

Tamada K., Nakajima S., Ogawa N., et al. Papaverine identified as an inhibitor of high mobility group box 1/receptor for advanced glycation end-products interaction suppresses high mobility group box 1-mediated inflammatory responses // Biochemical and Biophysical Research Communications. 2019. Vol. 511, N 3. P. 665–670. doi: 10.1016/j.bbrc.2019.01.136

[81]

Nakajima S, Ogawa N, Yokoue N, et al. Trimebutine attenuates high mobility group box 1-receptor for advanced glycation end-products inflammatory signaling pathways. Biochemical and Biophysical Research Communications. 2020;533(4):1155–1161. doi: 10.1016/j.bbrc.2020.09.126

[82]

Nakajima S., Ogawa N., Yokoue N., et al. Trimebutine attenuates high mobility group box 1-receptor for advanced glycation end-products inflammatory signaling pathways // Biochemical and Biophysical Research Communications. 2020. Vol. 533, N 4. P. 1155–1161. doi: 10.1016/j.bbrc.2020.09.126

[83]

Parveen N, Chiu WJ, Shen LC, et al. The Anti-Cancer Activity of Pentamidine and Its Derivatives (WLC-4059) Is through Blocking the Interaction between S100A1 and RAGE V Domain. Biomolecules. 2022;13(1):81. doi: 10.3390/biom13010081

[84]

Parveen N., Chiu W.J., Shen L.C., et al. The Anti-Cancer Activity of Pentamidine and Its Derivatives (WLC-4059) Is through Blocking the Interaction between S100A1 and RAGE V Domain // Biomolecules. 2022. Vol. 13, N 1. P. 81. doi: 10.3390/biom13010081

[85]

Clement B, Bürenheide A, Rieckert W, Schwarz J. Diacetyldiamidoximeester of pentamidine, a prodrug for treatment of protozoal diseases: synthesis, in vitro and in vivo biotransformation. ChemMedChem. 2006;1(11):1260–1267. doi: 10.1002/cmdc.200600079

[86]

Clement B., Bürenheide A., Rieckert W., Schwarz J. Diacetyldiamidoximeester of pentamidine, a prodrug for treatment of protozoal diseases: synthesis, in vitro and in vivo biotransformation // ChemMedChem. 2006. Vol. 1, N 11. P. 1260–1267. doi: 10.1002/cmdc.200600079

[87]

El-Far AH, Sroga G, Jaouni SKA, Mousa SA. Role and Mechanisms of RAGE-Ligand Complexes and RAGE-Inhibitors in Cancer Progression. International Journal of Molecular Sciences. 2020;21(10):3613. doi: 10.3390/ijms21103613

[88]

El-Far A.H., Sroga G., Jaouni S.K.A., Mousa S.A. Role and Mechanisms of RAGE-Ligand Complexes and RAGE-Inhibitors in Cancer Progression // International Journal of Molecular Sciences. 2020. Vol. 21, N. 10. P. 3613. doi: 10.3390/ijms21103613

[89]

Khakimova GR, Voronina TA, Dugina YuL, Ertuzun IA, Epshtein OI. Farmacological effects of anti-S100 in release-active form and mechanisms of their realization. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2016;116(4):100–113. (In Russ) doi: 10.17116/jnevro201611641100-113

[90]

Хакимова Г.Р., Воронина Т.А., Дугина Ю.Л., Эртузун И.А., Эпштейн О.И. Спектр фармакологических эффектов антител к белку S100 в релизактивной форме и механизмы их реализации // Журнал неврологии и психиатрии. 2016. Т. 116, № 4. C. 100–113. doi: 10.17116/jnevro201611641100-113

[91]

Gao H, Zhang IY, Zhang L, et al. S100B suppression alters polarization of infiltrating myeloid-derived cells in gliomas and inhibits tumor growth. Cancer Letters. 2018;439:91–100. doi: 10.1016/j.canlet.2018.07.034.

[92]

Gao H., Zhang I.Y., Zhang L., et al. S100B suppression alters polarization of infiltrating myeloid-derived cells in gliomas and inhibits tumor growth // Cancer Letters. 2018. Vol. 439. P. 91–100. doi: 10.1016/j.canlet.2018.07.034.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

64

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/