Formation of necrotizing vasculitis in the patient with diffuse B-cell large cell lymphoma on immune checkpoint inhibitor (PD-1) therapy

Vadim I. Mazurov , Evgenii S. Melnikov , Elena S. Pavlyuchenko , Mariya N. Dyakonova

HERALD of North-Western State Medical University named after I.I. Mechnikov ›› 2021, Vol. 13 ›› Issue (3) : 83 -90.

PDF
HERALD of North-Western State Medical University named after I.I. Mechnikov ›› 2021, Vol. 13 ›› Issue (3) :83 -90. DOI: 10.17816/mechnikov75468
Case report
research-article

Formation of necrotizing vasculitis in the patient with diffuse B-cell large cell lymphoma on immune checkpoint inhibitor (PD-1) therapy

Author information +
History +
PDF

Abstract

INTRODUCTION: Immune checkpoint inhibitors (ICIs) have significantly improved the prognosis and clinical outcomes for patients with malignancies in many types of cancer. Nivolumab is a human monoclonal antibody that blocks the interaction between PD-1 and PD-L1/2, thereby preventing inhibition of T-cells, which contributes to the antitumor response. The use of ICT can lead to autoimmune aggression and the development of adverse events. Most of these are eliminated on their own after ICT therapy and steroid treatment have been discontinued.

CLINICAL CASE DESCRIPTION: A 73-year-old patient with recurrent large B-cell lymphoma, on the background of R-CHOP, R-CHOP-mini, R-GDOx therapy incomplete clinical effect and frequent relapses have been registered. On immunohistochemistry, PD-L1 was positive in 90 % of the tumor cells. A decision has been made to administer the checkpoint inhibitor (PD-1) nivolumab, which developed a necrotizing vasculitis after three injections.

CONCLUSION: On temporary withdrawal of the drug and administration of prednisolone at a dose of 1 mg/kg/day, the skin has recovered completely. When the PD-1 inhibitor was reapplied, there was no recurrence of autoimmune aggression. The treatment has been continued in the full way.

Keywords

immune checkpoint inhibitors / nivolumab / PD-1 / PD-L1/2 / Diffuse B-cell large cell lymphoma / necrotizing vasculitis / immunohistochemistry

Cite this article

Download citation ▾
Vadim I. Mazurov, Evgenii S. Melnikov, Elena S. Pavlyuchenko, Mariya N. Dyakonova. Formation of necrotizing vasculitis in the patient with diffuse B-cell large cell lymphoma on immune checkpoint inhibitor (PD-1) therapy. HERALD of North-Western State Medical University named after I.I. Mechnikov, 2021, 13(3): 83-90 DOI:10.17816/mechnikov75468

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guo ZS. The 2018 Nobel Prize in medicine goes to cancer immunotherapy (editorial for BMC cancer). BMC Cancer. 2018;18(1):1086. DOI: 10.1186/s12885-018-5020-3

[2]

Guo Z.S. The 2018 Nobel Prize in medicine goes to cancer immunotherapy (editorial for BMC cancer) // BMC Cancer. 2018. Vol. 18, No. 1. P. 1086. DOI: 10.1186/s12885-018-5020-3

[3]

Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33(17):1974–1982. DOI: 10.1200/JCO.2014.59.4358

[4]

Postow M.A., Callahan M.K., Wolchok J.D. Immune checkpoint blockade in cancer therapy // J. Clin. Oncol. 2015. Vol. 33, No. 17. P. 1974–1982. DOI: 10.1200/JCO.2014.59.4358

[5]

Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377(14):1345–1356. DOI: 10.1056/NEJMoa1709684

[6]

Wolchok J.D., Chiarion-Sileni V., Gonzalez R. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma // N. Engl. J. Med. 2017. Vol. 377, No. 14. P. 1345–1356. DOI: 10.1056/NEJMoa1709684

[7]

Motzer RJ, Tannir NM, McDermott DF, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018;378(14):1277–1290. DOI: 10.1056/NEJMoa1712126

[8]

Motzer R.J., Tannir N.M., McDermott D.F. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma // N. Engl. J. Med. 2018. Vol. 378, No. 14. P. 1277–1290. DOI: 10.1056/NEJMoa1712126

[9]

Antonia SJ, López-Martin JA, Bendell J, et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol. 2016;17(7):883–895. DOI: 10.1016/S1470-2045(16)30098-5

[10]

Antonia S.J., López-Martin J.A., Bendell J. et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial // Lancet Oncol. 2016. Vol. 17, No. 7. P. 883–895. DOI: 10.1016/S1470-2045(16)30098-5

[11]

Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–264. DOI: 10.1038/nrc3239

[12]

Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy // Nat. Rev. Cancer. 2012. Vol. 12, No. 4. P. 252–264. DOI: 10.1038/nrc3239

[13]

Lepik KV. Immune checkpoint inhibitors in the treatment of lymphomas. Clinical Oncohematology. 2018;11(4):303–312. (In Russ.). DOI: 10.21320/2500-2139-2018-11-4-303-312

[14]

Лепик К.В. Ингибиторы иммунных контрольных точек в терапии лимфом // Клиническая онкогематология. 2018. Т. 11, № 4. С. 303–312. DOI: 10.21320/2500-2139-2018-11-4-303-312

[15]

Shubnikova EV, Bukatina TM, Velts NYu, et al. Immune checkpoint inhibitors: new risks of a new class of antitumour agents. Safety and Risk of Pharmacotherapy. 2020;8(1):9–22. (In Russ.). DOI: 10.30895/2312-7821-2020-8-1-9-22

[16]

Шубникова Е.В., Букатина Т.М., Вельц Н.Ю. и др. Ингибиторы контрольных точек иммунного ответа: новые риски нового класса противоопухолевых средств // Безопасность и риск фармакотерапии. 2020. Т. 8, № 1. С. 9–22. DOI: 10.30895/2312-7821-2020-8-1-9-22

[17]

Knieke K, Hoff H, Maszyna F, et al. CD152 (CTLA-4) determines CD4 T cell migration in vitro and in vivo. PLoS One. 2009;4(5):e5702. DOI: 10.1371/journal.pone.0005702

[18]

Knieke K., Hoff H., Maszyna F. et al. CD152 (CTLA-4) determines CD4 T cell migration in vitro and in vivo // PLoS One. 2009. Vol. 4, No. 5. P. e5702. DOI: 10.1371/journal.pone.0005702

[19]

Rudd CE, Taylor A, Schneider H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev. 2009;229(1):12–26. DOI: 10.1111/j.1600-065X.2009.00770.x

[20]

Rudd C.E., Taylor A., Schneider H. CD28 and CTLA-4 coreceptor expression and signal transduction // Immunol. Rev. 2009. Vol. 229, No. 1. P. 12–26. DOI: 10.1111/j.1600-065X.2009.00770.x

[21]

Liang SC, Latchman YE, Buhlmann JE, et al. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol. 2003;33(10):2706–2716. DOI: 10.1002/eji.200324228

[22]

Liang S.C., Latchman Y.E., Buhlmann J.E. et al. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses // Eur. J. Immunol. 2003. Vol. 33, No. 10. P. 2706–2716. DOI: 10.1002/eji.200324228

[23]

Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027–1034. DOI: 10.1084/jem.192.7.1027

[24]

Freeman G.J., Long A.J., Iwai Y. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation // J. Exp. Med. 2000. Vol. 192, No. 7. P. 1027–1034. DOI: 10.1084/jem.192.7.1027

[25]

Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2(3):261–268. DOI: 10.1038/85330

[26]

Latchman Y., Wood C.R., Chernova T. et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation // Nat. Immunol. 2001. Vol. 2, No. 3. P. 261–268. DOI: 10.1038/85330

[27]

Keir ME, Liang SC, Guleria I, et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med. 2006;203(4):883–895. DOI: 10.1084/jem.20051776

[28]

Keir M.E., Liang S.C., Guleria I. et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance // J. Exp. Med. 2006. Vol. 203, No. 4. P. 883–895. DOI: 10.1084/jem.20051776

[29]

Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793–800. DOI: 10.1038/nm730

[30]

Dong H., Strome S.E., Salomao D.R. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion // Nat. Med. 2002. Vol. 8, No. 8. P. 793–800. DOI: 10.1038/nm730

[31]

Derré L, Rivals JP, Jandus C, et al. BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination. J Clin Invest. 2010;120(1):157–167. DOI: 10.1172/JCI40070

[32]

Derré L., Rivals J.P., Jandus C. et al. BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination // J. Clin. Invest. 2010. Vol. 120, No. 1. P. 157–167. DOI: 10.1172/JCI40070

[33]

Kondo A, Yamashita T, Tamura H, et al. Interferon-gamma and tumor necrosis factor-alpha induce an immunoinhibitory molecule, B7-H1, via nuclear factor-kappaB activation in blasts in myelodysplastic syndromes. Blood. 2010;116(7):1124–1131. DOI: 10.1182/blood-2009-12-255125

[34]

Kondo A., Yamashita T., Tamura H. et al. Interferon-gamma and tumor necrosis factor-alpha induce an immunoinhibitory molecule, B7-H1, via nuclear factor-kappaB activation in blasts in myelodysplastic syndromes // Blood. 2010. Vol. 116, No. 7. P. 1124–1131. DOI: 10.1182/blood-2009-12-255125

[35]

Ansell SM, Minnema MC, Johnson P, et al. Nivolumab for relapsed/refractory diffuse large b-cell lymphoma in patients ineligible for or having failed autologous transplantation: a single-arm, phase II study. J Clin Oncol. 2019;37(6):481–489. DOI: 10.1200/JCO.18.00766

[36]

Ansell S.M., Minnema M.C., Johnson P. et al. Nivolumab for relapsed/refractory diffuse large b-cell lymphoma in patients ineligible for or having failed autologous transplantation: a single-arm, phase II study // J. Clin. Oncol. 2019. Vol. 37, No. 6. P. 481–489. DOI: 10.1200/JCO.18.00766

[37]

Brahmer JR, Lacchetti C, Schneider BJ, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2018;36(17):1714–1768. DOI: 10.1200/JCO.2017.77.6385

[38]

Brahmer J.R., Lacchetti C., Schneider B.J. et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline // J. Clin. Oncol. 2018. Vol. 36, No. 17. P. 1714–1768. DOI: 10.1200/JCO.2017.77.6385

[39]

Wang DY, Salem JE, Cohen JV, et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 2018;4(12):1721–1728. DOI: 10.1001/jamaoncol.2018.3923

[40]

Wang D.Y., Salem J.E., Cohen J.V. et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis // JAMA Oncol. 2018. Vol. 4, No. 12. P. 1721–1728. DOI: 10.1001/jamaoncol.2018.3923

[41]

Champiat S, Lambotte O, Barreau E, et al. Management of immune checkpoint blockade dysimmune toxicities: a collaborative position paper. Ann Oncol. 2016;27(4):559–574. DOI: 10.1093/annonc/mdv623

[42]

Champiat S., Lambotte O., Barreau E. et al. Management of immune checkpoint blockade dysimmune toxicities: a collaborative position paper // Ann. Oncol. 2016. Vol. 27, No. 4. P. 559–574. DOI: 10.1093/annonc/mdv623

[43]

Haanen JBAG, Carbonnel F, Robert C, et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(suppl_4):iv119–iv142. DOI: 10.1093/annonc/mdx225

[44]

Haanen J.B.A.G., Carbonnel F., Robert C. et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up // Ann. Oncol. 2017. Vol. 28, No. suppl_4. P. iv119–iv142. DOI: 10.1093/annonc/mdx225

[45]

Abu-Sbeih H, Ali FS, Naqash AR, et al. Resumption of immune checkpoint inhibitor therapy after immune-mediated colitis. J Clin Oncol. 2019;37(30):2738–2745. DOI: 10.1200/JCO.19.00320

[46]

Abu-Sbeih H., Ali F.S., Naqash A.R. et al. Resumption of immune checkpoint inhibitor therapy after immune-mediated colitis // J. Clin. Oncol. 2019. Vol. 37, No. 30. P. 2738–2745. DOI: 10.1200/JCO.19.00320

[47]

Pollack MH, Betof A, Dearden H, et al. Safety of resuming anti-PD-1 in patients with immune-related adverse events (irAEs) during combined anti-CTLA-4 and anti-PD1 in metastatic melanoma. Ann Oncol. 2018;29(1):250–255. DOI: 10.1093/annonc/mdx642

[48]

Pollack M.H., Betof A., Dearden H. et al. Safety of resuming anti-PD-1 in patients with immune-related adverse events (irAEs) during combined anti-CTLA-4 and anti-PD1 in metastatic melanoma // Ann. Oncol. 2018. Vol. 29, No. 1. P. 250–255. DOI: 10.1093/annonc/mdx642

[49]

Nakajima EC, Lipson EJ, Brahmer JR. Challenge of rechallenge: when to resume immunotherapy following an immune-related adverse event. J Clin Oncol. 2019;37(30):2714–2718. DOI: 10.1200/JCO.19.01623

[50]

Nakajima E.C., Lipson E.J., Brahmer J.R. Challenge of rechallenge: when to resume immunotherapy following an immune-related adverse event // J. Clin. Oncol. 2019. Vol. 37, No. 30. P. 2714–2718. DOI: 10.1200/JCO.19.01623

RIGHTS & PERMISSIONS

Mazurov V.I., Melnikov E.S., Pavlyuchenko E.S., Dyakonova M.N.

PDF

181

Accesses

0

Citation

Detail

Sections
Recommended

/