Stimulation of bone regeneration using bone morphogenetic proteins: modern concepts

Ural F. Mukhametov , Sergey V. Lyulin , Dmitry Yu. Borzunov , Ilgiz F. Gareev

HERALD of North-Western State Medical University named after I.I. Mechnikov ›› 2021, Vol. 13 ›› Issue (4) : 15 -30.

PDF
HERALD of North-Western State Medical University named after I.I. Mechnikov ›› 2021, Vol. 13 ›› Issue (4) : 15 -30. DOI: 10.17816/mechnikov82711
Reviews
review-article

Stimulation of bone regeneration using bone morphogenetic proteins: modern concepts

Author information +
History +
PDF

Abstract

It is known that the restoration of fractures or bone defects after trauma is one of the urgent problems of modern orthopedics and traumatology. Bone morphogenetic proteins (BMPs) are a group of growth and differentiation factors that are a large subfamily of the transforming growth factor-β (TGF-β) superfamily. To date, more than 20 types of different BMPs have been identified based on structural similarities, and it has been found that some of them, like BMP-2, -4, -6, -7, and -9, have the most pronounced osteogenic properties. BMPs induce migration, proliferation, and differentiation of undifferentiated mesenchymal stem cells to form osteoblasts and chondroblasts. BMPs have significant inductive effects on various stages of the bone healing process, such as inflammation, angiogenesis, callus formation, and bone remodeling. It is known that recombinant (rh) rhBMP-2 and rhBMP-7 (approved for clinical use in humans by the USA Food and Drug Administration (FDA)), together with the use of bone grafts, they are used to activate reparative osteogenesis in injuries and to replace bone defects in spinal surgery. Therefore, due to its unique properties, the use of BMPs in bone tissue regeneration is one of the most promising and rapidly developing directions in practical medicine. This review discusses the most important concepts regarding the use of BMPs in stimulating bone regeneration, including their mechanisms of action, modes of use, efficacy, and their advantages and disadvantages.

Keywords

bone morphogenetic proteins / regeneration / bone tissue / treatment / osteogenesis / rhBMP-2 / rhBMP-7

Cite this article

Download citation ▾
Ural F. Mukhametov, Sergey V. Lyulin, Dmitry Yu. Borzunov, Ilgiz F. Gareev. Stimulation of bone regeneration using bone morphogenetic proteins: modern concepts. HERALD of North-Western State Medical University named after I.I. Mechnikov, 2021, 13(4): 15-30 DOI:10.17816/mechnikov82711

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kolsanov AV, Suslin SA, Vavilov AV, et al. Prevention of time risks, medical and economic costs during planned hospitalization in a multidisciplinary hospital. Profilakticheskaya Meditsina. 2021;24(7):117–122. (In Russ.). DOI: 10.17116/profmed202124071117

[2]

Колсанов А.В., Суслин С.А., Вавилов А.В. и др. Профилактика рисков временных, медицинских и экономических затрат при плановой госпитализации в многопрофильный стационар // Профилактическая медицина. 2021. Т. 24, № 7. С. 117–122. DOI: 10.17116/profmed202124071117

[3]

Ananeva AS, Baraeva LM, Bykov IM, et al. Modeling of bone injuries in animal experiments. Innovative Medicine of Kuban. 2021;(1):47–55. (In Russ.). DOI: 10.35401/2500-0268-2021-21-1-47-55

[4]

Ананьева А.Ш., Бараева Л.М., Быков И.М. и др. Моделирование повреждений костных структур в экспериментах на животных // Инновационная медицина Кубани. 2021. № 1. С. 47–55. DOI: 10.35401/2500-0268-2021-21-1-47-55

[5]

Zhang Y, Ma J, Zhang W. Berberine for bone regeneration: Therapeutic potential and molecular mechanisms. J Ethnopharmacol. 2021;277:114249. DOI: 10.1016/j.jep.2021.114249

[6]

Zhang Y., Ma J., Zhang W. Berberine for bone regeneration: Therapeutic potential and molecular mechanisms // J. Ethnopharmacol. 2021. Vol. 277. P. 114249. DOI: 10.1016/j.jep.2021.114249

[7]

Bal Z, Kushioka J, Kodama J, et al. BMP and TGFbeta use and release in bone regeneration. Turk J Med Sci. 2020;50(SI–2):1707–1722. DOI: 10.3906/sag-2003-127

[8]

Bal Z., Kushioka J., Kodama J. et al. BMP and TGFbeta use and release in bone regeneration // Turk. J. Med. Sci. 2020. Vol. 50, No. SI–2. P. 1707–1722. DOI: 10.3906/sag-2003-127

[9]

Sampath TK, Reddi AH. Discovery of bone morphogenetic proteins – A historical perspective. Bone. 2020;140:115548. DOI: 10.1016/j.bone.2020.115548

[10]

Sampath T.K., Reddi A.H. Discovery of bone morphogenetic proteins – A historical perspective // Bone. 2020. Vol. 140. P. 115548. DOI: 10.1016/j.bone.2020.115548

[11]

Wu Z, Zhou B, Chen L, et al. Bone morphogenetic protein-2 against iliac crest bone graft for the posterolateral fusion of the lumbar spine: A meta-analysis. Int J Clin Pract. 2021;75(4):e13911. DOI: 10.1111/ijcp.13911

[12]

Wu Z., Zhou B., Chen L. et al. Bone morphogenetic protein-2 against iliac crest bone graft for the posterolateral fusion of the lumbar spine: A meta-analysis // Int. J. Clin. Pract. 2021. Vol. 75, No. 4. P. e13911. DOI: 10.1111/ijcp.13911

[13]

Kuznetsova VS, Vasilyev AV, Bukharova TB, et al. Safety and efficacy of BMP-2 and BMP-7 use in dentistry. Stomatologiya (Mosk). 2019;98(1):64–69. (In Russ.). DOI: 10.17116/stomat20199801164

[14]

Кузнецова В.С., Васильев А.В., Бухарова Т.Б. и др. Безопасность и эффективность применения морфогенетических белков кости 2 и 7 в стоматологии // Стоматология. 2019. Т. 98, № 1. С. 64–69. DOI: 10.17116/stomat20199801164

[15]

Bannwarth M, Smith JS, Bess S, et al. Use of rhBMP-2 for adult spinal deformity surgery: patterns of usage and changes over the past decade. Neurosurg Focus. 2021;50(6):E4. DOI: 10.3171/2021.3.FOCUS2164

[16]

Bannwarth M., Smith J.S., Bess S. et al. Use of rhBMP-2 for adult spinal deformity surgery: patterns of usage and changes over the past decade // Neurosurg. Focus. 2021. Vol. 50, No. 6. P. E4. DOI: 10.3171/2021.3.FOCUS2164

[17]

Christian J. A tale of two receptors: Bmp heterodimers recruit two type I receptors but use the kinase activity of only one. Proc Natl Acad Sci USA. 2021;118(19):e2104745118. DOI: 10.1073/pnas.2104745118

[18]

Christian J. A tale of two receptors: Bmp heterodimers recruit two type I receptors but use the kinase activity of only one // Proc. Natl. Acad. Sci. USA. 2021. Vol. 118, No. 19. P. e2104745118. DOI: 10.1073/pnas.2104745118

[19]

Vassiliou AG, Keskinidou C, Kotanidou A, et al. Knockdown of bone morphogenetic protein type II receptor leads to decreased aquaporin 1 expression and function in human pulmonary microvascular endothelial cells. Can J Physiol Pharmacol. 2020;98(11):834–839. DOI: 10.1139/cjpp-2020-0185

[20]

Vassiliou A.G., Keskinidou C., Kotanidou A. et al. Knockdown of bone morphogenetic protein type II receptor leads to decreased aquaporin 1 expression and function in human pulmonary microvascular endothelial cells // Can. J. Physiol. Pharmacol. 2020. Vol. 98, No. 11. P. 834–839. DOI: 10.1139/cjpp-2020-0185

[21]

Sun W, Li M, Zhang Y, et al. Total flavonoids of rhizoma drynariae ameliorates bone formation and mineralization in BMP-SMAD signaling pathway induced large tibial defect rats. Biomed Pharmacother. 2021;138:111480. DOI: 10.1016/j.biopha.2021.111480

[22]

Sun W., Li M., Zhang Y. et al. Total flavonoids of rhizoma drynariae ameliorates bone formation and mineralization in BMP-SMAD signaling pathway induced large tibial defect rats // Biomed. Pharmacother. 2021. Vol. 138. P. 111480. DOI: 10.1016/j.biopha.2021.111480

[23]

Luo X, Chang HM, Yi Y, et al. Bone morphogenetic protein 2 upregulates SERPINE2 expression through noncanonical SMAD2/3 and p38 MAPK signaling pathways in human granulosa-lutein cells. FASEB J. 2021;35(9):e21845. DOI: 10.1096/fj.202100670RR

[24]

Luo X., Chang H.M., Yi Y. et al. Bone morphogenetic protein 2 upregulates SERPINE2 expression through noncanonical SMAD2/3 and p38 MAPK signaling pathways in human granulosa-lutein cells // FASEB J. 2021. Vol. 35, No. 9. P. e21845. DOI: 10.1096/fj.202100670RR

[25]

Osses N, Gutierrez J, Lopez-Rovira T, et al. Sulfation is required for bone morphogenetic protein 2-dependent Id1 induction. Biochem Biophys Res Commun. 2006;344(4):1207–1215. DOI: 10.1016/j.bbrc.2006.04.029

[26]

Osses N., Gutierrez J., Lopez-Rovira T. et al. Sulfation is required for bone morphogenetic protein 2-dependent Id1 induction // Biochem. Biophys. Res. Commun. 2006. Vol. 344, No. 4. P. 1207–1215. DOI: 10.1016/j.bbrc.2006.04.029

[27]

Zhao B, Katagiri T, Toyoda H, et al. Heparin potentiates the in vivo ectopic bone formation induced by bone morphogenetic protein-2. J Biol Chem. 2006;281(32):23246–2353. DOI: 10.1074/jbc.M511039200

[28]

Zhao B., Katagiri T., Toyoda H. et al. Heparin potentiates the in vivo ectopic bone formation induced by bone morphogenetic protein-2 // J. Biol. Chem. 2006. Vol. 281, No. 32. P. 23246–2353. DOI: 10.1074/jbc.M511039200

[29]

Zhou H, Qian J, Wang J, et al. Enhanced bioactivity of bone morphogenetic protein-2 with low dose of 2-N, 6-O-sulfated chitosan in vitro and in vivo. Biomaterials. 2009;30(9):1715–1724. DOI: 10.1016/j.biomaterials.2008.12.016

[30]

Zhou H., Qian J., Wang J. et al. Enhanced bioactivity of bone morphogenetic protein-2 with low dose of 2-N, 6-O-sulfated chitosan in vitro and in vivo // Biomaterials. 2009. Vol. 30, No. 9. P. 1715–1724. DOI: 10.1016/j.biomaterials.2008.12.016

[31]

Chen R, Yu J, Gong HL, et al. An easy long-acting BMP7 release system based on biopolymer nanoparticles for inducing osteogenic differentiation of adipose mesenchymal stem cells. J Tissue Eng Regen Med. 2020;14(7):964–972. DOI: 10.1002/term.3070

[32]

Chen R., Yu J., Gong H.L. et al. An easy long-acting BMP7 release system based on biopolymer nanoparticles for inducing osteogenic differentiation of adipose mesenchymal stem cells. J. Tissue. Eng. Regen. Med. 2020. Vol. 14, No. 7. P. 964–972. DOI: 10.1002/term.3070

[33]

Todd GM, Gao Z, Hyvönen M, et al. Secreted BMP antagonists and their role in cancer and bone metastases. Bone. 2020;137:115455. DOI: 10.1016/j.bone.2020.115455

[34]

Todd G.M., Gao Z., Hyvönen M. et al. Secreted BMP antagonists and their role in cancer and bone metastases // Bone. 2020. Vol. 137. P. 115455. DOI: 10.1016/j.bone.2020.115455

[35]

Gao Y, Zhang M, Tian X, et al. Experimental animal study on BMP-3 expression in periodontal tissues in the process of orthodontic tooth movement. Exp Ther Med. 2019;17(1):193–198. DOI: 10.3892/etm.2018.6950

[36]

Gao Y., Zhang M., Tian X. et al. Experimental animal study on BMP-3 expression in periodontal tissues in the process of orthodontic tooth movement // Exp. Ther. Med. 2019. Vol. 17, No. 1. P. 193–198. DOI: 10.3892/etm.2018.6950

[37]

Iyer S, Pennisi DJ, Piper M. Crim1-, a regulator of developmental organogenesis. Histol Histopathol. 2016;31(10):1049–1057. DOI: 10.14670/HH-11-766

[38]

Iyer S., Pennisi D.J., Piper M. Crim1-, a regulator of developmental organogenesis // Histol. Histopathol. 2016. Vol. 31, No. 10. P. 1049–1057. DOI: 10.14670/HH-11-766

[39]

Zhao HJ, Chang HM, Klausen C, et al. Bone morphogenetic protein 2 induces the activation of WNT/beta-catenin signaling and human trophoblast invasion through up-regulating BAMBI. Cell Signal. 2020;67:109489. DOI: 10.1016/j.cellsig.2019.109489

[40]

Zhao H.J., Chang H.M., Klausen C. et al. Bone morphogenetic protein 2 induces the activation of WNT/beta-catenin signaling and human trophoblast invasion through up-regulating BAMBI // Cell. Signal. 2020. Vol. 67. P. 109489. DOI: 10.1016/j.cellsig.2019.109489

[41]

Madhu V, Kilanski A, Reghu N, et al. Expression of CD105 and CD34 receptors controls BMP-induced in vitro mineralization of mouse adipose-derived stem cells but does not predict their in vivo bone-forming potential. J Orthop Res. 2015;33(5):625–632. DOI: 10.1002/jor.22883

[42]

Madhu V., Kilanski A., Reghu N. et al. Expression of CD105 and CD34 receptors controls BMP-induced in vitro mineralization of mouse adipose-derived stem cells but does not predict their in vivo bone-forming potential // J. Orthop. Res. 2015. Vol. 33, No. 5. P. 625–632. DOI: 10.1002/jor.22883

[43]

Gomez-Puerto MC, Iyengar PV, García de Vinuesa A, et al. Bone morphogenetic protein receptor signal transduction in human disease. J Pathol. 2019;247(1):9–20. DOI: 10.1002/path.5170

[44]

Gomez-Puerto M.C., Iyengar P.V., García de Vinuesa A. et al. Bone morphogenetic protein receptor signal transduction in human disease // J. Pathol. 2019. Vol. 247, No. 1. P. 9–20. DOI: 10.1002/path.5170

[45]

El Bialy I, Jiskoot W, Reza Nejadnik M. Formulation, delivery and stability of bone morphogenetic proteins for effective bone regeneration. Pharm Res. 2017;34(6):1152–1170. DOI: 10.1007/s11095-017-2147-x

[46]

El Bialy I., Jiskoot W., Reza Nejadnik M. Formulation, delivery and stability of bone morphogenetic proteins for effective bone regeneration // Pharm. Res. 2017. Vol. 34, No. 6. P. 1152–1170. DOI: 10.1007/s11095-017-2147-x

[47]

Engstrand T, Veltheim R, Arnander C, et al. A novel biodegradable delivery system for bone morphogenetic protein-2. Plast Reconstr Surg. 2008;121(6):1920–1928. DOI: 10.1097/PRS.0b013e31817151b0

[48]

Engstrand T., Veltheim R., Arnander C. et al. A novel biodegradable delivery system for bone morphogenetic protein-2 // Plast. Reconstr. Surg. 2008. Vol. 121, No. 6. P. 1920–1928. DOI: 10.1097/PRS.0b013e31817151b0

[49]

Briquez PS, Tsai HM, Watkins EA, Hubbell JA. Engineered bridge protein with dual affinity for bone morphogenetic protein-2 and collagen enhances bone regeneration for spinal fusion. Sci Adv. 2021;7(24):eabh4302. DOI: 10.1126/sciadv.abh4302

[50]

Briquez P.S., Tsai H.M., Watkins E.A., Hubbell J.A. Engineered bridge protein with dual affinity for bone morphogenetic protein-2 and collagen enhances bone regeneration for spinal fusion // Sci. Adv. 2021. Vol. 7, No. 24. P. eabh4302. DOI: 10.1126/sciadv.abh4302

[51]

Yang X, Han G, Pang X, Fan M. Chitosan/collagen scaffold containing bone morphogenetic protein-7 DNA supports dental pulp stem cell differentiation in vitro and in vivo. J Biomed Mater Res A. 2020;108(12):2519–2526. DOI: 10.1002/jbm.a.34064

[52]

Yang X., Han G., Pang X., Fan M. Chitosan/collagen scaffold containing bone morphogenetic protein-7 DNA supports dental pulp stem cell differentiation in vitro and in vivo // J. Biomed. Mater. Res. A. 2020. Vol. 108, No. 12. P. 2519–2526. DOI: 10.1002/jbm.a.34064

[53]

Fischer J, Kolk A, Wolfart S, et al. Future of local bone regeneration – Protein versus gene therapy. J Craniomaxillofac Surg. 2011;39(1):54–64. DOI: 10.1016/j.jcms.2010.03.016

[54]

Fischer J., Kolk A., Wolfart S. et al. Future of local bone regeneration – Protein versus gene therapy // J. Craniomaxillofac. Surg. 2011. Vol. 39, No. 1. P. 54–64. DOI: 10.1016/j.jcms.2010.03.016

[55]

Mirmohseni F, Cheng T, Oveissi F, et al. Optimized synthesis of poly(deoxyribose) isobutyrate, a viscous biomaterial for bone morphogenetic protein-2 delivery. ACS Appl Mater Interfaces. 2019;11(3):2870–2879. DOI: 10.1021/acsami.8b20126

[56]

Mirmohseni F., Cheng T., Oveissi F. et al. Optimized synthesis of poly(deoxyribose) isobutyrate, a viscous biomaterial for bone morphogenetic protein-2 delivery // ACS Appl. Mater. Interfaces. 2019. Vol. 11, No. 3. P. 2870–2879. DOI: 10.1021/acsami.8b20126

[57]

Carreira AC, Lojudice FH, Halcsik E, et al. Bone morphogenetic proteins: facts, challenges, and future perspectives. J Dent Res. 2014;93(4):335–345. DOI: 10.1177/0022034513518561

[58]

Carreira A.C., Lojudice F.H., Halcsik E. et al. Bone morphogenetic proteins: facts, challenges, and future perspectives // J. Dent. Res. 2014. Vol. 93, No. 4. P. 335–345. DOI: 10.1177/0022034513518561

[59]

Chen R, Yu Y, Zhang W, et al. Tuning the bioactivity of bone morphogenetic protein-2 with surface immobilization strategies. Acta Biomater. 2018;80:108–120. DOI: 10.1016/j.actbio.2018.09.011

[60]

Chen R., Yu Y., Zhang W. et al. Tuning the bioactivity of bone morphogenetic protein-2 with surface immobilization strategies // Acta Biomater. 2018. Vol. 80. P. 108–120. DOI: 10.1016/j.actbio.2018.09.011

[61]

Wang J, Zhang H, Zhu X, et al. Dynamic competitive adsorption of bone-related proteins on calcium phosphate ceramic particles with different phase composition and microstructure. J Biomed Mater Res B Appl Biomater. 2013;101(6):1069–1077. DOI: 10.1002/jbm.b.32917

[62]

Wang J., Zhang H., Zhu X. et al. Dynamic competitive adsorption of bone-related proteins on calcium phosphate ceramic particles with different phase composition and microstructure // J. Biomed. Mater. Res. B. Appl. Biomater. 2013. Vol. 101, No. 6. P. 1069–1077. DOI: 10.1002/jbm.b.32917

[63]

Shiels SM, Solomon KD, Pilia M, et al. BMP-2 tethered hydroxyapatite for bone tissue regeneration: Coating chemistry and osteoblast attachment. J Biomed Mater Res A. 2012;100(11):3117–3123. DOI: 10.1002/jbm.a.34241

[64]

Shiels S.M., Solomon K.D., Pilia M. et al. BMP-2 tethered hydroxyapatite for bone tissue regeneration: Coating chemistry and osteoblast attachment // J. Biomed. Mater. Res. A. 2012. Vol. 100, No. 11. P. 3117–3123. DOI: 10.1002/jbm.a.34241

[65]

Cheng CH, Lai YH, Chen YW, et al. Immobilization of bone morphogenetic protein-2 to gelatin/avidin-modified hydroxyapatite composite scaffolds for bone regeneration. J Biomater Appl. 2019;33(9):1147–1156. DOI: 10.1177/0885328218820636

[66]

Cheng C.H., Lai Y.H., Chen Y.W. et al. Immobilization of bone morphogenetic protein-2 to gelatin/avidin-modified hydroxyapatite composite scaffolds for bone regeneration // J. Biomater. Appl. 2019. Vol. 33, No. 9. P. 1147–1156. DOI: 10.1177/0885328218820636

[67]

Chien CY, Tsai WB. Poly(dopamine)-assisted immobilization of Arg-Gly-Asp peptides, hydroxyapatite, and bone morphogenic protein-2 on titanium to improve the osteogenesis of bone marrow stem cells. ACS Appl Mater Interfaces. 2013;5(15):6975–6983. DOI: 10.1021/am401071f

[68]

Chien C.Y., Tsai W.B. Poly(dopamine)-assisted immobilization of Arg-Gly-Asp peptides, hydroxyapatite, and bone morphogenic protein-2 on titanium to improve the osteogenesis of bone marrow stem cells // ACS Appl. Mater. Interfaces. 2013. Vol. 5, No. 15. P. 6975–6983. DOI: 10.1021/am401071f

[69]

Ko E, Yang K, Shin J, Cho SW. Polydopamine-assisted osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells. Biomacromolecules. 2013;14(9):3202–3213. DOI: 10.1021/bm4008343

[70]

Ko E., Yang K., Shin J., Cho S.W. Polydopamine-assisted osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells // Biomacromolecules. 2013. Vol. 14, No. 9. P. 3202–3213. DOI: 10.1021/bm4008343

[71]

Ruhé PQ, Kroese-Deutman HC, Wolke JG, et al. Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits. Biomaterials. 2004;25(11):2123–2132. DOI: 10.1016/j.biomaterials.2003.09.007

[72]

Ruhé P.Q., Kroese-Deutman H.C., Wolke J.G. et al. Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits // Biomaterials. 2004. Vol. 25, No. 11. P. 2123–2132. DOI: 10.1016/j.biomaterials.2003.09.007

[73]

Zhao J, Shen G, Liu C, et al. Enhanced healing of rat calvarial defects with sulfated chitosan-coated calcium-deficient hydroxyapatite/bone morphogenetic protein 2 scaffolds. Tissue Eng Part A. 2012;18(1–2):185–197. DOI: 10.1089/ten.TEA.2011.0297

[74]

Zhao J., Shen G., Liu C. et al. Enhanced healing of rat calvarial defects with sulfated chitosan-coated calcium-deficient hydroxyapatite/bone morphogenetic protein 2 scaffolds // Tissue Eng. Part A. 2012. Vol. 18, No. 1–2. P. 185–197. DOI: 10.1089/ten.TEA.2011.0297

[75]

Kim MG, Kim CL, Kim YS, et al. Selective endocytosis of recombinant human BMP through cell surface heparan sulfate proteoglycans in CHO cells: BMP-2 and BMP-7. Sci Rep. 2021;11(1):3378. DOI: 10.1038/s41598-021-82955-1

[76]

Kim M.G., Kim C.L., Kim Y.S. et al. Selective endocytosis of recombinant human BMP through cell surface heparan sulfate proteoglycans in CHO cells: BMP-2 and BMP-7 // Sci. Rep. 2021. Vol. 11, No. 1. P. 3378. DOI: 10.1038/s41598-021-82955-1

[77]

Haubruck P, Tanner MC, Vlachopoulos W, et al. Comparison of the clinical effectiveness of Bone Morphogenic Protein (BMP) -2 and -7 in the adjunct treatment of lower limb nonunions. Orthop Traumatol Surg Res. 2018;104(8):1241–1248. DOI: 10.1016/j.otsr.2018.08.008

[78]

Haubruck P., Tanner M.C., Vlachopoulos W. et al. Comparison of the clinical effectiveness of Bone Morphogenic Protein (BMP) -2 and -7 in the adjunct treatment of lower limb nonunions // Orthop. Traumatol. Surg. Res. 2018. Vol. 104, No. 8. P. 1241–1248. DOI: 10.1016/j.otsr.2018.08.008

[79]

Teng F, Yu D, Wei L, et al. Preclinical application of recombinant human bone morphogenetic protein 2 on bone substitutes for vertical bone augmentation: A systematic review and meta-analysis. J Prosthet Dent. 2019;122(4):355–363. DOI: 10.1016/j.prosdent.2018.09.008

[80]

Teng F., Yu D., Wei L. et al. Preclinical application of recombinant human bone morphogenetic protein 2 on bone substitutes for vertical bone augmentation: A systematic review and meta-analysis // J. Prosthet. Dent. 2019. Vol. 122, No. 4. P. 355–363. DOI: 10.1016/j.prosdent.2018.09.008

[81]

Nauth A, Schemitsch E, Norris B, et al. Critical-size bone defects: is there a consensus for diagnosis and treatment? J Orthop Trauma. 2018;32 Suppl 1:S7–S11. DOI: 10.1097/BOT.0000000000001115

[82]

Nauth A., Schemitsch E., Norris B. et al. Critical-size bone defects: is there a consensus for diagnosis and treatment? // J. Orthop. Trauma. 2018. Vol. 32 Suppl 1. P. S7–S11. DOI: 10.1097/BOT.0000000000001115

[83]

Wikesjö UM, Polimeni G, Qahash M. Tissue engineering with recombinant human bone morphogenetic protein-2 for alveolar augmentation and oral implant osseointegration: experimental observations and clinical perspectives. Clin Implant Dent Relat Res. 2005;7(2):112–119. DOI: 10.1111/j.1708-8208.2005.tb00054.x

[84]

Wikesjö U.M., Polimeni G., Qahash M. Tissue engineering with recombinant human bone morphogenetic protein-2 for alveolar augmentation and oral implant osseointegration: experimental observations and clinical perspectives // Clin. Implant. Dent. Relat. Res. 2005. Vol. 7, No. 2. P. 112–119. DOI: 10.1111/j.1708-8208.2005.tb00054.x

[85]

Long J, Li P, Du HM, et al. Effects of bone morphogenetic protein 2 gene therapy on new bone formation during mandibular distraction osteogenesis at rapid rate in rabbits. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112(1):50–57. DOI: 10.1016/j.tripleo.2010.09.065

[86]

Long J., Li P., Du H.M. et al. Effects of bone morphogenetic protein 2 gene therapy on new bone formation during mandibular distraction osteogenesis at rapid rate in rabbits // Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011. Vol. 112, No. 1. P. 50–57. DOI: 10.1016/j.tripleo.2010.09.065

[87]

Turgeman G, Zilberman Y, Zhou S, et al. Systemically administered rhBMP-2 promotes msc activity and reverses bone and cartilage loss in osteopenic mice. J Cell Biochem. 2002;86(3):461–474. DOI: 10.1002/jcb.10231

[88]

Turgeman G., Zilberman Y., Zhou S. et al. Systemically administered rhBMP-2 promotes msc activity and reverses bone and cartilage loss in osteopenic mice // J. Cell. Biochem. 2002. Vol. 86, No. 3. P. 461–474. DOI: 10.1002/jcb.10231

[89]

Crasto GJ, Kartner N, Reznik N, et al. Controlled bone formation using ultrasound-triggered release of BMP-2 from liposomes. J Control Release. 2016;243:99–108. DOI: 10.1016/j.jconrel.2016.09.032

[90]

Crasto G.J., Kartner N., Reznik N. et al. Controlled bone formation using ultrasound-triggered release of BMP-2 from liposomes // J. Control. Release. 2016. Vol. 243. P. 99–108. DOI: 10.1016/j.jconrel.2016.09.032

[91]

Smith DM, Afifi AM, Cooper GM, et al. BMP-2-based repair of large-scale calvarial defects in an experimental model: regenerative surgery in cranioplasty. J Craniofac Surg. 2008;19(5):1315–1322. DOI: 10.1097/SCS.0b013e3181843369

[92]

Smith D.M., Afifi A.M., Cooper G.M. et al. BMP-2-based repair of large-scale calvarial defects in an experimental model: regenerative surgery in cranioplasty // J. Craniofac. Surg. 2008. Vol. 19, No. 5. P. 1315–1322. DOI: 10.1097/SCS.0b013e3181843369

[93]

Kerzner B, Martin HL, Weiser M, et al. A Reliable and reproducible critical-sized segmental femoral defect model in rats stabilized with a custom external fixator. J Vis Exp. 2019;(145):10.3791/59206. DOI: 10.3791/59206

[94]

Kerzner B., Martin H.L., Weiser M. et al. A Reliable and reproducible critical-sized segmental femoral defect model in rats stabilized with a custom external fixator // J. Vis. Exp. 2019. No. 145. P. 10.3791/59206. DOI: 10.3791/59206

[95]

Liu F, Wells JW, Porter RM, et al. Interaction between living bone particles and rhBMP-2 in large segmental defect healing in the rat femur. J Orthop Res. 2016;34(12):2137–2145. DOI: 10.1002/jor.23255

[96]

Liu F., Wells J.W., Porter R.M. et al. Interaction between living bone particles and rhBMP-2 in large segmental defect healing in the rat femur // J. Orthop. Res. 2016. Vol. 34, No. 12. P. 2137–2145. DOI: 10.1002/jor.23255

[97]

Lee J, Decker JF, Polimeni G, et al. Evaluation of implants coated with rhBMP-2 using two different coating strategies: a critical-size supraalveolar peri-implant defect study in dogs. J Clin Periodontol. 2010;37(6):582–590. DOI: 10.1111/j.1600-051X.2010.01557.x

[98]

Lee J., Decker J.F., Polimeni G. et al. Evaluation of implants coated with rhBMP-2 using two different coating strategies: a critical-size supraalveolar peri-implant defect study in dogs // J. Clin. Periodontol. 2010. Vol. 37, No. 6. P. 582–590. DOI: 10.1111/j.1600-051X.2010.01557.x

[99]

Ripamonti U, van den Heever B, Sampath TK, et al. Complete regeneration of bone in the baboon by recombinant human osteogenic protein-1 (hOP-1, bone morphogenetic protein-7). Growth Factors. 1996;13(3–4):273–289. DOI: 10.3109/08977199609003228

[100]

Ripamonti U., van den Heever B., Sampath T.K. et al. Complete regeneration of bone in the baboon by recombinant human osteogenic protein-1 (hOP-1, bone morphogenetic protein-7) // Growth Factors. 1996. Vol. 13, No. 3–4. P. 273–289. DOI: 10.3109/08977199609003228

[101]

Vincentelli AF, Szadkowski M, Vardon D, et al. rhBMP-2 (Recombinant Human Bone Morphogenetic Protein-2) in real world spine surgery. A phase IV, National, multicentre, retrospective study collecting data from patient medical files in French spinal centres. Orthop Traumatol Surg Res. 2019;105(6):1157–1163. DOI: 10.1016/j.otsr.2019.04.023

[102]

Vincentelli A.F., Szadkowski M., Vardon D. et al. rhBMP-2 (Recombinant Human Bone Morphogenetic Protein-2) in real world spine surgery. A phase IV, National, multicentre, retrospective study collecting data from patient medical files in French spinal centres // Orthop. Traumatol. Surg. Res. 2019. Vol. 105, No. 6. P. 1157–1163. DOI: 10.1016/j.otsr.2019.04.023

[103]

Baltzer AW, Ostapczuk MS, Stosch D, Granrath M. The use of recombinant human bone morphogenetic protein-2 for the treatment of a delayed union following femoral neck open-wedge osteotomy. Orthop Rev (Pavia). 2012;4(1):e4. DOI: 10.4081/or.2012.e4

[104]

Baltzer A.W., Ostapczuk M.S., Stosch D., Granrath M. The use of recombinant human bone morphogenetic protein-2 for the treatment of a delayed union following femoral neck open-wedge osteotomy // Orthop. Rev. (Pavia). 2012. Vol. 4, No. 1. P. e4. DOI: 10.4081/or.2012.e4

[105]

Julka A, Shah AS, Miller BS. Inflammatory response to recombinant human bone morphogenetic protein-2 use in the treatment of a proximal humeral fracture: a case report. J Shoulder Elbow Surg. 2012;21(1):e12–16. DOI: 10.1016/j.jse.2011.06.006

[106]

Julka A., Shah A.S., Miller B.S. Inflammatory response to recombinant human bone morphogenetic protein-2 use in the treatment of a proximal humeral fracture: a case report // J. Shoulder Elbow Surg. 2012. Vol. 21, No. 1. P. e12–16. DOI: 10.1016/j.jse.2011.06.006

[107]

Von Rüden C, Morgenstern M, Hierholzer C, et al. The missing effect of human recombinant Bone Morphogenetic Proteins BMP-2 and BMP-7 in surgical treatment of aseptic forearm nonunion. Injury. 2016;47(4):919–924. DOI: 10.1016/j.injury.2015.11.038

[108]

Von Rüden C., Morgenstern M., Hierholzer C. et al. The missing effect of human recombinant Bone Morphogenetic Proteins BMP-2 and BMP-7 in surgical treatment of aseptic forearm nonunion // Injury. 2016. Vol. 47, No. 4. P. 919–924. DOI: 10.1016/j.injury.2015.11.038

[109]

Murena L, Canton G, Vulcano E, et al. Treatment of humeral shaft aseptic nonunions in elderly patients with opposite structural allograft, BMP-7, and mesenchymal stem cells. Orthopedics. 2014;37(2):e201–e206. DOI: 10.3928/01477447-20140124-26

[110]

Murena L., Canton G., Vulcano E. et al. Treatment of humeral shaft aseptic nonunions in elderly patients with opposite structural allograft, BMP-7, and mesenchymal stem cells // Orthopedics. 2014. Vol. 37, No. 2. P. e201–e206. DOI: 10.3928/01477447-20140124-26

[111]

Ollivier M, Gay AM, Cerlier A, et al. Can we achieve bone healing using the diamond concept without bone grafting for recalcitrant tibial nonunions? Injury. 2015;46(7):1383–1388. DOI: 10.1016/j.injury.2015.03.036

[112]

Ollivier M., Gay A.M., Cerlier A. et al. Can we achieve bone healing using the diamond concept without bone grafting for recalcitrant tibial nonunions? // Injury. 2015. Vol. 46, No. 7. P. 1383–1388. DOI: 10.1016/j.injury.2015.03.036

[113]

Calori GM, Colombo M, Bucci M, et al. Clinical effectiveness of Osigraft in long-bones nonunions. Injury. 2015;46 Suppl 8:S55–S64. DOI: 10.1016/S0020-1383(15)30056-5

[114]

Calori G.M., Colombo M., Bucci M. et al. Clinical effectiveness of Osigraft in long-bones nonunions // Injury. 2015. Vol. 46 Suppl 8. P. S55–S64. DOI: 10.1016/S0020-1383(15)30056-5

[115]

Durdevic D, Vlahovic T, Pehar S, et al. A novel autologous bone graft substitute comprised of rhBMP6 blood coagulum as carrier tested in a randomized and controlled Phase I trial in patients with distal radial fractures. Bone. 2020;140:115551. DOI: 10.1016/j.bone.2020.115551

[116]

Durdevic D., Vlahovic T., Pehar S. et al. A novel autologous bone graft substitute comprised of rhBMP6 blood coagulum as carrier tested in a randomized and controlled Phase I trial in patients with distal radial fractures // Bone. 2020. Vol. 140. P. 115551. DOI: 10.1016/j.bone.2020.115551

[117]

Govender S, Csimma C, Genant HK, et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am. 2002;84(12):2123–2134. DOI: 10.2106/00004623-200212000-00001

[118]

Govender S., Csimma C., Genant H.K. et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients // J. Bone Joint. Surg. Am. 2002. Vol. 84, No. 12. P. 2123–2134. DOI: 10.2106/00004623-200212000-00001

[119]

Sudsakorn S, Bahadduri P, Fretland J, Lu C. 2020 FDA Drug-drug Interaction Guidance: A comparison analysis and action plan by pharmaceutical industrial scientists. Curr Drug Metab. 2020;21(6):403–426. DOI: 10.2174/1389200221666200620210522

[120]

Sudsakorn S., Bahadduri P., Fretland J., Lu C. 2020 FDA Drug-drug Interaction Guidance: A comparison analysis and action plan by pharmaceutical industrial scientists // Curr. Drug Metab. 2020. Vol. 21, No. 6. P. 403–426. DOI: 10.2174/1389200221666200620210522

[121]

Friedlaender GE, Perry CR, Cole JD, et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am. 2001;83-A Suppl 1(Pt 2):S151–158.

[122]

Friedlaender G.E., Perry C.R., Cole J.D. et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions // J. Bone Joint. Surg. Am. 2001. Vol. 83-A Suppl 1, No. Pt 2. P. S151–158.

[123]

McKee MD, Schemitsch EH, Waddell JP, et al. The effect of human recombinant bone morphogenic protein (rhBMP-7) on the healing of open tibial shaft fractures: results of a multi-center, prospective, randomized clinical trial. In: Proceedings of the 18th Annual Meeting of the Orthopaedic Trauma Association; 2002 Oct 11-13, Toronto, ON, Canada [Internet]. Available from: www.hwbf.org/ota/am/ota02/otapa/OTA02745.htm. Accessed: Dec 9, 2009.

[124]

McKee M.D., Schemitsch E.H., Waddell J.P. et al. The effect of human recombinant bone morphogenic protein (rhBMP-7) on the healing of open tibial shaft fractures: results of a multi-center, prospective, randomized clinical trial // Proceedings of the 18th Annual Meeting of the Orthopaedic Trauma Association; 2002 Oct 11-13, Toronto, ON, Canada [Электронный ресурс]. Режим доступа: www.hwbf.org/ota/am/ota02/otapa/OTA02745.htm. Дата обращения: 09.12.2009.

[125]

Bong MR, Capla EL, Egol KA, et al. Osteogenic protein-1 (bone morphogenic protein-7) combined with various adjuncts in the treatment of humeral diaphyseal nonunions. Bull Hosp Jt Dis. 2005;63(1–2):20–23.

[126]

Bong M.R., Capla E.L., Egol K.A. et al. Osteogenic protein-1 (bone morphogenic protein-7) combined with various adjuncts in the treatment of humeral diaphyseal nonunions // Bull. Hosp. Jt. Dis. 2005. Vol. 63, No. 1–2. P. 20–23.

[127]

Oryan A, Alidadi S, Moshiri A, Bigham-Sadegh A. Bone morphogenetic proteins: a powerful osteoinductive compound with non-negligible side effects and limitations. Biofactors. 2014;40(5):459–481. DOI: 10.1002/biof.1177

[128]

Oryan A., Alidadi S., Moshiri A., Bigham-Sadegh A. Bone morphogenetic proteins: a powerful osteoinductive compound with non-negligible side effects and limitations // Biofactors. 2014. Vol. 40, No. 5. P. 459–481. DOI: 10.1002/biof.1177

[129]

Kanjilal D, Cottrell JA. Bone morphogenetic proteins (BMP) and bone regeneration. Methods Mol Biol. 2019;1891:235–245. DOI: 10.1007/978-1-4939-8904-1_17

[130]

Kanjilal D., Cottrell J.A. Bone morphogenetic proteins (BMP) and bone regeneration // Methods Mol. Biol. 2019. Vol. 1891. P. 235–245. DOI: 10.1007/978-1-4939-8904-1_17

[131]

Jain A, Yeramaneni S, Kebaish KM, et al. Cost-utility analysis of rhBMP-2 use in adult spinal deformity surgery. Spine (Phila Pa 1976). 2020;45(14):1009–1015. DOI: 10.1097/BRS.0000000000003442

[132]

Jain A., Yeramaneni S., Kebaish K.M. et al. Cost-utility analysis of rhBMP-2 use in adult spinal deformity surgery // Spine (Phila Pa 1976). 2020. Vol. 45, No. 14. P. 1009–1015. DOI: 10.1097/BRS.0000000000003442

[133]

Krishnakumar GS, Roffi A, Reale D, et al. Clinical application of bone morphogenetic proteins for bone healing: a systematic review. Int Orthop. 2017;41(6):1073–1083. DOI: 10.1007/s00264-017-3471-9

[134]

Krishnakumar G.S., Roffi A., Reale D. et al. Clinical application of bone morphogenetic proteins for bone healing: a systematic review // Int. Orthop. 2017. Vol. 41, No. 6. P. 1073–1083. DOI: 10.1007/s00264-017-3471-9

[135]

Lochmann A, Nitzsche H, von Einem S, et al. The influence of covalently linked and free polyethylene glycol on the structural and release properties of rhBMP-2 loaded microspheres. J Control Release. 2010;147(1):92–100. DOI: 10.1016/j.jconrel.2010.06.021

[136]

Lochmann A., Nitzsche H., von Einem S. et al. The influence of covalently linked and free polyethylene glycol on the structural and release properties of rhBMP-2 loaded microspheres // J. Control. Release. 2010. Vol. 147, No. 1. P. 92–100. DOI: 10.1016/j.jconrel.2010.06.021

[137]

Alam S, Ueki K, Nakagawa K, et al. Statin-induced bone morphogenetic protein (BMP) 2 expression during bone regeneration: an immunohistochemical study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(1):22–29. DOI: 10.1016/j.tripleo.2008.06.025

[138]

Alam S., Ueki K., Nakagawa K. et al. Statin-induced bone morphogenetic protein (BMP) 2 expression during bone regeneration: an immunohistochemical study // Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009. Vol. 107, No. 1. P. 22–29. DOI: 10.1016/j.tripleo.2008.06.025

[139]

Summary of safety and effectiveness data. 2002. The InFUSE™ Bone Graft/LT-CAGE™ Lumbar Tapered Fusion Device [Internet]. Available from: http://www.accessdata.fda.gov/cdrh_docs/pdf/P000058b.pdf. Accessed: Feb 14, 2010.

[140]

Summary of safety and effectiveness data. 2002. The InFUSE™ Bone Graft/LT-CAGE™ Lumbar Tapered Fusion Device [Электронный ресурс]. Режим доступа: http://www.accessdata.fda.gov/cdrh_docs/pdf/P000058b.pdf. Дата обращения: 14.02.2010.

[141]

Carragee EJ, Chu G, Rohatgi R, et al. Cancer risk after use of recombinant bone morphogenetic protein-2 for spinal arthrodesis. J Bone Joint Surg Am. 2013;95(17):1537–1545. DOI: 10.2106/jbjs.l.01483

[142]

Carragee E.J., Chu G., Rohatgi R. et al. Cancer risk after use of recombinant bone morphogenetic protein-2 for spinal arthrodesis // J. Bone Joint Surg. Am. 2013. Vol. 95, No. 17. P. 1537–1545. DOI: 10.2106/jbjs.l.01483

[143]

Kelly MP, Savage JW, Bentzen SM, et al. Cancer risk from bone morphogenetic protein exposure in spinal arthrodesis. J Bone Joint Surg Am. 2014;96(17):1417–1422. DOI: 10.2106/jbjs.m.01190

[144]

Kelly M.P., Savage J.W., Bentzen S.M. et al. Cancer risk from bone morphogenetic protein exposure in spinal arthrodesis // J. Bone Joint Surg. Am. 2014. Vol. 96, No. 17. P. 1417–1422. DOI: 10.2106/jbjs.m.01190

[145]

Wang X, Huang J, Huang F, et al. Bone morphogenetic protein 9 stimulates callus formation in osteoporotic rats during fracture healing. Mol Med Rep. 2017;15(5):2537–2545. DOI: 10.3892/mmr.2017.6302

[146]

Wang X., Huang J., Huang F. et al. Bone morphogenetic protein 9 stimulates callus formation in osteoporotic rats during fracture healing // Mol. Med. Rep. 2017. Vol. 15, No. 5. P. 2537–2545. DOI: 10.3892/mmr.2017.6302

[147]

Rittenberg B, Partridge E, Baker G, et al. Regulation of BMP-induced ectopic bone formation by Ahsg. J Orthop Res. 2005;23(3):653–662. DOI: 10.1016/j.orthres.2004.11.010

[148]

Rittenberg B., Partridge E., Baker G. et al. Regulation of BMP-induced ectopic bone formation by Ahsg // J. Orthop. Res. 2005. Vol. 23, No. 3. P. 653–662. DOI: 10.1016/j.orthres.2004.11.010

[149]

Ueland T, Stilgren L, Bollerslev J. Bone matrix levels of dickkopf and sclerostin are positively correlated with bone mass and strength in postmenopausal osteoporosis. Int J Mol Sci. 2019;20(12):2896. DOI: 10.3390/ijms20122896

[150]

Ueland T., Stilgren L., Bollerslev J. Bone matrix levels of dickkopf and sclerostin are positively correlated with bone mass and strength in postmenopausal osteoporosis // Int. J. Mol. Sci. 2019. Vol. 20, No. 12. P. 2896. DOI: 10.3390/ijms20122896

RIGHTS & PERMISSIONS

Mukhametov U.F., Lyulin S.V., Borzunov D.Y., Gareev I.F.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/