The choice of enteral formula in patients in the acute period of critical ill with brain damage in the neurocritical care unit
Kirill Yu. Krylov , Sergey V. Sviridov , Irina V. Vedenina , Ruben S. Yagubyan
Clinical nutrition and metabolism ›› 2023, Vol. 4 ›› Issue (1) : 29 -37.
The choice of enteral formula in patients in the acute period of critical ill with brain damage in the neurocritical care unit
Nutritional support is an important and integral part of the treatment process for critically ill patients. Patients after neurosurgical interventions and patients with damage to the central nervous system, for example, due to acute ischemic stroke, may be due to the severity of the condition in the intensive care unit. This is a separate category of patients and nutritional support for this category of patients has its own characteristics. Enteral nutrition, as the most physiological type of nutrition, should be an integral part of the treatment process in the intensive care unit. In patients in the acute period of a severe condition with brain damage, in addition to the metabolic response to damage, there are also factors that limit the implementation of enteral nutrition: the brain damage itself, being in intensive care, and methods of intensive therapy. The choice of an enteral formula in this category of patients is complex and fundamental to provide adequate nutritional support to cover energy and protein requirements. The purpose of this scientific review is to highlight the issues of choosing a mixture for enteral nutrition of patients in the neurocritical care unit who are in the acute period of a critical ill.
nutritional support / brain damage / neurocritical care / enteral nutrition / intensive therapy / enteral formula
| [1] |
Lee JS, Kang JE, Park SH, et al. Nutrition and Clinical Outcomes of Nutrition Support in Multidisciplinary Team for Critically Ill Patients. Nutr Clin Pract. 2018;33(5):633–639. doi: 10.1002/ncp.10093 |
| [2] |
Lee J.S., Kang J.E., Park S.H., et al. Nutrition and Clinical Outcomes of Nutrition Support in Multidisciplinary Team for Critically Ill Patients // Nutr Clin Pract. 2018. Vol. 33, N 5. P. 633–639. doi: 10.1002/ncp.10093 |
| [3] |
Sim J, Hong J, Na EM, Doo S, Jung YT. Early supplemental parenteral nutrition is associated with reduced mortality in critically ill surgical patients with high nutritional risk. Clin Nutr. 2021;40(12):5678–5683. doi: 10.1016/j.clnu.2021.10.008 |
| [4] |
Sim J., Hong J., Na E.M., Doo S., Jung Y.T. Early supplemental parenteral nutrition is associated with reduced mortality in critically ill surgical patients with high nutritional risk // Clin Nutr. 2021. Vol. 40, N 12. P. 5678–5683. doi: 10.1016/j.clnu.2021.10.008 |
| [5] |
Wobith M, Weimann A. Oral Nutritional Supplements and Enteral Nutrition in Patients with Gastrointestinal Surgery. Nutrients. 2021;13(8):2655. doi: 10.3390/nu13082655 |
| [6] |
Wobith M., Weimann A. Oral Nutritional Supplements and Enteral Nutrition in Patients with Gastrointestinal Surgery // Nutrients. 2021. Vol. 13, N 8. P. 2655. doi: 10.3390/nu13082655 |
| [7] |
Fu W, Shi N, Wan Y, et al. Risk Factors of Acute Gastrointestinal Failure in Critically Ill Patients With Traumatic Brain Injury. J Craniofac Surg. 2020;31(2):e176–e179. doi: 10.1097/SCS.0000000000006130 |
| [8] |
Fu W., Shi N., Wan Y., et al. Risk Factors of Acute Gastrointestinal Failure in Critically Ill Patients With Traumatic Brain Injury // J Craniofac Surg. 2020. Vol. 31, N 2. P. e176–e179. doi: 10.1097/SCS.0000000000006130 |
| [9] |
Singer P, Blaser AR, Berger MM, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38(1):48–79. doi: 10.1016/j.clnu.2018.08.037 |
| [10] |
Singer P., Blaser A.R., Berger M.M., et al. ESPEN guideline on clinical nutrition in the intensive care unit // Clin Nutr. 2019. Vol. 38, N 1. P. 48–79. doi: 10.1016/j.clnu.2018.08.037 |
| [11] |
Metabolicheskii monitoring i nutritivnaya podderzhka pri provedenii dlitel’noi iskusstvennoi ventilyatsii legkikh: Klinicheskie rekomendatsii. Moscow; 2021. 36 p. (In Russ). |
| [12] |
Метаболический мониторинг и нутритивная поддержка при проведении длительной искусственной вентиляции легких : Клинические рекомендации. М., 2021. 36 с. |
| [13] |
McClave S, Taylor B, Martindale R, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2016;40(2):159–211. doi: 10.1177/0148607115621863 |
| [14] |
McClave S., Taylor B., Martindale R., et.al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) // JPEN J Parenter Enteral Nutr. 2016. Vol. 40, N 2. P. 159– 211. doi: 10.1177/0148607115621863 |
| [15] |
Preiser JC, Arabi YM, Berger MM, et al. A guide to enteral nutrition in intensive care units: 10 expert tips for the daily practice. Crit Care. 2021;25(1):424. doi: 10.1186/s13054-021-03847-4 |
| [16] |
Preiser J.C., Arabi Y.M., Berger M.M., et al. A guide to enteral nutrition in intensive care units: 10 expert tips for the daily practice // Crit Care. 2021. Vol. 25, N 1. P. 424. doi: 10.1186/s13054-021-03847-4 |
| [17] |
Van Zanten ARH. How to improve worldwide early enteral nutrition performance in intensive care units? Crit Care. 2018; 22(1):315. doi: 10.1186/s13054-018-2188-5 |
| [18] |
Van Zanten A.R.H. How to improve worldwide early enteral nutrition performance in intensive care units? // Crit Care. 2018. Vol. 22, N 1. P. 315. doi: 10.1186/s13054-018-2188-5 |
| [19] |
Shi N, Li N, Duan X, Niu H. Interaction between the gut microbiome and mucosal immune system. Mil Med Res. 2017;4:14. doi: 10.1186/s40779-017-0122-9 |
| [20] |
Shi N., Li N., Duan X., Niu H. Interaction between the gut microbiome and mucosal immune system // Mil Med Res. 2017. Vol. 4, P. 14. doi: 10.1186/s40779-017-0122-9 |
| [21] |
Hayakawa M, Asahara T, Henzan N, et al. Dramatic changes of the gut flora immediately after severe and sudden insults. Dig Dis Sci. 2011;56(8):2361–2365. doi: 10.1007/s10620-011-1649-3 |
| [22] |
Hayakawa M., Asahara T., Henzan N., et al. Dramatic changes of the gut flora immediately after severe and sudden insults // Dig Dis Sci. 2011. Vol. 56, N 8. P. 2361–2365. doi: 10.1007/s10620-011-1649-3 |
| [23] |
Babrowski T, Romanowski K, Fink D, et al. The intestinal environment of surgical injury transforms Pseudomonas aeruginosa into a discrete hypervirulent morphotype capable of causing lethal peritonitis. Surgery. 2013;153(1):36–43. doi: 10.1016/j.surg.2012.06.022 |
| [24] |
Babrowski T., Romanowski K., Fink D., et al. The intestinal environment of surgical injury transforms Pseudomonas aeruginosa into a discrete hypervirulent morphotype capable of causing lethal peritonitis // Surgery. 2013. Vol. 153, N 1. P. 36–43. doi: 10.1016/j.surg.2012.06.022 |
| [25] |
Krezalek MA, Yeh A, Alverdy JC, Morowitz M. Influence of nutrition therapy on the intestinal microbiome. Curr Opin Clin Nutr Metab Care. 2017;20(2):131–137. doi: 10.1097/mco.0000000000000348 |
| [26] |
Krezalek M.A., Yeh A., Alverdy J.C., Morowitz M. Influence of nutrition therapy on the intestinal microbiome // Curr Opin Clin Nutr Metab Care. 2017. Vol. 20, N 2. P. 131–137. doi: 10.1097/mco.0000000000000348 |
| [27] |
Iapichino G, Callegari ML, Marzorati S, et al. Impact of antibiotics on the gut microbiota of critically ill patients. J Med Microbiol. 2008;57(Pt 8):1007–1014. doi: 10.1099/jmm.0.47387-0 |
| [28] |
Iapichino G., Callegari M.L., Marzorati S., et al. Impact of antibiotics on the gut microbiota of critically ill patients // J Med Microbiol. 2008. Vol. 57, Pt 8. P 1007–1014. doi: 10.1099/jmm.0.47387-0 |
| [29] |
Lankelma JM, Cranendonk DR, Belzer C, et al. Antibiotic-induced gut microbiota disruption during human endotoxemia: a randomised controlled study. Gut. 2017;66(9):1623–1630. doi: 10.1136/gutjnl-2016-312132 |
| [30] |
Lankelma J.M., Cranendonk D.R., Belzer C., et al. Antibiotic-induced gut microbiota disruption during human endotoxemia: a randomised controlled study // Gut. 2017. Vol. 66, N 9. P. 1623–1630. doi: 10.1136/gutjnl-2016-312132 |
| [31] |
Kim MH, Kim H. The Roles of Glutamine in the Intestine and Its Implication in Intestinal Diseases. Int J Mol Sci. 2017;18(5):1051. doi: 10.3390/ijms18051051 |
| [32] |
Kim M.H., Kim H. The Roles of Glutamine in the Intestine and Its Implication in Intestinal Diseases // Int J Mol Sci. 2017. Vol. 18, N 5. P. 1051. doi: 10.3390/ijms18051051 |
| [33] |
Bailey MA, Holscher HD. Microbiome-mediated effects of the Mediterranean diet on inflammation. Adv Nutr. 2018;9(3):193–206. doi: 10.1093/advances/nmy013 |
| [34] |
Bailey M.A., Holscher H.D. Microbiome-mediated effects of the Mediterranean diet on inflammation // Adv Nutr. 2018. Vol. 9, N 3. P. 193–206. doi: 10.1093/advances/nmy013 |
| [35] |
Wan X, Bi J, Gao X, et al. Partial enteral nutrition preserves elements of gut barrier function, including innate immunity, intestinal alkaline phosphatase (IAP) level, and intestinalmicrobiota in mice. Nutrients. 2015;7(8):6294–6312. doi: org/10.3390/nu7085288 |
| [36] |
Wan X., Bi J., Gao X., et al. Partial enteral nutrition preserves elements of gut barrier function, including innate immunity, intestinal alkaline phosphatase (IAP) level, and intestinalmicrobiota in mice // Nutrients. 2015. Vol. 7, N 8. P. 6294–6312. doi: 10.3390/nu7085288 |
| [37] |
Levesque CL, Turner J, Li J, et al. In a neonatal pigletmodel of intestinal failure, administration of antibiotics and lack of enteral nutrition have a greater impact on intestinalmicroflora than surgical resection alone. JPEN J Parenter Enteral Nutr. 2017;41(6):938–945. doi: 10.1177/0148607115626903 |
| [38] |
Levesque C.L., Turner J., Li J., et al. In a neonatal pigletmodel of intestinal failure, administration of antibiotics and lack of enteral nutrition have a greater impact on intestinalmicroflora than surgical resection alone // JPEN J Parenter Enteral Nutr. 2017. Vol. 41, N 6. P. 938–945. doi: 10.1177/0148607115626903 |
| [39] |
Ralls MW, Demehri FR, Feng Y, Woods Ignatoski KM, Teitelbaum DH. Enteral nutrient deprivation in patients leads to a loss of intestinal epithelial barrier function. Surgery. 2015;157(4):732–742. doi: 10.1016/j.surg.2014.12.004 |
| [40] |
Ralls M.W., Demehri F.R., Feng Y., Woods Ignatoski K.M., Teitelbaum D.H. Enteral nutrient deprivation in patients leads to a loss of intestinal epithelial barrier function // Surgery. 2015. Vol. 157, N 4. P. 732–742. doi: 10.1016/j.surg.2014.12.004 |
| [41] |
Ohbe H, Jo T, Matsui H, Fushimi K, Yasunaga H. Early enteral nutrition in patients with severe traumatic brain injury: a propensity score-matched analysis using a nationwide inpatient database in Japan. Am J Clin Nutr. 2020;111(2):378–384. doi: 10.1093/ajcn/nqz290 |
| [42] |
Ohbe H., Jo T., Matsui H., Fushimi K., Yasunaga H. Early enteral nutrition in patients with severe traumatic brain injury: a propensity score-matched analysis using a nationwide inpatient database in Japan // Am J Clin Nutr. 2020. Vol. 111, N 2. P. 378–384. doi: 10.1093/ajcn/nqz290 |
| [43] |
Madl C, Madl U. Gastrointestinal motility in critically ill patients. Med Klin Intensivmed Notfmed. 2018;113(5):433–442. (In German). doi: 10.1007/s00063-018-0446-6 |
| [44] |
Madl C., Madl U. Gastrointestinal motility in critically ill patients // Med Klin Intensivmed Notfmed. 2018. Vol. 113, N 5. P. 433–442. (In German). doi: 10.1007/s00063-018-0446-6 |
| [45] |
Bansal V, Costantini T, Kroll L, et al. Traumatic brain injury and intestinal dysfunction: uncovering the neuro-enteric axis. J Neurotrauma. 2009;26(8):1353–1359. doi: 10.1089/neu.2008.0858 |
| [46] |
Bansal V., Costantini T., Kroll L., et al. Traumatic brain injury and intestinal dysfunction: uncovering the neuro-enteric axis // J Neurotrauma. 2009. Vol. 26, N 8. P. 1353–1359. doi: 10.1089/neu.2008.0858 |
| [47] |
Olsen AB, Hetz RA, Xue H, et al. Effects of traumatic brain injury on intestinal contractility. Neurogastroenterol Motil. 2013;25(7): 593–e463. doi: 10.1111/nmo.12121 |
| [48] |
Olsen A.B., Hetz R.A., Xue H., et al. Effects of traumatic brain injury on intestinal contractility // Neurogastroenterol Motil. 2013. Vol. 25, N 7. P. 593–e463. doi: 10.1111/nmo.12121 |
| [49] |
Bailey JD, Diotallevi M, Nicol T, et al. Nitric Oxide modulates metabolic remodeling in inflammatory macrophages through TCA cycle regulation and itaconate accumulation. Cell Rep. 2019; 28(1):218–30.e7. doi: 10.1016/j.celrep.2019.06.018 |
| [50] |
Bailey J.D., Diotallevi M., Nicol T., et al. Nitric Oxide modulates metabolic remodeling in inflammatory macrophages through TCA cycle regulation and itaconate accumulation // Cell Rep. 2019. Vol. 28, N 1. P. 218–30.e7. doi: 10.1016/j.celrep.2019.06.018 |
| [51] |
Ojima M, Motooka D, Shimizu K, et al. Metagenomic analysis reveals dynamic changes of whole gut microbiota in the acute phase of intensive care unit patients. Dig Dis Sci. 2016;61(6):1628–1634. doi: 10.1007/s10620-015-4011-3 |
| [52] |
Ojima M., Motooka D., Shimizu K., et al. Metagenomic analysis reveals dynamic changes of whole gut microbiota in the acute phase of intensive care unit patients // Dig Dis Sci. 2016. Vol. 61, N 6. P. 1628–1634. doi: 10.1007/s10620-015-4011-3 |
| [53] |
Zaborin A, Smith D, Garfield K, et al. Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness. mBio. 2014;5(5):e01361–14. https://doi.org/10.1128/mBio.01361-14 |
| [54] |
Zaborin A., Smith D., Garfield K., et al. Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness // mBio. 2014. Vol. 5, N 5. P. 01361–14. doi: 10.1128/mBio.01361-14 |
| [55] |
McDonald D, Ackermann G, Khailova L, et al. Extreme dysbiosis of the microbiome in critical illness. mSphere. 2016;1(4). doi: 10.1128/mSphere.00199-16 |
| [56] |
McDonald D., Ackermann G., Khailova L., et al. Extreme dysbiosis of the microbiome in critical illness // mSphere. 2016. Vol. 1, N 4. doi: 10.1128/mSphere.00199-16 |
| [57] |
Yeh A, Rogers MB, Firek B, et al. Dysbiosis across multiple body sites in critically ill adult surgical patients. Shock. 2016;46(6): 649–654. doi: 10.1097/shk.0000000000000691 |
| [58] |
Yeh A., Rogers M.B., Firek B., et al. Dysbiosis across multiple body sites in critically ill adult surgical patients // Shock 2016. Vol. 46, N 6. P. 649–654. doi: 10.1097/shk.0000000000000691 |
| [59] |
Kigerl KA, Zane K, Adams K, Sullivan MB, Popovich PG. The spinal cord-gut-immune axis as a master regulator of health and neurological function after spinal cord injury. Exp Neurol. 2020;323:113085. doi: 10.1016/j.expneurol.2019.113085 |
| [60] |
Kigerl K.A., Zane K., Adams K., Sullivan M.B., Popovich P.G. The spinal cord-gut-immune axis as a master regulator of health and neurological function after spinal cord injury // Exp Neurol. 2020. Vol. 323. P. 113085. doi: 10.1016/j.expneurol.2019.113085 |
| [61] |
Nicholson SE, Watts LT, Burmeister DM, et al. Moderate traumatic brain injury alters the gastrointestinal microbiome in a time dependent manner. Shock. 2019;52(2):240–248. doi: 10.1097/SHK.0000000000001211 |
| [62] |
Nicholson S.E., Watts L.T., Burmeister D.M., et al. Moderate traumatic brain injury alters the gastrointestinal microbiome in a time dependent manner // Shock. 2019. Vol. 52, N 2. P. 240–248. doi: 10.1097/SHK.0000000000001211 |
| [63] |
Luft VM, Lapitskii AV, Borovik TE, Bushueva TV, Sergeeva AM. Spravochnik po klinicheskomu pitaniyu. Saint Petersburg: RA Russkii Yuvelir LLC; 2021. 464 p. (In Russ). |
| [64] |
Луфт В.М., Лапицкий А.В., Боровик Т.Э., Бушуева Т.В., Сергеева А.М. Справочник по клиническому питанию. СПб.: ООО «РА Русский Ювелир», 2021. 464 с. |
| [65] |
Hassan-Ghomi M, Nikooyeh B, Motamed S, Neyestani RT. Efficacy of commercial formulas in comparison with home-made formulas for enteral feeding: A critical review. Med. J Islam Repub Iran. 2017;31:55. doi: 10.14196/mjiri.31.55 |
| [66] |
Hassan-Ghomi M., Nikooyeh B., Motamed S., Neyestani T.R. Efficacy of commercial formulas in comparison with home-made formulas for enteral feeding: A critical review // Med J Islam Repub Iran. 2017. Vol. 31. P. 55. doi: 10.14196/mjiri.31.55 |
| [67] |
Hegazi RA, Wischmeyer PE. Clinical review: Optimizing enteral nutrition for critically ill patients — a simple data-driven formula. Crit Care. 2011;15(6):234. doi: 10.1186/cc10430 |
| [68] |
Hegazi R.A., Wischmeyer P.E. Clinical review: Optimizing enteral nutrition for critically ill patients — a simple data-driven formula // Crit Care. 2011. Vol. 15, N 6. P. 234. doi: 10.1186/cc10430 |
| [69] |
Annalisa N, Alessio T, Claudette TD, et al. Gut microbioma population: an indicator really sensible to any change in age, diet, metabolic syndrome, and life-style. Mediat Inflamm. 2014; 2014:901308–11. doi: 10.1155/2014/901308 |
| [70] |
Annalisa N., Alessio T., Claudette T.D., et al. Gut microbioma population: an indicator really sensible to any change in age, diet, metabolic syndrome, and life-style // Mediat Inflamm. 2014. Vol. 2014. P. 901308–11. doi: 10.1155/ 2014/901308 |
| [71] |
Fay KT, Ford ML, Coopersmith CM. The intestinal microenvironment in sepsis. Biochim Biophys. Acta Mol Basis Dis. 2017;1863(10 Pt B):2574–2583. doi.org/10.1016/j.bbadis.2017.03.005 |
| [72] |
Fay K.T., Ford M.L., Coopersmith C.M. The intestinal microenvironment in sepsis. Biochim Biophys // Acta Mol Basis Dis. 2017. Vol. 1863, N 10, Pt. B. P. 2574–2583. doi: 10.1016/j.bbadis.2017.03.005 |
| [73] |
Fransen F, van Beek AA, Borghuis T, et al. Aged gut microbiota contributes to systemical inflammaging after transfer to germ-free mice. Front Immunol. 2017;8:1385. doi: 10.3389/fimmu.2017.01385 |
| [74] |
Fransen F., van Beek A.A., Borghuis T., et al. Aged gut microbiota contributes to systemical inflammaging after transfer to germ-free mice // Front Immunol. 2017. Vol. 8. P. 1385. doi: 10.3389/fimmu.2017.01385 |
| [75] |
Klingensmith NJ, Coopersmith CM. The gut as the motor of multiple organ dysfunction in critical illness. Crit Care Clin. 2016;32(2):203–212. doi: 10.1016/j.ccc.2015.11.004 |
| [76] |
Klingensmith N.J., Coopersmith C.M. The gut as the motor of multiple organ dysfunction in critical illness // Crit Care Clin. 2016. Vol. 32, N 2. P. 203–212. doi: 10.1016/j.ccc.2015.11.004 |
| [77] |
Rea K, Dinan TG, Cryan JF. The microbiome: a key regulator of stress and neuroinflammation. Neurobiol Stress. 2016;4:23–33. doi: 10.1016/j.ynstr.2016.03.001 |
| [78] |
Rea K., Dinan T.G., Cryan J.F. The microbiome: a key regulator of stress and neuroinflammation // Neurobiol Stress. 2016. Vol. 4. P. 23–33. doi: 10.1016/j.ynstr.2016.03.001 |
| [79] |
Krylov KYu, Sviridov SV, Vedenina IV, Yagubyan RS. Nutritional support as part of the basic therapy of a patient in the acute period of ischemic stroke in the intensive care unit. Clinical nutrition and metabolism. 2022;3(4):207–216. doi: https://doi.org/10.17816/clinutr119857 |
| [80] |
Крылов К.Ю., Свиридов С.В., Веденина И.В., Ягубян Р.С. Нутритивная поддержка как часть базовой терапии пациента в остром периоде ишемического инсульта, находящегося на искусственной вентиляции лёгких в отделении реанимации и интенсивной терапии // Клиническое питание и метаболизм. 2022. Т. 3, № 4. C. 207–216. doi: 10.17816/clinutr119857 |
| [81] |
Brown RO, Hunt H, Mowatt-Larssen CA, et al. Comparison of specialized and standard enteral formulas in trauma patients. Pharmacotherapy. 1994;14(3):314–320. |
| [82] |
Brown R.O., Hunt H., Mowatt-Larssen C.A., et al. Comparison of specialized and standard enteral formulas in trauma patients // Pharmacotherapy. 1994. Vol. 14, N 3. P. 314–320. |
| [83] |
Martindale R, Patel JJ, Taylor B, et al. Nutrition Therapy in Critically Ill Patients With Coronavirus Disease 2019. JPEN J Parenter Enteral Nutr. 2020;44(7):1174–1184. doi: 10.1002/jpen.1930 |
| [84] |
Martindale R., Patel J.J., Taylor B., et al. Nutrition Therapy in Critically Ill Patients With Coronavirus Disease 2019 // JPEN J Parenter Enteral Nutr. 2020. Vol. 44, N 7. P. 1174–1184. doi: 10.1002/jpen.1930 |
Eco-Vector
/
| 〈 |
|
〉 |