Therapeutic potential of the stromal vascular fraction in COVID-19
Valentin N. Pavlov , Albert A. Kazikhinurov , Rustem A. Kazikhinurov , Murad A. Agaverdiyev , Ilgiz F. Gareev , Ozal A. Beylerli , Bakhodur Z. Mazorov
HERALD of North-Western State Medical University named after I.I. Mechnikov ›› 2021, Vol. 13 ›› Issue (1) : 15 -26.
Therapeutic potential of the stromal vascular fraction in COVID-19
The new coronavirus infection (COVID-19) is already known to cause serious respiratory illnesses such as pneumonia and lung failure. COVID-19 has caused catastrophic damage to the public health, economic and social stability. As COVID-19 has resulted in enormous human toll and serious economic loss that poses a global threat, urgent understanding of the current situation and the development of strategies to mitigate the spread of the virus is required. Today, many studies are being carried out around the world to study the pathogenesis of COVID-19, where the development of a “cytokine storm” or pulmonary fibrosis is a serious complication that can lead to unfavorable outcomes. This leads to the fact that a deeper understanding of the nature of the virus will allow to develop new approaches in pathogenetic therapy. In this regard, the stromal vascular fraction has tremendous therapeutic potential in COVID-19. Stromal vascular fraction provides anti-inflammatory and immunomodulatory effects and promotes the restoration and regeneration of damaged tissues. The availability, the ability to obtain a significant volume of viable cells of the stromal vascular fraction population, such as adipose tissue stem / stromal cells, as well as their use by the intravenous route, has proven safe and effective in other forms of lung disease, including fibrotic diseases. In other words, the goal of this therapy for COVID-19 is to eliminate the inflammatory process, restore trophic and regenerate damaged tissues, and remodel fibrous and connective tissue. However, stromal vascular fraction is not currently approved for the prevention or treatment of COVID-19 cases. However, clinical trials are ongoing to ensure maximum understanding in terms of efficacy and safety. In this paper, we will discuss this new approach to the use of stromal vascular fraction therapy, which serves as a “ray of hope” in the fight against severe forms of COVID-19
stromal vascular fraction / COVID-19 / therapy / adipose tissue stem / stromal cells / mesenchymal stem cells
| [1] |
Shi H, Yang G, Gao C, et al. Management of neurosurgical patients during the COVID-19 pandemic. Creative Surgery and Oncology. 2020;10(3):177–182. (In Russ.) DOI: 10.24060/2076-30932020-10-3-177-182 |
| [2] |
Shi H., Yang G., Gao C. и др. Стратегия ведения больных нейрохирургического профиля в условиях эпидемии COVID-19 // Креативная хирургия и онкология. 2020. Т. 10, № 3. С. 177–182. DOI: 10.24060/2076-30932020-10-3-177-182 |
| [3] |
Izmailov A, Beylerli O, Pavlov V, et al. Management strategy for cancer patients in the context of the COVID-19 epidemic. Semin Oncol. 2020;47(5):312–314. DOI: 10.1053/j.seminoncol.2020.07.004 |
| [4] |
Izmailov A., Beylerli O., Pavlov V. et al. Management strategy for cancer patients in the context of the COVID-19 epidemic // Semin. Oncol. 2020. Vol. 47, No. 5. P. 312–314. DOI: 10.1053/j.seminoncol.2020.07.004 |
| [5] |
Pavlov V, Beylerli O, Gareev I, Solis LFT. COVID-19-related intracerebral hemorrhage. Front Aging Neurosci. 2020;12:600172. DOI: 10.3389/fnagi.2020.600172 |
| [6] |
Pavlov V., Beylerli O., Gareev I., Solis L.F.T. COVID-19-related intracerebral hemorrhage // Front. Aging Neurosci. 2020. Vol. 12. P. 600172. DOI: 10.3389/fnagi.2020.600172 |
| [7] |
Chen Y, Klein SL, Garibaldi BT, et al. Aging in COVID-19: Vulnerability, immunity and intervention. Ageing Res Rev. 2021;65:101205. DOI: 10.1016/j.arr.2020.101205 |
| [8] |
Chen Y., Klein S.L., Garibaldi B.T. et al. Aging in COVID-19: Vulnerability, immunity and intervention // Ageing Res. Rev. 2021. Vol. 65. P. 101205. DOI: 10.1016/j.arr.2020.101205 |
| [9] |
Umakanthan S, Sahu P, Ranade AV, et al. Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19). Postgrad Med J. 2020;96(1142):753–758. DOI: 10.1136/postgradmedj-2020-138234 |
| [10] |
Umakanthan S., Sahu P., Ranade A.V. et al. Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19) // Postgrad. Med. J. 2020. Vol. 96, No. 1142. P. 753–758. DOI: 10.1136/postgradmedj-2020-138234 |
| [11] |
Baptista LS. Adipose stromal/stem cells in regenerative medicine: Potentials and limitations. World J Stem Cells. 2020;12(1):1–7. DOI: 10.4252/wjsc.v12.i1.1 |
| [12] |
Baptista L.S. Adipose stromal/stem cells in regenerative medicine: Potentials and limitations // World J. Stem Cells. 2020. Vol. 12, No. 1. P. 1–7. DOI: 10.4252/wjsc.v12.i1.1 |
| [13] |
Daher SR, Johnstone BH, Phinney DG, March KL. Adipose stromal/stem cells: basic and translational advances: the IFATS collection. Stem Cells. 2008;26(10):2664–2665. DOI: 10.1634/stemcells.2008-0927 |
| [14] |
Daher S.R., Johnstone B.H., Phinney D.G., March K.L. Adipose stromal/stem cells: basic and translational advances: the IFATS collection // Stem Cells. 2008. Vol. 26, No. 10. P. 2664–2665. DOI: 10.1634/stemcells.2008-0927 |
| [15] |
Sheykhhasan M, Wong JKL, Seifalian AM. Human adipose-derived stem cells with great therapeutic potential. Curr Stem Cell Res Ther. 2019;14(7):532–548. DOI: 10.2174/1574888X14666190411121528 |
| [16] |
Sheykhhasan M., Wong J.K.L., Seifalian A.M. Human adipose-derived stem cells with great therapeutic potential // Curr. Stem Cell Res. Ther. 2019. Vol. 14, No. 7. P. 532–548. DOI: 10.2174/1574888X14666190411121528 |
| [17] |
Si Z, Wang X, Sun C, et al. Adipose-derived stem cells: Sources, potency, and implications for regenerative therapies. Biomed Pharmacother. 2019;114:108765. DOI: 10.1016/j.biopha.2019.108765 |
| [18] |
Si Z., Wang X., Sun C. et al. Adipose-derived stem cells: Sources, potency, and implications for regenerative therapies // Biomed. Pharmacother. 2019. Vol. 114. P. 108765. DOI: 10.1016/j.biopha.2019.108765 |
| [19] |
Al-Ghadban S, Bunnell BA. Adipose tissue-derived stem cells: Immunomodulatory effects and therapeutic potential. Physiology (Bethesda). 2020;35(2):125–133. DOI: 10.1152/physiol.00021.2019 |
| [20] |
Al-Ghadban S., Bunnell B.A. Adipose tissue-derived stem cells: Immunomodulatory effects and therapeutic potential // Physiology (Bethesda). 2020. Vol. 35, No. 2. P. 125–133. DOI: 10.1152/physiol.00021.2019 |
| [21] |
Li J, Curley JL, Floyd ZE, et al. Isolation of human adipose-derived stem cells from lipoaspirates. Methods Mol Biol. 2018;1773:155–165. DOI: 10.1007/978-1-4939-7799-4_13 |
| [22] |
Li J., Curley J.L., Floyd Z.E. et al. Isolation of human adipose-derived stem cells from lipoaspirates // Methods Mol. Biol. 2018. Vol. 1773. P. 155–165. DOI: 10.1007/978-1-4939-7799-4_13 |
| [23] |
Baer PC. Adipose-derived mesenchymal stromal/stem cells: An update on their phenotype in vivo and in vitro. World J Stem Cells. 2014;6(3):256–265. DOI: 10.4252/wjsc.v6.i3.256 |
| [24] |
Baer P.C. Adipose-derived mesenchymal stromal/stem cells: An update on their phenotype in vivo and in vitro // World J. Stem Cells. 2014. Vol. 6, No. 3. P. 256–265. DOI: 10.4252/wjsc.v6.i3.256 |
| [25] |
Van Dongen JA, Harmsen MC, Stevens HP. Isolation of stromal vascular fraction by fractionation of adipose tissue. Methods Mol Biol. 2019;1993:91–103. DOI: 10.1007/978-1-4939-9473-1_8 |
| [26] |
Van Dongen J.A., Harmsen M.C., Stevens H.P. Isolation of stromal vascular fraction by fractionation of adipose tissue // Methods Mol. Biol. 2019. Vol. 1993. P. 91–103. DOI: 10.1007/978-1-4939-9473-1_8 |
| [27] |
Li Z, Mu D, Liu C, et al. The cell yields and biological characteristics of stromal/stem cells from lipoaspirate with different digestion loading ratio. Cytotechnology. 2020;72(2):203–215. DOI: 10.1007/s10616-020-00369-9 |
| [28] |
Li Z., Mu D., Liu C. et al. The cell yields and biological characteristics of stromal/stem cells from lipoaspirate with different digestion loading ratio // Cytotechnology. 2020. Vol. 72, No. 2. P. 203–215. DOI: 10.1007/s10616-020-00369-9 |
| [29] |
Nürnberger S, Lindner C, Maier J, et al. Adipose-tissue-derived therapeutic cells in their natural environment as an autologous cell therapy strategy: the microtissue-stromal vascular fraction. Eur Cell Mater. 2019;37:113–133. DOI: 10.22203/eCM.v037a08 |
| [30] |
Nürnberger S., Lindner C., Maier J. et al. Adipose-tissue-derived therapeutic cells in their natural environment as an autologous cell therapy strategy: the microtissue-stromal vascular fraction // Eur. Cell. Mater. 2019. Vol. 37. P. 113–133. DOI: 10.22203/eCM.v037a08 |
| [31] |
Zanata F, Shaik S, Devireddy RV, et al. Cryopreserved adipose tissue-derived stromal/stem cells: Potential for applications in clinic and therapy. Adv Exp Med Biol. 2016;951:137–146. DOI: 10.1007/978-3-319-45457-3_11 |
| [32] |
Zanata F., Shaik S., Devireddy R.V. et al. Cryopreserved adipose tissue-derived stromal/stem cells: Potential for applications in clinic and therapy // Adv. Exp. Med. Biol. 2016. Vol. 951. P. 137–146. DOI: 10.1007/978-3-319-45457-3_11 |
| [33] |
Davis TA, Anam K, Lazdun Y, et al. Adipose-derived stromal cells promote allograft tolerance induction. Stem Cells Transl Med. 2014;3(12):1444–1450. DOI: 10.5966/sctm.2014-0131 |
| [34] |
Davis T.A., Anam K., Lazdun Y. et al. Adipose-derived stromal cells promote allograft tolerance induction // Stem Cells Transl. Med. 2014. Vol. 3, No. 12. P. 1444–1450. DOI: 10.5966/sctm.2014-0131 |
| [35] |
Peñuelas O, Melo E, Sánchez C, et al. Antioxidant effect of human adult adipose-derived stromal stem cells in alveolar epithelial cells undergoing stretch. Respir Physiol Neurobiol. 2013;188(1):1–8. DOI: 10.1016/j.resp.2013.04.007 |
| [36] |
Peñuelas O., Melo E., Sánchez C. et al. Antioxidant effect of human adult adipose-derived stromal stem cells in alveolar epithelial cells undergoing stretch // Respir. Physiol. Neurobiol. 2013. Vol. 188, No. 1. P. 1–8. DOI: 10.1016/j.resp.2013.04.007 |
| [37] |
Solodeev I, Orgil M, Bordeynik-Cohen M, et al. Cryopreservation of stromal vascular fraction cells reduces their counts but not their stem cell potency. Plast Reconstr Surg Glob Open. 2019;7(7):e2321. DOI: 10.1097/GOX.0000000000002321 |
| [38] |
Solodeev I., Orgil M., Bordeynik-Cohen M. et al. Cryopreservation of stromal vascular fraction cells reduces their counts but not their stem cell potency // Plast. Reconstr. Surg. Glob. Open. 2019. Vol. 7, No. 7. P. e2321. DOI: 10.1097/GOX.0000000000002321 |
| [39] |
Li X, Zeng X, Xu Y, et al. Mechanisms and rejuvenation strategies for aged hematopoietic stem cells. J Hematol Oncol. 2020;13(1):31. DOI: 10.1186/s13045-020-00864-8 |
| [40] |
Li X., Zeng X., Xu Y. et al. Mechanisms and rejuvenation strategies for aged hematopoietic stem cells // J. Hematol. Oncol. 2020. Vol. 13, No. 1. P. 31. DOI: 10.1186/s13045-020-00864-8 |
| [41] |
Bora P, Majumdar AS. Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation. Stem Cell Res Ther. 2017;8(1):145. DOI: 10.1186/s13287-017-0598-y |
| [42] |
Bora P., Majumdar A.S. Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation // Stem Cell. Res. Ther. 2017. Vol. 8, No. 1. P. 145. DOI: 10.1186/s13287-017-0598-y |
| [43] |
Bowles AC, Wise RM, Gerstein BY, et al. Adipose stromal vascular fraction attenuates T(H)1 cell-mediated pathology in a model of multiple sclerosis. J Neuroinflammation. 2018;15(1):77. DOI: 10.1186/s12974-018-1099-3 |
| [44] |
Bowles A.C., Wise R.M., Gerstein B.Y. et al. Adipose stromal vascular fraction attenuates T(H)1 cell-mediated pathology in a model of multiple sclerosis // J. Neuroinflammation. 2018. Vol. 15, No. 1. P. 77. DOI: 10.1186/s12974-018-1099-3 |
| [45] |
Ahmed TA, Shousha WG, Abdo SM, et al. Human adipose-derived pericytes: biological characterization and reprogramming into induced pluripotent stem cells. Cell Physiol Biochem. 2020;54(2):271–286. DOI: 10.33594/000000219 |
| [46] |
Ahmed T.A., Shousha W.G., Abdo S.M. et al. Human adipose-derived pericytes: biological characterization and reprogramming into induced pluripotent stem cells // Cell. Physiol. Biochem. 2020. Vol. 54, No. 2. P. 271–286. DOI: 10.33594/000000219 |
| [47] |
Ramakrishnan VM, Boyd NL. The adipose stromal vascular fraction as a complex cellular source for tissue engineering applications. Tissue Eng Part B Rev. 2018;24(4):289–299. DOI: 10.1089/ten.TEB.2017.0061 |
| [48] |
Ramakrishnan V.M., Boyd N.L. The adipose stromal vascular fraction as a complex cellular source for tissue engineering applications // Tissue Eng. Part. B Rev. 2018. Vol. 24, No. 4. P. 289–299. DOI: 10.1089/ten.TEB.2017.0061 |
| [49] |
Nyberg E, Farris A, O’Sullivan A, et al. Comparison of stromal vascular fraction and passaged adipose-derived stromal/stem cells as point-of-care Agents for bone regeneration. Tissue Eng Part A. 2019;25(21–22):1459–1469. DOI: 10.1089/ten.TEA.2018.0341 |
| [50] |
Nyberg E., Farris A., O’Sullivan A. et al. Comparison of stromal vascular fraction and passaged adipose-derived stromal/stem cells as point-of-care Agents for bone regeneration // Tissue Eng. Part A. 2019. Vol. 25, No. 21–22. P. 1459–1469. DOI: 10.1089/ten.TEA.2018.0341 |
| [51] |
Pavón A, Beloqui I, Salcedo JM, Martin AG. Cryobanking mesenchymal stem cells. Methods Mol Biol. 2017;1590:191–196. DOI: 10.1007/978-1-4939-6921-0_14 |
| [52] |
Pavón A., Beloqui I., Salcedo J.M., Martin A.G. Cryobanking mesenchymal stem cells // Methods Mol. Biol. 2017. Vol. 1590. P. 191–196. DOI: 10.1007/978-1-4939-6921-0_14 |
| [53] |
Aronowitz JA, Lockhart RA, Hakakian CS. A Method for isolation of stromal vascular fraction cells in a clinically relevant time frame. Methods Mol Biol. 2018;1773:11–19. DOI: 10.1007/978-1-4939-7799-4_2 |
| [54] |
Aronowitz J.A., Lockhart R.A., Hakakian C.S. A Method for isolation of stromal vascular fraction cells in a clinically relevant time frame // Methods Mol. Biol. 2018. Vol. 1773. P. 11–19. DOI: 10.1007/978-1-4939-7799-4_2 |
| [55] |
Wong DE, Banyard DA, Santos PJF, et al. Adipose-derived stem cell extracellular vesicles: A systematic review. J Plast Reconstr Aesthet Surg. 2019;72(7):1207–1218. DOI: 10.1016/j.bjps.2019.03.008 |
| [56] |
Wong D.E., Banyard D.A., Santos P.J.F. et al. Adipose-derived stem cell extracellular vesicles: A systematic review // J. Plast. Reconstr. Aesthet. Surg. 2019. Vol. 72, No. 7. P. 1207–1218. DOI: 10.1016/j.bjps.2019.03.008 |
| [57] |
Sun Y, Chen S, Zhang X, Pei M. Significance of cellular cross-talk in stromal vascular fraction of adipose tissue in neovascularization. Arterioscler Thromb Vasc Biol. 2019;39(6):1034–1044. DOI: 10.1161/ATVBAHA.119.312425 |
| [58] |
Sun Y., Chen S., Zhang X., Pei M. Significance of cellular cross-talk in stromal vascular fraction of adipose tissue in neovascularization // Arterioscler. Thromb. Vasc. Biol. 2019. Vol. 39, No. 6. P. 1034–1044. DOI: 10.1161/ATVBAHA.119.312425 |
| [59] |
Zhang Y, Cai J, Zhou T, et al. Improved long-term volume retention of stromal vascular fraction gel grafting with enhanced angiogenesis and adipogenesis. Plast Reconstr Surg. 2018;141(5):676e–686e. DOI: 10.1097/PRS.0000000000004312 |
| [60] |
Zhang Y., Cai J., Zhou T. et al. Improved long-term volume retention of stromal vascular fraction gel grafting with enhanced angiogenesis and adipogenesis // Plast. Reconstr. Surg. 2018. Vol. 141, No. 5. P. 676e–686e. DOI: 10.1097/PRS.0000000000004312 |
| [61] |
Semon JA, Zhang X, Pandey AC, et al. Administration of murine stromal vascular fraction ameliorates chronic experimental autoimmune encephalomyelitis. Stem Cells Transl Med. 2013;2(10):789–796. DOI: 10.5966/sctm.2013-0032 |
| [62] |
Semon J.A., Zhang X., Pandey A.C. et al. Administration of murine stromal vascular fraction ameliorates chronic experimental autoimmune encephalomyelitis // Stem Cells Transl. Med. 2013. Vol. 2, No. 10. P. 789–796. DOI: 10.5966/sctm.2013-0032 |
| [63] |
Premaratne GU, Ma LP, Fujita M, et al. Stromal vascular fraction transplantation as an alternative therapy for ischemic heart failure: anti-inflammatory role. J Cardiothorac Surg. 2011;6:43. DOI: 10.1186/1749-8090-6-43 |
| [64] |
Premaratne G.U., Ma L.P., Fujita M. et al. Stromal vascular fraction transplantation as an alternative therapy for ischemic heart failure: anti-inflammatory role // J. Cardiothorac. Surg. 2011. Vol. 6. P. 43. DOI: 10.1186/1749-8090-6-43 |
| [65] |
Blaber SP, Webster RA, Hill CJ, et al. Analysis of in vitro secretion profiles from adipose-derived cell populations. J Transl Med. 2012;10:172. DOI: 10.1186/1479-5876-10-172 |
| [66] |
Blaber S.P., Webster R.A., Hill C.J. et al. Analysis of in vitro secretion profiles from adipose-derived cell populations // J. Transl. Med. 2012. Vol. 10. P. 172. DOI: 10.1186/1479-5876-10-172 |
| [67] |
Jayaramayya K, Mahalaxmi I, Subramaniam MD, et al. Immunomodulatory effect of mesenchymal stem cells and mesenchymal stem-cell-derived exosomes for COVID-19 treatment. BMB Rep. 2020;53(8):400–412. DOI: 10.5483/BMBRep.2020.53.8.121 |
| [68] |
Jayaramayya K., Mahalaxmi I., Subramaniam M.D. et al. Immunomodulatory effect of mesenchymal stem cells and mesenchymal stem-cell-derived exosomes for COVID-19 treatment // BMB Rep. 2020. Vol. 53, No. 8. P. 400–412. DOI: 10.5483/BMBRep.2020.53.8.121 |
| [69] |
Ryan PM, Caplice NM. Is adipose tissue a reservoir for viral spread, immune activation and cytokine amplification in COVID-19? Obesity (Silver Spring). 2020;28(7):1191–1194. DOI: 10.1002/oby.22843 |
| [70] |
Ryan P.M., Caplice N.M. Is adipose tissue a reservoir for viral spread, immune activation and cytokine amplification in COVID-19? // Obesity (Silver Spring). 2020. Vol. 28, No. 7. P. 1191–1194. DOI: 10.1002/oby.22843 |
| [71] |
Yu S, Cheng Y, Zhang L, et al. Treatment with adipose tissue-derived mesenchymal stem cells exerts anti-diabetic effects, improves long-term complications, and attenuates inflammation in type 2 diabetic rats. Stem Cell Res Ther. 2019;10(1):333. DOI: 10.1186/s13287-019-1474-8 |
| [72] |
Yu S., Cheng Y., Zhang L. et al. Treatment with adipose tissue-derived mesenchymal stem cells exerts anti-diabetic effects, improves long-term complications, and attenuates inflammation in type 2 diabetic rats // Stem Cell. Res. Ther. 2019. Vol. 10, No. 1. P. 333. DOI: 10.1186/s13287-019-1474-8 |
| [73] |
Jiang M, Bi X, Duan X, et al. Adipose tissue-derived stem cells modulate immune function in vivo and promote long-term hematopoiesis in vitro using the aGVHD model. Exp Ther Med. 2020;19(3):1725–1732. DOI: 10.3892/etm.2020.8430 |
| [74] |
Jiang M., Bi X., Duan X. et al. Adipose tissue-derived stem cells modulate immune function in vivo and promote long-term hematopoiesis in vitro using the aGVHD model // Exp. Ther. Med. 2020. Vol. 19, No. 3. P. 1725–1732. DOI: 10.3892/etm.2020.8430 |
| [75] |
Engela AU, Hoogduijn MJ, Boer K, et al. Human adipose-tissue derived mesenchymal stem cells induce functional de-novo regulatory T cells with methylated FOXP3 gene DNA. Clin Exp Immunol. 2013;173(2):343–354. DOI: 10.1111/cei.12120 |
| [76] |
Engela A.U., Hoogduijn M.J., Boer K. et al. Human adipose-tissue derived mesenchymal stem cells induce functional de-novo regulatory T cells with methylated FOXP3 gene DNA // Clin. Exp. Immunol. 2013. Vol. 173, No. 2. P. 343–354. DOI: 10.1111/cei.12120 |
| [77] |
Hajmousa G, Harmsen MC. Assessment of energy metabolic changes in adipose tissue-derived stem cells. Methods Mol Biol. 2017;1553:55–65. DOI: 10.1007/978-1-4939-6756-8_5 |
| [78] |
Hajmousa G., Harmsen M.C. Assessment of energy metabolic changes in adipose tissue-derived stem cells // Methods Mol. Biol. 2017. Vol. 1553. P. 55–65. DOI: 10.1007/978-1-4939-6756-8_5 |
| [79] |
Fukui E, Funaki S, Kimura K, et al. Adipose tissue-derived stem cells have the ability to differentiate into alveolar epithelial cells and ameliorate lung injury caused by elastase-induced emphysema in mice. Stem Cells Int. 2019;2019:5179172. DOI: 10.1155/2019/5179172 |
| [80] |
Fukui E., Funaki S., Kimura K. et al. Adipose tissue-derived stem cells have the ability to differentiate into alveolar epithelial cells and ameliorate lung injury caused by elastase-induced emphysema in mice // Stem Cells Int. 2019. Vol. 2019. P. 5179172. DOI: 10.1155/2019/5179172 |
| [81] |
Cho HH, Kim YJ, Kim JT, et al. The role of chemokines in proangiogenic action induced by human adipose tissue-derived mesenchymal stem cells in the murine model of hindlimb ischemia. Cell Physiol Biochem. 2009;24(5-6):511–518. DOI: 10.1159/000257495 |
| [82] |
Cho H.H., Kim Y.J., Kim J.T. et al. The role of chemokines in proangiogenic action induced by human adipose tissue-derived mesenchymal stem cells in the murine model of hindlimb ischemia // Cell Physiol. Biochem. 2009. Vol. 24, No. 5–6. P. 511–518. DOI: 10.1159/000257495 |
| [83] |
Shetty AK. Mesenchymal stem cell infusion shows promise for combating coronavirus (COVID-19)-induced pneumonia. Aging Dis. 2020;11(2):462–464. DOI: 10.14336/AD.2020.0301 |
| [84] |
Shetty A.K. Mesenchymal stem cell infusion shows promise for combating coronavirus (COVID-19)-induced pneumonia // Aging Dis. 2020. Vol. 11, No. 2. P. 462–464. DOI: 10.14336/AD.2020.0301 |
| [85] |
Gentile P, Sterodimas A. Adipose stem cells (ASCs) and stromal vascular fraction (SVF) as a potential therapy in combating (COVID-19)-disease. Aging Dis. 2020;11(3):465–469. DOI: 10.14336/AD.2020.0422 |
| [86] |
Gentile P., Sterodimas A. Adipose stem cells (ASCs) and stromal vascular fraction (SVF) as a potential therapy in combating (COVID-19)-disease // Aging Dis. 2020. Vol. 11, No. 3. P. 465–469. DOI: 10.14336/AD.2020.0422 |
| [87] |
Bradley KC, Finsterbusch K, Schnepf D, et al. Microbiota-driven tonic interferon signals in lung stromal cells protect from influenza virus infection. Cell Rep. 2019;28(1):245–256.e4. DOI: 10.1016/j.celrep.2019.05.105 |
| [88] |
Bradley K.C., Finsterbusch K., Schnepf D. et al. Microbiota-driven tonic interferon signals in lung stromal cells protect from influenza virus infection // Cell Rep. 2019. Vol. 28, No. 1. P. 245–256.e4. DOI: 10.1016/j.celrep.2019.05.105 |
| [89] |
Hoogduijn MJ, Lombardo E. Mesenchymal stromal cells anno 2019: Dawn of the therapeutic era? Concise review. Stem Cells Transl Med. 2019;8(11):1126–1134. DOI: 10.1002/sctm.19-0073 |
| [90] |
Hoogduijn M.J., Lombardo E. Mesenchymal stromal cells anno 2019: Dawn of the therapeutic era? Concise review // Stem Cells Transl. Med. 2019. Vol. 8, No. 11. P. 1126–1134. DOI: 10.1002/sctm.19-0073 |
| [91] |
Lopes-Pacheco M, Robba C, Rocco PRM, Pelosi P. Current understanding of the therapeutic benefits of mesenchymal stem cells in acute respiratory distress syndrome. Cell Biol Toxicol. 2020;36(1):83–102. DOI: 10.1007/s10565-019-09493-5 |
| [92] |
Lopes-Pacheco M., Robba C., Rocco P.R.M., Pelosi P. Current understanding of the therapeutic benefits of mesenchymal stem cells in acute respiratory distress syndrome // Cell. Biol. Toxicol. 2020. Vol. 36, No. 1. P. 83–102. DOI: 10.1007/s10565-019-09493-5 |
| [93] |
Atkins JW, West K, Kasow KA. Current and future cell therapy standards and guidelines. Hematol Oncol Clin North Am. 2019;33(5):839–855. DOI: 10.1016/j.hoc.2019.05.008 |
| [94] |
Atkins J.W., West K., Kasow K.A. Current and future cell therapy standards and guidelines // Hematol. Oncol. Clin. North Am. 2019. Vol. 33, No. 5. P. 839–855. DOI: 10.1016/j.hoc.2019.05.008 |
| [95] |
Ji F, Li L, Li Z, et al. Mesenchymal stem cells as a potential treatment for critically ill patients with coronavirus disease 2019. Stem Cells Transl Med. 2020;9(7):813–814. DOI: 10.1002/sctm.20-0083 |
| [96] |
Ji F., Li L., Li Z. et al. Mesenchymal stem cells as a potential treatment for critically ill patients with coronavirus disease 2019 // Stem Cells Transl. Med. 2020. Vol. 9, No. 7. P. 813–814. DOI: 10.1002/sctm.20-0083 |
| [97] |
Rossnagl S, Ghura H, Groth C, et al. A subpopulation of stromal cells controls cancer cell homing to the bone marrow. Cancer Res. 2018;78(1):129–142. DOI: 10.1158/0008-5472.CAN-16-3507 |
| [98] |
Rossnagl S., Ghura H., Groth C. et al. A subpopulation of stromal cells controls cancer cell homing to the bone marrow // Cancer Res. 2018. Vol. 78, No. 1. P. 129–142. DOI: 10.1158/0008-5472.CAN-16-3507 |
| [99] |
Fang Y, Zhang Y, Zhou J, Cao K. Adipose-derived mesenchymal stem cell exosomes: a novel pathway for tissues repair. Cell Tissue Bank. 2019;20(2):153–161. DOI: 10.1007/s10561-019-09761-y |
| [100] |
Fang Y., Zhang Y., Zhou J., Cao K. Adipose-derived mesenchymal stem cell exosomes: a novel pathway for tissues repair // Cell Tissue Bank. 2019. Vol. 20, No. 2. P. 153–161. DOI: 10.1007/s10561-019-09761-y |
| [101] |
Kubrova E, D’Souza RS, Hunt CL, et al. Injectable biologics: What is the evidence? Am J Phys Med Rehabil. 2020;99(10):950–960. DOI: 10.1097/PHM.0000000000001407 |
| [102] |
Kubrova E., D’Souza R.S., Hunt C.L. et al. Injectable biologics: What is the evidence? // Am. J. Phys. Med. Rehabil. 2020. Vol. 99, No. 10. P. 950–960. DOI: 10.1097/PHM.0000000000001407 |
| [103] |
Khalaj K, Figueira RL, Antounians L, et al. Systematic review of extracellular vesicle-based treatments for lung injury: are EVs a potential therapy for COVID-19? J Extracell Vesicles. 2020;9(1):1795365. DOI: 10.1080/20013078.2020.1795365 |
| [104] |
Khalaj K., Figueira R.L., Antounians L. et al. Systematic review of extracellular vesicle-based treatments for lung injury: are EVs a potential therapy for COVID-19? // J. Extracell Vesicles. 2020. Vol. 9, No. 1. P. 1795365. DOI: 10.1080/20013078.2020.1795365 |
| [105] |
Putra A, Rosdiana I, Darlan DM, et al. Intravenous administration is the best route of mesenchymal stem cells migration in improving liver function enzyme of acute liver failure. Folia Med (Plovdiv). 2020;62(1):52–58. DOI: 10.3897/folmed..e47712 |
| [106] |
Putra A., Rosdiana I., Darlan D.M. et al. Intravenous administration is the best route of mesenchymal stem cells migration in improving liver function enzyme of acute liver failure // Folia Med. (Plovdiv). 2020. Vol. 62, No. 1. P. 52–58. DOI: 10.3897/folmed..e47712 |
| [107] |
Martinez J, Zoretic S, Moreira A, Moreira A. Safety and efficacy of cell therapies in pediatric heart disease: a systematic review and meta-analysis. Stem Cell Res Ther. 2020;11(1):272. DOI: 10.1186/s13287-020-01764-x |
| [108] |
Martinez J., Zoretic S., Moreira A., Moreira A. Safety and efficacy of cell therapies in pediatric heart disease: a systematic review and meta-analysis // Stem Cell Res. Ther. 2020. Vol. 11, No. 1. P. 272. DOI: 10.1186/s13287-020-01764-x |
| [109] |
West WH, Beutler AI, Gordon CR. Regenerative injectable therapies: Current evidence. Curr Sports Med Rep. 2020;19(9):353–359. DOI: 10.1249/JSR.0000000000000751 |
| [110] |
West W.H., Beutler A.I., Gordon C.R. Regenerative injectable therapies: Current evidence // Curr. Sports Med. Rep. 2020. Vol. 19, No. 9. P. 353–359. DOI: 10.1249/JSR.0000000000000751 |
| [111] |
Zimmerlin L, Rubin JP, Pfeifer ME, et al. Human adipose stromal vascular cell delivery in a fibrin spray. Cytotherapy. 2013;15(1):102–108. DOI: 10.1016/j.jcyt.2012.10.009 |
| [112] |
Zimmerlin L., Rubin J.P., Pfeifer M.E. et al. Human adipose stromal vascular cell delivery in a fibrin spray // Cytotherapy. 2013. Vol. 15, No. 1. P. 102–108. DOI: 10.1016/j.jcyt.2012.10.009 |
| [113] |
Di Liddo R, Bertalot T, Borean A, et al. Leucocyte and Platelet-rich Fibrin: a carrier of autologous multipotent cells for regenerative medicine. J Cell Mol Med. 2018;22(3):1840–1854. DOI: 10.1111/jcmm.13468 |
| [114] |
Di Liddo R., Bertalot T., Borean A. et al. Leucocyte and Platelet-rich Fibrin: a carrier of autologous multipotent cells for regenerative medicine // J. Cell. Mol. Med. 2018. Vol. 22, No. 3. P. 1840–1854. DOI: 10.1111/jcmm.13468 |
Pavlov V.N., Kazikhinurov A.A., Kazikhinurov R.A., Agaverdiyev M.A., Gareev I.F., Beylerli O.A., Mazorov B.Z.
/
| 〈 |
|
〉 |