Disorders of lipid metabolism in the liver in patients with chronic viral hepatitis

Valeriy V. Tsvetkov , Ivan I. Tokin , Olesya E. Nikitina , Dmitry A. Lioznov

HERALD of North-Western State Medical University named after I.I. Mechnikov ›› 2021, Vol. 13 ›› Issue (2) : 27 -38.

PDF
HERALD of North-Western State Medical University named after I.I. Mechnikov ›› 2021, Vol. 13 ›› Issue (2) :27 -38. DOI: 10.17816/mechnikov71418
Reviews
research-article

Disorders of lipid metabolism in the liver in patients with chronic viral hepatitis

Author information +
History +
PDF

Abstract

The review article is devoted to the problem of lipid metabolism disorders in the liver in patients with chronic hepatitis B and chronic hepatitis C. The results of modern biological, epidemiological and clinical studies aimed at studying the causes and mechanisms of the formation of liver steatosis and steatohepatitis, their prevalence and influence on the course of infectious pathology are presented. Particular attention is paid to the generalization and systematization of the currently available data on the mechanisms of lipid metabolism disorders in the liver, mediated by the molecular structures of hepatitis B and C viruses. In conclusion, the need for timely diagnosis and treatment of pathological conditions caused by the development of lipid metabolism disorders in the liver is substantiated in order to increase the quality of medical care for patients with chronic hepatitis B and C.

Keywords

lipid metabolism / hepatitis C virus / hepatitis B virus / chronic viral hepatitis C / chronic viral hepatitis B / fatty liver / steatohepatitis

Cite this article

Download citation ▾
Valeriy V. Tsvetkov, Ivan I. Tokin, Olesya E. Nikitina, Dmitry A. Lioznov. Disorders of lipid metabolism in the liver in patients with chronic viral hepatitis. HERALD of North-Western State Medical University named after I.I. Mechnikov, 2021, 13(2): 27-38 DOI:10.17816/mechnikov71418

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kawano Y, Cohen DE. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol. 2013;48(4):434–441. DOI: 10.1007/s00535-013-0758-5

[2]

Kawano Y., Cohen D.E. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease // J. Gastroenterol. 2013. Vol. 48, No. 4. P. 434–441. DOI: 10.1007/s00535-013-0758-5

[3]

Marchesini G, Brizi M, Morselli-Labate A, et al. Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med. 1999;107(5):450–455. DOI: 10.1016/s0002-9343(99)00271-5

[4]

Marchesini G., Brizi M., Morselli-Labate A. et al. Association of nonalcoholic fatty liver disease with insulin resistance // Am. J. Med. 1999. Vol. 107, No. 5. P. 450–455. DOI: 10.1016/s0002-9343(99)00271-5

[5]

Marchesini G, Brizi M, Bianchi G, et al. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes. 2001;50(8):1844–1850. DOI: 10.2337/diabetes.50.8.1844

[6]

Marchesini G., Brizi M., Bianchi G. et al. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome // Diabetes. 2001. Vol. 50, No. 8. P. 1844–1850. DOI: 10.2337/diabetes.50.8.1844

[7]

Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002;109(9):1125–1131. DOI: 10.1172/jci0215593

[8]

Horton J.D., Goldstein J.L., Brown M.S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver // J. Clin. Invest. 2002. Vol. 109, No. 9. P. 1125–1131. DOI: 10.1172/jci0215593

[9]

Wang Y, Viscarra J, Kim SJ, Sul HS. Transcriptional regulation of hepatic lipogenesis. Nat Rev Mol Cell Biol. 2015;16(11):678–689. DOI: 10.1038/nrm4074

[10]

Wang Y., Viscarra J., Kim S.J., Sul H.S. Transcriptional regulation of hepatic lipogenesis // Nat. Rev. Mol. Cell. Biol. 2015. Vol. 16, No. 11. P. 678–689. DOI: 10.1038/nrm4074

[11]

Walther TC, Farese JrRV. Lipid droplets and cellular lipid metabolism. Annu Rev Biochem. 2012;81:687–714. DOI: 10.1146/annurev-biochem-061009-102430

[12]

Walther T.C., Farese R.V.Jr. Lipid droplets and cellular lipid metabolism // Annu. Rev. Biochem. 2012. Vol. 81. P. 687–714. DOI: 10.1146/annurev-biochem-061009-102430

[13]

Wilfling F, Wang H, Haas JT, et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell. 2013;24(4):384–399. DOI: 10.1016/j.devcel.2013.01.013

[14]

Wilfling F., Wang H., Haas J.T. et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets // Dev. Cell. 2013. Vol. 24, No. 4. P. 384–399. DOI: 10.1016/j.devcel.2013.01.013

[15]

Xu L, Zhou L, Li P. CIDE proteins and lipid metabolism. Arterioscler Thromb Vasc Biol. 2012;32(5):1094–1098. DOI: 10.1161/ATVBAHA.111.241489

[16]

Xu L., Zhou L., Li P. CIDE proteins and lipid metabolism // Arterioscler. Thromb. Vasc. Biol. 2012. Vol. 32, No. 5. P. 1094–1098. DOI: 10.1161/ATVBAHA.111.241489

[17]

Thiam AR, Farese RVJr, Walther TC. The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol. 2013;14(12):775–786. DOI: 10.1038/nrm3699

[18]

Thiam A.R., Farese R.V.Jr., Walther T.C. The biophysics and cell biology of lipid droplets // Nat. Rev. Mol. Cell. Biol. 2013. Vol. 14, No. 12. P. 775–786. DOI: 10.1038/nrm3699

[19]

Kory N, Thiam AR, Farese RVJr, Walther TC. Protein crowding is a determinant of lipid droplet protein composition. Dev Cell. 2015;34(3):351–363. DOI: 10.1016/j.devcel.2015.06.007

[20]

Kory N., Thiam A.R., Farese R.V.Jr., Walther T.C. Protein crowding is a determinant of lipid droplet protein composition // Dev. Cell. 2015. Vol. 34, No. 3. P. 351–363. DOI: 10.1016/j.devcel.2015.06.007

[21]

Wu JW, Wang SP, Alvarez F, et al. Deficiency of liver adipose triglyceride lipase in mice causes progressive hepatic steatosis. Hepatology. 2011;54(1):122–132. DOI: 10.1002/hep.24338

[22]

Wu J.W., Wang S.P., Alvarez F. et al. Deficiency of liver adipose triglyceride lipase in mice causes progressive hepatic steatosis // Hepatology. 2011. Vol. 54, No. 1. P. 122–132. DOI: 10.1002/hep.24338

[23]

Singh R, Cuervo AM. Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol. 2012;2012:282041. DOI: 10.1155/2012/282041

[24]

Singh R., Cuervo A.M. Lipophagy: connecting autophagy and lipid metabolism // Int. J. Cell. Biol. 2012. Vol. 2012. P. 282041. DOI: 10.1155/2012/282041

[25]

Tiwari S, Siddiqi SA. Intracellular trafficking and secretion of VLDL. Arterioscler Thromb Vasc Biol. 2012;32(5):1079–1086. DOI: 10.1161/ATVBAHA.111.241471

[26]

Tiwari S., Siddiqi S.A. Intracellular trafficking and secretion of VLDL // Arterioscler. Thromb. Vasc. Biol. 2012. Vol. 32, No. 5. P. 1079–1086. DOI: 10.1161/ATVBAHA.111.241471

[27]

Ye J, Li JZ, Liu Y, et al. Cideb, an ER and lipid droplet-associated protein, mediates VLDL lipidation and maturation by interacting with apolipoprotein B. Cell Metab. 2009;9(2):177–190. DOI: 10.1016/j.cmet.2008.12.013

[28]

Ye J., Li J.Z., Liu Y. et al. Cideb, an ER and lipid droplet-associated protein, mediates VLDL lipidation and maturation by interacting with apolipoprotein B // Cell. Metab. 2009. Vol. 9, No. 2. P. 177–190. DOI: 10.1016/j.cmet.2008.12.013

[29]

Razi B, Alizadeh S, Omidkhoda A, et al. Association of chronic hepatitis B infection with metabolic syndrome and its components: meta-analysis of observational studies. Diabetes Metab Syndr. 2017;11 Suppl 2:S939–S947. DOI: 10.1016/j.dsx.2017.07.020

[30]

Razi B., Alizadeh S., Omidkhoda A. et al. Association of chronic hepatitis B infection with metabolic syndrome and its components: meta-analysis of observational studies // Diabetes Metab. Syndr. 2017. Vol. 11 Suppl 2. P. S939–S947. DOI: 10.1016/j.dsx.2017.07.020

[31]

Jinjuvadia R, Liangpunsakul S. Association between metabolic syndrome and its individual components with viral hepatitis B. Am J Med Sci. 2014;347(1):23–27. DOI: 10.1097/MAJ.0b013e31828b25a5

[32]

Jinjuvadia R., Liangpunsakul S. Association between metabolic syndrome and its individual components with viral hepatitis B // Am. J. Med. Sci. 2014. Vol. 347, No. 1. P. 23–27. DOI: 10.1097/MAJ.0b013e31828b25a5

[33]

Chen JY, Wang JH, Lin CY, et al. Lower prevalence of hypercholesterolemia and hyperglyceridemia found in subjects with seropositivity for both hepatitis B and C strains independently. J Gastroenterol Hepatol. 2010;25(11):1763–1768. DOI: 10.1111/j.1440-1746.2010.06300.x

[34]

Chen J.Y., Wang J.H., Lin C.Y. et al. Lower prevalence of hypercholesterolemia and hyperglyceridemia found in subjects with seropositivity for both hepatitis B and C strains independently // J. Gastroenterol. Hepatol. 2010. Vol. 25, No. 11. P. 1763–1768. DOI: 10.1111/j.1440-1746.2010.06300.x

[35]

Liu PT, Hwang AC, Chen JD. Combined effects of hepatitis B virus infection and elevated alanine aminotransferase levels on dyslipidemia. Metabolism. 2013;62(2):220–225. DOI: 10.1016/j.metabol.2012.07.022

[36]

Liu P.T., Hwang A.C., Chen J.D. Combined effects of hepatitis B virus infection and elevated alanine aminotransferase levels on dyslipidemia // Metabolism. 2013. Vol. 62, No. 2. P. 220–225. DOI: 10.1016/j.metabol.2012.07.022

[37]

Chiang CH, Lai JS, Hung SH, et al. Serum adiponectin levels are associated with hepatitis B viral load in overweight to obese hepatitis B virus carriers. Obesity (Silver Spring). 2013;21(2):291–296. DOI: 10.1002/oby.20000

[38]

Chiang C.H., Lai J.S., Hung S.H. et al. Serum adiponectin levels are associated with hepatitis B viral load in overweight to obese hepatitis B virus carriers // Obesity (Silver Spring). 2013. Vol. 21, No. 2. P. 291–296. DOI: 10.1002/oby.20000

[39]

Wong VW, Wong GL, Chu WC, et al. Hepatitis B virus infection and fatty liver in the general population. J Hepatol. 2012;56(3):533–540. DOI: 10.1016/j.jhep.2011.09.013

[40]

Wong V.W., Wong G.L., Chu W.C. et al. Hepatitis B virus infection and fatty liver in the general population // J. Hepatol. 2012. Vol. 56, No. 3. P. 533–540. DOI: 10.1016/j.jhep.2011.09.013

[41]

Machado MV, Oliveira AG, Cortez-Pinto H. Hepatic steatosis in hepatitis B virus infected patients: meta-analysis of risk factors and comparison with hepatitis C infected patients. J Gastroenterol Hepatol. 2011;26(9):1361–1367. DOI: 10.1111/j.1440-1746.2011.06801.x

[42]

Machado M.V., Oliveira A.G., Cortez-Pinto H. Hepatic steatosis in hepatitis B virus infected patients: meta-analysis of risk factors and comparison with hepatitis C infected patients // J. Gastroenterol. Hepatol. 2011. Vol. 26, No. 9. P. 1361–1367. DOI: 10.1111/j.1440-1746.2011.06801.x

[43]

Li H, Zhu W, Zhang L, et al. The metabolic responses to hepatitis B virus infection shed new light on pathogenesis and targets for treatment. Sci Rep. 2015;5:8421. DOI: 10.1038/srep08421

[44]

Li H., Zhu W., Zhang L. et al. The metabolic responses to hepatitis B virus infection shed new light on pathogenesis and targets for treatment // Sci. Rep. 2015. Vol. 5. P. 8421. DOI: 10.1038/srep08421

[45]

Xu Z, Zhai L, Yi T, et al. Hepatitis B virus X induces inflammation and cancer in mice liver through dysregulation of cytoskeletal remodeling and lipid metabolism. Oncotarget. 2016;7(43):70559–70574. DOI: 10.18632/oncotarget.12372

[46]

Xu Z., Zhai L., Yi T. et al. Hepatitis B virus X induces inflammation and cancer in mice liver through dysregulation of cytoskeletal remodeling and lipid metabolism // Oncotarget. 2016. Vol. 7, No. 43. P. 70559–70574. DOI: 10.18632/oncotarget.12372

[47]

Wu Y, Peng X, Zhu Y, et al. Hepatitis B virus X protein induces hepatic steatosis by enhancing the expression of liver fatty acid binding protein. J Virol. 2015;90(4):1729–1740. DOI: 10.1128/JVI.02604-15

[48]

Wu Y., Peng X., Zhu Y. et al. Hepatitis B virus X protein induces hepatic steatosis by enhancing the expression of liver fatty acid binding protein // J. Virol. 2015. Vol. 90, No. 4. P. 1729–1740. DOI: 10.1128/JVI.02604-15

[49]

Kim K, Kim KH, Kim HH, Cheong J. Hepatitis B virus X protein induces lipogenic transcription factor SREBP1 and fatty acid synthase through the activation of nuclear receptor LXRα. Biochem J. 2008;416(2):219–230. DOI: 10.1042/BJ20081336

[50]

Kim K., Kim K.H., Kim H.H., Cheong J. Hepatitis B virus X protein induces lipogenic transcription factor SREBP1 and fatty acid synthase through the activation of nuclear receptor LXRα // Biochem. J. 2008. Vol. 416, No. 2. P. 219–230. DOI: 10.1042/BJ20081336

[51]

Kang SK, Chung TW, Lee JY, et al. The hepatitis B virus X protein inhibits secretion of apolipoprtein B by enhancing the expression of N-acetylglucosaminyltransferase III. J Biol Chem. 2004;279(27):28106–28112. DOI: 10.1074/jbc.M403176200

[52]

Kang S.K., Chung T.W., Lee J.Y. et al. The hepatitis B virus X protein inhibits secretion of apolipoprtein B by enhancing the expression of N-acetylglucosaminyltransferase III // J. Biol. Chem. 2004. Vol. 279, No. 27. P. 28106–28112. DOI: 10.1074/jbc.M403176200

[53]

Cheng YL, Wang YJ, Kao WY, et al. Inverse association between hepatitis B virus infection and fatty liver disease: a largescale study in populations seeking for checkup. PloS One. 2013;8(8):e72049. DOI: 10.1371/journal.pone.0072049

[54]

Cheng Y.L., Wang Y.J., Kao W.Y. et al. Inverse association between hepatitis B virus infection and fatty liver disease: a largescale study in populations seeking for checkup // PloS One. 2013. Vol. 8, No. 8. P. e72049. DOI: 10.1371/journal.pone.0072049

[55]

Ghalamkari S, Sharafi H, Alavian SM. Association of PNPLA3 rs738409 polymorphism with liver steatosis but not with cirrhosis in patients with HBV infection: Systematic review with metaanalysis. J Gene Med. 2018;20(1):e3001. DOI: 10.1002/jgm.3001

[56]

Ghalamkari S., Sharafi H., Alavian S.M. Association of PNPLA3 rs738409 polymorphism with liver steatosis but not with cirrhosis in patients with HBV infection: Systematic review with metaanalysis // J. Gene. Med. 2018. Vol. 20, No. 1. P. e3001. DOI: 10.1002/jgm.3001

[57]

Kuo YH, Kee KM, Wang JH, et al. Association between chronic viral hepatitis and metabolic syndrome in southern Taiwan: a large populationbased study. Aliment Pharmacol Ther. 2018;48(9):993–1002. DOI: 10.1111/apt.14960

[58]

Kuo Y.H., Kee K.M., Wang J.H. et al. Association between chronic viral hepatitis and metabolic syndrome in southern Taiwan: a large populationbased study // Aliment. Pharmacol. Ther. 2018. Vol. 48, No. 9. P. 993–1002. DOI: 10.1111/apt.14960

[59]

Banks DE, Bogler Y, Bhuket T, et al. Significant disparities in risks of diabetes mellitus and metabolic syndrome among chronic hepatitis C virus patients in the US. Diabetes Metab Syndr. 2017;11 Suppl 1:S153–S158. DOI: 10.1016/j.dsx.2016.12.025

[60]

Banks D.E., Bogler Y., Bhuket T. et al. Significant disparities in risks of diabetes mellitus and metabolic syndrome among chronic hepatitis C virus patients in the US // Diabetes Metab. Syndr. 2017. Vol. 11 Suppl 1. P. S153–S158. DOI: 10.1016/j.dsx.2016.12.025

[61]

Arain SQ, Talpur FN, Channa NA. A comparative study of serum lipid contents in pre and post IFN-alpha treated acute hepatitis C patients. Lipids Health Dis. 2015;14:117. DOI: 10.1186/s12944-015-0119-x

[62]

Arain S.Q., Talpur F.N., Channa N.A. A comparative study of serum lipid contents in pre and post IFN-alpha treated acute hepatitis C patients // Lipids Health. Dis. 2015. Vol. 14. P. 117. DOI: 10.1186/s12944-015-0119-x

[63]

Adinolfi LE, Gambardella M, Andreana A, et al. Steatosis accelerates the progression of liver damage of chronic hepatitis C patients and correlates with specific HCV genotype and visceral obesity. Hepatology. 2001;33(6):1358–1364. DOI: 10.1053/jhep.2001.24432

[64]

Adinolfi L.E., Gambardella M., Andreana A. et al. Steatosis accelerates the progression of liver damage of chronic hepatitis C patients and correlates with specific HCV genotype and visceral obesity // Hepatology. 2001. Vol. 33, No. 6. P. 1358–1364. DOI: 10.1053/jhep.2001.24432

[65]

Negro F. Steatosis and insulin resistance in response to treatment of chronic hepatitis C. J Viral Hepat. 2012;19 Suppl 1:42–47. DOI: 10.1111/j.1365-2893.2011.01523.x

[66]

Negro F. Steatosis and insulin resistance in response to treatment of chronic hepatitis C // J. Viral. Hepat. 2012. Vol. 19 Suppl 1. P. 42–47. DOI: 10.1111/j.1365-2893.2011.01523.x

[67]

Hofmann S, Krajewski M, Scherer C, et al. Complex lipid metabolic remodeling is required for efficient hepatitis C virus replication. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863(9):1041–1056. DOI: 10.1016/j.bbalip.2018.06.002

[68]

Hofmann S., Krajewski M., Scherer C. et al. Complex lipid metabolic remodeling is required for efficient hepatitis C virus replication // Biochim. Biophys. Acta. Mol. Cell. Biol. Lipids. 2018. Vol. 1863, No. 9. P. 1041–1056. DOI: 10.1016/j.bbalip.2018.06.002

[69]

Chang ML. Metabolic alterations and hepatitis C: From bench to bedside. World J Gastroenterol. 2016;22(4):1461–1467. DOI: 10.3748/wjg.v22.i4.1461

[70]

Chang M.L. Metabolic alterations and hepatitis C: From bench to bedside // World J. Gas troenterol. 2016. Vol. 22, No. 4. P. 1461–1467. DOI: 10.3748/wjg.v22.i4.1461

[71]

Miyoshi H, Moriya K, Tsutsumi T, et al. Pathogenesis of lipid metabolism disorder in hepatitis C: polyunsaturated fatty acids counteract lipid alterations induced by the core protein. J Hepatol. 2011;54(3):432–438. DOI: 10.1016/j.jhep.2010.07.039

[72]

Miyoshi H., Moriya K., Tsutsumi T. et al. Pathogenesis of lipid metabolism disorder in hepatitis C: polyunsaturated fatty acids counteract lipid alterations induced by the core protein // J. Hepatol. 2011. Vol. 54, No. 3. P. 432–438. DOI: 10.1016/j.jhep.2010.07.039

[73]

Blanchet M, Sureau C, Guévin C, et al. SKI-1/S1P inhibitor PF-429242 impairs the onset of HCV infection. Antiviral Res. 2015;115:94–104. DOI: 10.1016/j.antiviral.2014.12.017

[74]

Blanchet M., Sureau C., Guévin C. et al. SKI-1/S1P inhibitor PF-429242 impairs the onset of HCV infection // Antiviral. Res. 2015. Vol. 115. P. 94–104. DOI: 10.1016/j.antiviral.2014.12.017

[75]

Harris C, Herker E, Farese RVJr, Ott M. Hepatitis C virus core protein decreases lipid droplet turnover: a mechanism for core-induced steatosis. J Biol Chem. 2011;286(49):42615–42625. DOI: 10.1074/jbc.M111.285148

[76]

Harris C., Herker E., Farese R.V.Jr., Ott M. Hepatitis C virus core protein decreases lipid droplet turnover: a mechanism for core-induced steatosis // J. Biol. Chem. 2011. Vol. 286, No. 49. P. 42615–42625. DOI: 10.1074/jbc.M111.285148

[77]

Sato S, Fukasawa M, Yamakawa Y, et al. Proteomic profiling of lipid droplet proteins in hepatoma cell lines expressing hepatitis C virus core protein. J Biochem. 2006;139(5):921–930. DOI: 10.1093/jb/mvj104

[78]

Sato S., Fukasawa M., Yamakawa Y. et al. Proteomic profiling of lipid droplet proteins in hepatoma cell lines expressing hepatitis C virus core protein // J. Biochem. 2006. Vol. 139, No. 5. P. 921–930. DOI: 10.1093/jb/mvj104

[79]

Ferguson D, Zhang J, Davis MA, et al. The lipid droplet-associated protein perilipin 3 facilitates hepatitis C virus driven hepatic steatosis. J Lipid Res. 2017;58(2):420–432. DOI: 10.1194/jlr.M073734

[80]

Ferguson D., Zhang J., Davis M.A. et al. The lipid droplet-associated protein perilipin 3 facilitates hepatitis C virus driven hepatic steatosis // J. Lipid. Res. 2017. Vol. 58, No. 2. P. 420–432. DOI: 10.1194/jlr.M073734

[81]

Meng Z, Liu Q, Sun F, Qiao L. Hepatitis C virus nonstructural protein 5A perturbs lipid metabolism by modulating AMPK/SREBP-1c signaling. Lipids Health Dis. 2019;18(1):191. DOI: 10.1186/s12944-019-1136-y

[82]

Meng Z., Liu Q., Sun F., Qiao L. Hepatitis C virus nonstructural protein 5A perturbs lipid metabolism by modulating AMPK/SREBP-1c signaling // Lipids Health Dis. 2019. Vol. 18, No. 1. P. 191. DOI: 10.1186/s12944-019-1136-y

[83]

Camus G, Schweiger M, Herker E, et al. The hepatitis C virus core protein inhibits adipose triglyceride lipase (ATGL)-mediated lipid mobilization and enhances the ATGL interaction with comparative gene identification 58 (CGI-58) and lipid droplets. J Biol Chem. 2014;289(52):35770–35780. DOI: 10.1074/jbc.M114.587816

[84]

Camus G., Schweiger M., Herker E. et al. The hepatitis C virus core protein inhibits adipose triglyceride lipase (ATGL)-mediated lipid mobilization and enhances the ATGL interaction with comparative gene identification 58 (CGI-58) and lipid droplets // J. Biol. Chem. 2014. Vol. 289, No. 52. P. 35770–35780. DOI: 10.1074/jbc.M114.587816

[85]

Abenavoli L, Masarone M, Peta V, et al. Insulin resistance and liver steatosis in chronic hepatitis C infection genotype 3. World J Gastroenterol. 2014;20(41):15233–15240. DOI: 10.3748/wjg.v20.i41.15233

[86]

Abenavoli L., Masarone M., Peta V. et al. Insulin resistance and liver steatosis in chronic hepatitis C infection genotype 3 // World J. Gastroenterol. 2014. Vol. 20, No. 41. P. 15233–15240. DOI: 10.3748/wjg.v20.i41.15233

[87]

Shi ST, Polyak SJ, Tu H, et al. Hepatitis C virus NS5A colocalizes with the core protein on lipid droplets and interacts with apolipoproteins. Virology. 2002;292(2):198–210. DOI: 10.1006/viro.2001.1225

[88]

Shi S.T., Polyak S.J., Tu H. et al. Hepatitis C virus NS5A colocalizes with the core protein on lipid droplets and interacts with apolipoproteins // Virology. 2002. Vol. 292, No. 2. P. 198–210. DOI: 10.1006/viro.2001.1225

[89]

Benga WJ, Krieger SE, Dimitrova M, et al. Apolipoprotein E interacts with hepatitis C virus nonstructural protein 5A and determines assembly of infectious particles. Hepatology. 2010;51(1):43–53. DOI: 10.1002/hep.23278

[90]

Benga W.J., Krieger S.E., Dimitrova M. et al. Apolipoprotein E interacts with hepatitis C virus nonstructural protein 5A and determines assembly of infectious particles // Hepatology. 2010. Vol. 51, No. 1. P. 43–53. DOI: 10.1002/hep.23278

[91]

Gong Y, Cun W. The Role of ApoE in HCV Infection and Comorbidity. Int J Mol Sci. 2019;20(8):2037. DOI: 10.3390/ijms20082037

[92]

Gong Y., Cun W. The Role of ApoE in HCV Infection and Comorbidity // Int. J. Mol. Sci. 2019. Vol. 20, No. 8. P. 2037. DOI: 10.3390/ijms20082037

[93]

Adinolfi LE, Restivo L, Zampino R, et al. Metabolic alterations and chronic hepatitis C: treatment strategies. Expert Opin Pharmacother. 2011;12(14):2215–2234. DOI: 10.1517/14656566.2011.597742

[94]

Adinolfi L.E., Restivo L., Zampino R. et al. Metabolic alterations and chronic hepatitis C: treatment strategies // Expert. Opin. Pharmacother. 2011. Vol. 12, No. 14. P. 2215–2234. DOI: 10.1517/14656566.2011.597742

[95]

Huang CM, Chang KC, Hung CH, et al. Impact of PNPLA3 and IFNL3 polymorphisms on hepatic steatosis in Asian patients with chronic hepatitis C. PloS One. 2017;12(8):e0182204. DOI: 10.1371/journal.pone.0182204

[96]

Huang C.M., Chang K.C., Hung C.H. et al. Impact of PNPLA3 and IFNL3 polymorphisms on hepatic steatosis in Asian patients with chronic hepatitis C // PloS One. 2017. Vol. 12, No. 8. P. e0182204. DOI: 10.1371/journal.pone.0182204

[97]

Magri MC, Manchiero C, Prata TVG, et al. The influence of gene chronic hepatitis C virus infection on hepatic fibrosis and steatosis. Diagn Microbiol Infect Dis. 2020;97(2):115025. DOI: 10.1016/j.diagmicrobio.2020.115025

[98]

Magri M.C., Manchiero C., Prata T.V.G. et al. The influence of gene chronic hepatitis C virus infection on hepatic fibrosis and steatosis // Diagn. Microbiol. Infect. Dis. 2020. Vol. 97, No. 2. P. 115025. DOI: 10.1016/j.diagmicrobio.2020.115025

[99]

Liu Z, Que S, Zhou L, et al. The effect of the TM6SF2 E167K variant on liver steatosis and fibrosis in patients with chronic hepatitis C: a meta-analysis. Sci Rep. 2017;7(1):9273. DOI: 10.1038/s41598-017-09548-9

[100]

Liu Z., Que S., Zhou L. et al. The effect of the TM6SF2 E167K variant on liver steatosis and fibrosis in patients with chronic hepatitis C: a meta-analysis // Sci. Rep. 2017. Vol. 7, No. 1. P. 9273. DOI: 10.1038/s41598-017-09548-9

[101]

Yoon H, Lee JG, Yoo JH, et al. Effects of metabolic syndrome on fibrosis in chronic viral hepatitis. Gut Liver. 2013;7(14):469–474. DOI: 10.5009/gnl.2013.7.4.469

[102]

Yoon H., Lee J.G., Yoo J.H. et al. Effects of metabolic syndrome on fibrosis in chronic viral hepatitis // Gut. Liver. 2013. Vol. 7, No. 14. P. 469–474. DOI: 10.5009/gnl.2013.7.4.469

[103]

Leandro G, Mangia A, Hui J, et al. Relationship between steatosis, inflammation, and fibrosis in chronic hepatitis C: a meta-analysis of individual patient data. Gastroenterology. 2006;130(6):1636–1642. DOI: 10.1053/j.gastro.2006.03.014

[104]

Leandro G., Mangia A., Hui J. et al. Relationship between steatosis, inflammation, and fibrosis in chronic hepatitis C: a meta-analysis of individual patient data // Gastroenterology. 2006. Vol. 130, No. 6. P. 1636–1642. DOI: 10.1053/j.gastro.2006.03.014

[105]

Westbrook RH, Dusheiko G. Natural history of hepatitis C. J Hepatol. 2014;61(1 Suppl):S58–S68. DOI: 10.1016/j.jhep.2014.07.012

[106]

Westbrook R.H., Dusheiko G. Natural history of hepatitis C // J. Hepatol. 2014. Vol. 61, No. 1 Suppl. P. S58–S68. DOI: 10.1016/j.jhep.2014.07.012

[107]

Stevenson HL, Utay NS. Hepatic steatosis in HCV-infected persons in the direct-acting antiviral era. Trop Dis Travel Med Vaccines. 2016;2:21. DOI: 10.1186/s40794-016-0038-5

[108]

Stevenson H.L., Utay N.S. Hepatic steatosis in HCV-infected persons in the direct-acting antiviral era // Trop. Dis. Travel Med. Vaccines. 2016. Vol. 2. P. 21. DOI: 10.1186/s40794-016-0038-5

RIGHTS & PERMISSIONS

Tsvetkov V.V., Tokin I.I., Nikitina O.E., Lioznov D.A.

PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

/