The role of selenium in the pathogenesis and therapy of inflammatory bowel diseases
Tatyana A. Glazunova , Riana M. Mameeva , Sofia N. Samsonova , Aleksander O. Ryzhov , Aleksey V. Nedilko , Sergey A. Shpenev , Julia E. Khaiminova , Ekaterina S. Ilina , Vasiliy A. Evtushenko-Sigaev , Linara Yu. Ilyasova , Milana Sh. Eloeva , Markha Kh. Ayubova , Khava T. Bakhmurzieva , Rafael A. Bunatyan
HERALD of North-Western State Medical University named after I.I. Mechnikov ›› 2024, Vol. 16 ›› Issue (2) : 27 -41.
The role of selenium in the pathogenesis and therapy of inflammatory bowel diseases
In recent decades, Russia, as well as around the world, has recorded a steady increase in the incidence of inflammatory bowel diseases, which include ulcerative colitis and Crohn’s disease. The incidence of inflammatory bowel diseases in Russia accounts for 4.1 per 100 thousand of the population for ulcerative colitis and 0.8 per 100 thousand – for Crohn’s disease. The prevalence of inflammatory bowel diseases in Russia is 19.3–29.8 cases per 100 thousand of the population for ulcerative colitis and 3.0–4.5 per 100 thousand – for Crohn’s disease.
In recent years, selenium has attracted the attention of researchers due to its anti-inflammatory and antioxidant properties as well as its ability to influence the intestinal flora. There is evidence that inflammatory bowel diseases has deficiency of trace elements, which is more often detected during active period of the disease than during remission.
The purpose of the review is to summarize and analyze current literature data on the relationship between selenium and inflammatory bowel diseases, with special emphasis on the mechanism and function of selenium in intestinal inflammation as well as to discuss the possible therapeutic use of selenium in inflammatory bowel diseases. The authors conducted a search for publications in the electronic databases PubMed and eLibrary. After the selection procedure, 87 studies were included in the review.
Due to its anti-inflammatory and antioxidant properties, the concentration of selenium can be crucial in the occurrence and development of inflammatory bowel diseases. Dietary recommendations with the inclusion of selenium gradually improve the quality of life of patients with inflammatory bowel diseases. The development and use of selenium drugs have also provided new therapy strategies. In the future, a large number of experimental and clinical studies are still needed to confirm the relationship between selenium and inflammatory bowel diseases, which, in turn, will mark a new turn in the prevention and treatment of these severe chronic diseases.
selenium / inflammatory bowel diseases / Crohn’s disease / ulcerative colitis / pathogenesis / therapy / diet
| [1] |
Sheptulin AA, Vinogradskaya KE. Inflammatory bowel diseases and irritable bowel syndrome: overlap of two nosological forms or two variants of the same disease? Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2019;29(5):43–48. EDN: FXXPVZ doi: 10.22416/1382-4376-2019-29-5-43-48 |
| [2] |
Шептулин А.А., Виноградская К.Э. Воспалительные заболевания кишечника и синдром раздраженного кишечника: сочетание двух нозологических форм или разные варианты одного заболевания? // Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2019. Т. 29, № 5. С.43–48. EDN: FXXPVZ doi: 10.22416/1382-4376-2019-29-5-43-48 |
| [3] |
Kniazev OV, Shkurko TV, Kagramanova AV, et al. Epidemiology of inflammatory bowel disease. State of the problem (review). Russian Journal of Evidence-Based Gastroenterology. 2020;9(2):66–73. EDN: UFTCSZ doi: 10.17116/dokgastro2020902166 |
| [4] |
Князев О.В., Шкурко Т.В., Каграманова А.В., и др. Эпидемиология воспалительных заболеваний кишечника. Современное состояние проблемы (обзор литературы) // Доказательная гастроэнтерология. 2020. Т. 9, № 2. С. 66–73. EDN: UFTCSZ doi: 10.17116/dokgastro2020902166 |
| [5] |
Pershko AM, Grinevich VB, Solovyov IA, et al. Private the pathogenesis of inflammatory bowel diseases. Experimental and Clinical Gastroenterology. 2018;(5):140–149. EDN: OZPLJZ |
| [6] |
Першко А.М., Гриневич В.Б., Соловьев И.А., и др. Частные вопросы патогенеза воспалительных заболеваний кишечника // Экспериментальная и клиническая гастроэнтерология. 2018. № 5. С. 140–149. EDN: OZPLJZ |
| [7] |
Likutov AA, Veselov VV, Pritula NA, et al. Possibilities of videocapsule endoscopy in the diagnosis of inflammatory bowel diseases. Endoscopic Surgery. 2017;23(2):23-27. EDN: ZEHQJX doi: 10.17116/endoskop201723223-27 |
| [8] |
Ликутов А.А., Веселов В.В., Притула Н.А., и др. Возможности видеокапсульной эндоскопии в диагностике воспалительных заболеваний кишечника // Эндоскопическая хирургия. 2017. Т. 23, № 2. С. 23-27. EDN: ZEHQJX doi: 10.17116/endoskop201723223-27 |
| [9] |
Belousova EA, Kozlov IG, Abdulganieva DI, et al. Immunological aspects of determination of an adequate biological treatment sequence for inflammatory bowel diseases: the expert board statement (St. Petersburg, May 22, 2021). Almanac of Clinical Medicine. 2021;49(7):485–495. doi: 10.18786/2072-0505-2021-49-060 |
| [10] |
Белоусова Е.А., Козлов И.Г., Абдулганиева Д.И., и др. Иммунологические аспекты определения правильной последовательности биологической терапии воспалительных заболеваний кишечника. Резолюция совета экспертов (Санкт-Петербург, 22 мая 2021 г.) // Альманах клинической медицины. 2021. Т. 49, № 7. С. 485–495. doi: 10.18786/2072-0505-2021-49-060 |
| [11] |
Knyazev OV, Kagramanova AV, Lishchinskaya AA, et al. Efficacy and safety of dual therapy — biological and small molecules in patients with ulcerative colitis. Experimental and Clinical Gastroenterology. 2023;(9):5–12. EDN: GZZYMN doi: 10.31146/1682-8658-ecg-217-9-5-12 |
| [12] |
Князев О.В., Каграманова А.В., Лищинская А.А., и др. Эффективность и безопасность двойной терапии — биологической и малыми молекулами у пациентов с язвенным колитом // Экспериментальная и клиническая гастроэнтерология. 2023. № 9. С. 5–12. EDN: GZZYMN doi: 10.31146/1682-8658-ecg-217-9-5-12 |
| [13] |
Bakulin IG, Skalinskaya MI, Maev IV, et al. Pharmacotherapy of inflammatory bowel diseases: efficacy performance and safety management. Terapevticheskii Arkhiv. 2021;93(8):841–852. EDN: WAMTBH doi: 10.26442/00403660.2021.08.200982 |
| [14] |
Бакулин И.Г., Скалинская М.И., Маев И.В., и др. Фармакотерапия воспалительных заболеваний кишечника: управление эффективностью и безопасностью // Терапевтическии архив. 2021. Т. 93, № 8. С. 841–852. EDN: WAMTBH doi: 10.26442/00403660.2021.08.200982 |
| [15] |
Higashiyama M, Hokaria R. New and emerging treatments for inflammatory bowel disease. Digestion. 2023;104(1):74–81. doi: 10.1159/000527422 |
| [16] |
Higashiyama M., Hokaria R. New and emerging treatments for inflammatory bowel disease // Digestion. 2023. Vol. 104, N. 1. P. 74–81. doi: 10.1159/000527422 |
| [17] |
Ignatieva VI, Avxentyeva MV, Omel’ianovskiĭ VV, Derkach EV. Socioeconomic burden of inflammatory bowel disease in the Russian Federation. Russian Journal of Preventive Medicine and Public Health. 2020;23(2):19-25. EDN: CPIWST doi: 10.17116/profmed20202302119 |
| [18] |
Игнатьева В.И., Авксентьева М.В., Омельяновский В.В., Деркач Е.В. Социально-экономическое бремя воспалительных заболеваний кишечника в Российской Федерации // Профилактическая медицина. 2020. Т. 23, № 2. С. 19-25. EDN: CPIWST doi: 10.17116/profmed20202302119 |
| [19] |
Wang F, Sun N, Zeng H, et al. Selenium deficiency leads to inflammation, autophagy, endoplasmic reticulum stress, apoptosis and contraction abnormalities via affecting intestinal flora in intestinal smooth muscle of mice. Front Immunol. 2022;13:947655. doi: 10.3389/fimmu.2022.947655 |
| [20] |
Wang F., Sun N., Zeng H., et al. Selenium deficiency leads to inflammation, autophagy, endoplasmic reticulum stress, apoptosis and contraction abnormalities via affecting intestinal flora in intestinal smooth muscle of mice // Front Immunol. 2022. Vol. 13. P. 947655. doi: 10.3389/fimmu.2022.947655 |
| [21] |
Kamalova AA, Safina ER, Nizamova RA, et al. Nutrition of children with inflammatory bowel disease. Ros Vestn Perinatol i Pediatr. 2020;65:(5):145–151. EDN: XMYBZQ doi: 10.21508/1027-4065-2020-65-5-145-151 |
| [22] |
Камалова А.А., Сафина Э.Р., Низамова Р.А., и др. Питание при воспалительных заболеваниях кишечника у детей // Российский вестник перинатологии и педиатрии. 2020. Т. 65, № 5. С. 145–151. EDN: XMYBZQ doi: 10.21508/1027-4065-2020-65-5-145-151 |
| [23] |
Ghishan FK, Kiela PR. Vitamins and minerals in inflammatory bowel disease. Gastroenterol Clin North Am. 2017;46(4):797–808. doi: 10.1016/j.gtc.2017.08.011 |
| [24] |
Ghishan F.K., Kiela P.R. Vitamins and minerals in inflammatory bowel disease // Gastroenterol Clin North Am. 2017. Vol. 46, N. 4. P. 797–808. doi: 10.1016/j.gtc.2017.08.011 |
| [25] |
Weisshof R, Chermesh I. Micronutrient deficiencies in inflammatory bowel disease. Curr Opin Clin Nutr Metab Care. 2015;18(6):576–581. doi: 10.1097/MCO.0000000000000226 |
| [26] |
Weisshof R., Chermesh I. Micronutrient deficiencies in inflammatory bowel disease // Curr Opin Clin Nutr Metab Care. 2015. Vol. 18, N. 6. P. 576–581. doi: 10.1097/MCO.0000000000000226 |
| [27] |
Kuropatkina TA, Medvedeva NA, Medvedev OS. The role of selenium in cardiology. Kardiologiia. 2021;61(3):96–104. EDN: RJQSOX doi: 10.18087/cardio.2021.3.n1186 |
| [28] |
Куропаткина Т.А., Медведева Н.А., Медведев О.С. Роль селена в кардиологии // Кардиология. 2021. Т. 61, № 3. С. 96–104. EDN: RJQSOX doi: 10.18087/cardio.2021.3.n1186 |
| [29] |
Ye R, Huang J, Wang Z, et al. Trace element selenium effectively alleviates intestinal diseases. Int J Mol Sci. 2021;22(21):11708. doi: 10.3390/ijms222111708 |
| [30] |
Ye R., Huang J., Wang Z., et al. Trace element selenium effectively alleviates intestinal diseases // Int J Mol Sci. 2021. Vol. 22, N. 21. P. 11708. doi: 10.3390/ijms222111708 |
| [31] |
Troshina EA, Senyushkina ES, Terekhova MA. The role of selenium in the pathogenesis of thyroid disease. Clinical and experimental thyroidology. 2018;14(4):192–205. EDN: NOEQGO doi: 10.14341/ket10157 |
| [32] |
Трошина Е.А., Сенюшкина Е.С., Терехова М.А. Роль селена в патогенезе заболеваний щитовидной железы // Клиническая и экспериментальная тиреоидология. 2018. Т. 14, № 4. С. 192–205. EDN: NOEQGO doi: 10.14341/ket10157 |
| [33] |
Shih EV, Mahova AA, Eremenko NN, Grebenschikova LY. Polyunsaturated fatty acids and selenium, as an essential component of micronutrient support during pregnancy. RMJ. 2017;(2):126–123. (In Russ.) |
| [34] |
Ших Е.В., Махова А.А., Еременко Н.Н., Гребенщикова Л.Ю. Полиненасыщенные жирные кислоты и селен, как необходимые компоненты микронутриентной поддержки в период беременности // РМЖ. 2017. № 2. С. 126–131. |
| [35] |
Hariharan S, Dharmaraj S. Selenium and selenoproteins: it’s role in regulation of inflammation. Inflammopharmacology. 2020;28(3):667–695. doi: 10.1007/s10787-020-00690-x |
| [36] |
Hariharan S., Dharmaraj S. Selenium and selenoproteins: it’s role in regulation of inflammation // Inflammopharmacology. 2020. Vol. 28, N. 3. P. 667–695. doi: 10.1007/s10787-020-00690-x |
| [37] |
Guevara Agudelo FA, Leblanc N, Bourdeau-Julien I, et al. Impact of selenium on the intestinal microbiome-eCBome axis in the context of diet-related metabolic health in mice. Front Immunol. 2022;13:1028412. doi: 10.3389/fimmu.2022.1028412 |
| [38] |
Guevara Agudelo F.A., Leblanc N., Bourdeau-Julien I., et al. Impact of selenium on the intestinal microbiome-eCBome axis in the context of diet-related metabolic health in mice // Front Immunol. 2022. Vol. 13. P. 1028412. doi: 10.3389/fimmu.2022.1028412 |
| [39] |
Calder PC, Ortega EF, Meydani SN, et al. Nutrition, immunosenescence, and infectious disease: an overview of the scientific evidence on micronutrients and on modulation of the gut microbiota. Adv Nutr. 2022;13(5):1–26. doi: 10.1093/advances/nmac052 |
| [40] |
Calder P.C., Ortega E.F., Meydani S.N., et al. Nutrition, immunosenescence, and infectious disease: an overview of the scientific evidence on micronutrients and on modulation of the gut microbiota // Adv Nutr. 2022. Vol. 13, N. 5. P. 1–26. doi: 10.1093/advances/nmac052 |
| [41] |
Bubnova NV, Timofeeva NYu, Kostrova OYu, et al. The biological role of selenium (literature review). Acta Medica Eurasia. 2023;(2):114–123. EDN: GPWVYW doi: 10.47026/2413-4864-2023-2-114-123 |
| [42] |
Бубнова Н.В., Тимофеева Н.Ю., Кострова О.Ю., и др. Биологическая роль селена (обзор литературы) // Acta Medica Eurasica. 2023. № 2. C. 114–123. EDN: GPWVYW doi: 10.47026/2413-4864-2023-2-114-123 |
| [43] |
Zhang F, Li X, Wei Y. Selenium and selenoproteins in health. Biomolecules. 2023;13(5):799. doi: 10.3390/biom13050799 |
| [44] |
Zhang F., Li X., Wei Y. Selenium and selenoproteins in health // Biomolecules. 2023. Vol. 13, N. 5. P. 799. doi: 10.3390/biom13050799 |
| [45] |
Lv Q, Liang X, Nong K, et al. Advances in research on the toxicological effects of selenium. Bull Environ Contam Toxicol. 2021;106(5):715–726. doi: 10.1007/s00128-020-03094-3 |
| [46] |
Lv Q., Liang X., Nong K., et al. Advances in research on the toxicological effects of selenium // Bull Environ Contam Toxicol. 2021. Vol. 106, N. 5. P. 715–726. doi: 10.1007/s00128-020-03094-3 |
| [47] |
Ala M, Kheyri Z. The rationale for selenium supplementation in inflammatory bowel disease: a mechanism-based point of view. Nutrition. 2021;85:111153. doi: 10.1016/j.nut.2021.111153 |
| [48] |
Ala M., Kheyri Z. The rationale for selenium supplementation in inflammatory bowel disease: a mechanism-based point of view // Nutrition. 2021. Vol. 85. P. 111153. doi: 10.1016/j.nut.2021.111153 |
| [49] |
Kieliszek M, Błażejak S. Current knowledge on the importance of selenium in food for living organisms: a review. Molecules. 2016;21(5):609. doi: 10.3390/molecules21050609 |
| [50] |
Kieliszek M., Błażejak S. Current knowledge on the importance of selenium in food for living organisms: a review // Molecules. 2016. Vol. 21, N. 5. P. 609. doi: 10.3390/molecules21050609 |
| [51] |
Vaghari-Tabari M, Jafari-Gharabaghlou D, Sadeghsoltani F, et al. Zinc and selenium in inflammatory bowel disease: trace elements with key roles? Biol Trace Elem Res. 2021;199(9):3190–3204. doi: 10.1007/s12011-020-02444-w |
| [52] |
Vaghari-Tabari M., Jafari-Gharabaghlou D., Sadeghsoltani F., et al. Zinc and selenium in inflammatory bowel disease: trace elements with key roles? // Biol Trace Elem Res. 2021. Vol. 199, N. 9. P. 3190–3204. doi: 10.1007/s12011-020-02444-w |
| [53] |
Gîlcă-Blanariu GE, Diaconescu S, Ciocoiu M, Ștefănescu G. New insights into the role of trace elements in IBD. Biomed Res Int. 2018;2018:1813047. doi: 10.1155/2018/1813047 |
| [54] |
Gîlcă-Blanariu G.E., Diaconescu S., Ciocoiu M., Ștefănescu G. New insights into the role of trace elements in IBD // Biomed Res Int. 2018. Vol. 2018. P. 1813047. doi: 10.1155/2018/1813047 |
| [55] |
Filippini T, Fairweather-Tait S, Vinceti M. Selenium and immune function: a systematic review and meta-analysis of experimental human studies. Am J Clin Nutr. 2023;117(1):93–110. doi: 10.1016/j.ajcnut.2022.11.007 |
| [56] |
Filippini T., Fairweather-Tait S., Vinceti M. Selenium and immune function: a systematic review and meta-analysis of experimental human studies // Am J Clin Nutr. 2023. Vol. 117, N. 1. P. 93–110. doi: 10.1016/j.ajcnut.2022.11.007 |
| [57] |
Zhao M, Xia P, Zhang X, et al. Selenium-containing soybean peptides ameliorate intestinal inflammation and modulate gut microbiota dysbacteriosis in DSS-induced ulcerative colitis mice. Food Funct. 2023;14(13):6187–6199. doi: 10.1039/d3fo00963g |
| [58] |
Zhao M., Xia P., Zhang X., et al. Selenium-containing soybean peptides ameliorate intestinal inflammation and modulate gut microbiota dysbacteriosis in DSS-induced ulcerative colitis mice // Food Funct. 2023. Vol. 14, N. 13. P. 6187–6199. doi: 10.1039/d3fo00963g |
| [59] |
Wang W, Kou F, Wang J, et al. Pretreatment with millet-derived selenylated soluble dietary fiber ameliorates dextran sulfate sodium-induced colitis in mice by regulating inflammation and maintaining gut microbiota balance. Front Nutr. 2022;9:928601. doi: 10.3389/fnut.2022.928601 |
| [60] |
Wang W., Kou F., Wang J., et al. Pretreatment with millet-derived selenylated soluble dietary fiber ameliorates dextran sulfate sodium-induced colitis in mice by regulating inflammation and maintaining gut microbiota balance // Front Nutr. 2022. Vol. 9. P. 928601. doi: 10.3389/fnut.2022.928601 |
| [61] |
Zhong Y, Jin Y, Zhang Q, et al. Comparison of selenium-enriched Lactobacillusparacasei, selenium-enriched yeast, and selenite for the alleviation of DSS-induced colitis in mice. Nutrients. 2022;14(12):2433. doi: 10.3390/nu14122433 |
| [62] |
Zhong Y., Jin Y., Zhang Q., et al. Comparison of selenium-enriched lactobacillusparacasei, selenium-enriched yeast, and selenite for the alleviation of DSS-induced colitis in mice // Nutrients. 2022. Vol. 14, N. 12. P. 2433. doi: 10.3390/nu14122433 |
| [63] |
Viola A, Munari F, Sánchez-Rodríguez R, et al. The metabolic signature of macrophage responses. Front Immunol. 2019;10:1462. doi: 10.3389/fimmu.2019.01462 |
| [64] |
Viola A., Munari F., Sánchez-Rodríguez R., et al. The metabolic signature of macrophage responses // Front Immunol. 2019. Vol. 10. P. 1462. doi: 10.3389/fimmu.2019.01462 |
| [65] |
Nettleford SK, Prabhu KS. Selenium and selenoproteins in gut inflammation — a review. Antioxidants (Basel). 2018;7(3):36. doi: 10.3390/antiox7030036 |
| [66] |
Nettleford S.K., Prabhu K.S. Selenium and selenoproteins in gut inflammation — a review // Antioxidants (Basel). 2018. Vol. 7, N. 3. P. 36. doi: 10.3390/antiox7030036 |
| [67] |
Zhou Y, Khan H, Xiao J, Cheang WS. Effects of arachidonic acid metabolites on cardiovascular health and disease. Int J Mol Sci. 2021;22(21):12029. doi: 10.3390/ijms222112029 |
| [68] |
Zhou Y., Khan H., Xiao J., Cheang W.S. Effects of arachidonic acid metabolites on cardiovascular health and disease // Int J Mol Sci. 2021. Vol. 22, N. 21. P. 12029. doi: 10.3390/ijms222112029 |
| [69] |
Kudva AK, Shay AE, Prabhu KS. Selenium and inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol. 2015;309(2):71–77. doi: 10.1152/ajpgi.00379.2014 |
| [70] |
Kudva A.K., Shay A.E., Prabhu K.S. Selenium and inflammatory bowel disease // Am J Physiol Gastrointest Liver Physiol. 2015. Vol. 309, N. 2. P. 71–77. doi: 10.1152/ajpgi.00379.2014 |
| [71] |
Misra S, Lee TJ, Sebastian A, et al. Loss of selenoprotein W in murine macrophages alters the hierarchy of selenoprotein expression, redox tone, and mitochondrial functions during inflammation. Redox Biol. 2023;59:102571. doi: 10.1016/j.redox.2022.102571 |
| [72] |
Misra S., Lee T.J., Sebastian A., et al. Loss of selenoprotein W in murine macrophages alters the hierarchy of selenoprotein expression, redox tone, and mitochondrial functions during inflammation // Redox Biol. 2023. Vol. 59. P. 102571. doi: 10.1016/j.redox.2022.102571 |
| [73] |
Li J, Guo C, Wu J. 15-Deoxy-∆-12,14-prostaglandin J2 (15d-PGJ2), an endogenous ligand of PPAR-γ: function and mechanism. PPAR Res. 2019;2019:7242030. doi: 10.1155/2019/7242030 |
| [74] |
Li J., Guo C., Wu J. 15-Deoxy-∆-12,14-Prostaglandin J2 (15d-PGJ2), an endogenous ligand of PPAR-γ: function and mechanism // PPAR Res. 2019. Vol. 2019. P. 7242030. doi: 10.1155/2019/7242030 |
| [75] |
Kaushal N, Kudva AK, Patterson AD, et al. Crucial role of macrophage selenoproteins in experimental colitis. J Immunol. 2014;193(7):3683–3692. doi: 10.4049/jimmunol.1400347 |
| [76] |
Kaushal N., Kudva A.K., Patterson A.D., et al. Crucial role of macrophage selenoproteins in experimental colitis // J Immunol. 2014. Vol. 193, N. 7. P. 3683–3692. doi: 10.4049/jimmunol.1400347 |
| [77] |
Kim W, Jang JH, Zhong X, et al. 15-Deoxy-Δ12,14-prostaglandin J2 promotes resolution of experimentally induced colitis. Front Immunol. 2021;12:615803. doi: 10.3389/fimmu.2021.615803 |
| [78] |
Kim W., Jang J.H., Zhong X., et al. 15-Deoxy-Δ12,14-Prostaglandin J2 promotes resolution of experimentally induced colitis // Front Immunol. 2021. Vol. 12. P. 615803. doi: 10.3389/fimmu.2021.615803 |
| [79] |
Lee BR, Paing MH, Sharma-Walia N. Cyclopentenone prostaglandins: biologically active lipid mediators targeting inflammation. Front Physiol. 2021;12:640374. doi: 10.3389/fphys.2021.640374 |
| [80] |
Lee B.R., Paing M.H., Sharma-Walia N. Cyclopentenone prostaglandins: biologically active lipid mediators targeting inflammation // Front Physiol. 2021. Vol. 12. P. 640374. doi: 10.3389/fphys.2021.640374 |
| [81] |
Mulero MC, Huxford T, Ghosh G. NF-κB, IκB, and IKK: integral components of immune system signaling. Adv Exp Med Biol. 2019;1172:207–226. doi: 10.1007/978-981-13-9367-9_10 |
| [82] |
Mulero M.C., Huxford T., Ghosh G. NF-κB, IκB, and IKK: integral components of immune system signaling // Adv Exp Med Biol. 2019. Vol. 1172. P. 207–226. doi: 10.1007/978-981-13-9367-9_10 |
| [83] |
Andrés CMC, Pérez de la Lastra JM, Juan CA, et al. Antioxidant metabolism pathways in vitamins, polyphenols, and selenium: parallels and divergences. Int J Mol Sci. 2024;25(5):2600. doi: 10.3390/ijms25052600 |
| [84] |
Andrés C.M.C., Pérez de la Lastra J.M., Juan C.A., et al. Antioxidant metabolism pathways in vitamins, polyphenols, and selenium: parallels and divergences // Int J Mol Sci. 2024. Vol. 25, N. 5. P. 2600. doi: 10.3390/ijms25052600 |
| [85] |
Pei J, Pan X, Wei G, Hua Y. Research progress of glutathione peroxidase family (GPX) in redoxidation. Front Pharmacol. 2023;14:1147414. doi: 10.3389/fphar.2023.1147414 |
| [86] |
Pei J., Pan X., Wei G., Hua Y. Research progress of glutathione peroxidase family (GPX) in redoxidation // Front Pharmacol. 2023. Vol. 14. P. 1147414. doi: 10.3389/fphar.2023.1147414 |
| [87] |
Deng Z, Zhao Y, Ma Z, et al. Pathophysiological role of ion channels and transporters in gastrointestinal mucosal diseases. Cell Mol Life Sci. 2021;78(24):8109–8125. doi: 10.1007/s00018-021-04011-5 |
| [88] |
Deng Z., Zhao Y., Ma Z., et al. Pathophysiological role of ion channels and transporters in gastrointestinal mucosal diseases // Cell Mol Life Sci. 2021. Vol. 78, N. 24. P. 8109–8125. doi: 10.1007/s00018-021-04011-5 |
| [89] |
Tian T, Wang Z, Zhang J. Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxid Med Cell Longev. 2017;2017:4535194. doi: 10.1155/2017/4535194 |
| [90] |
Tian T., Wang Z., Zhang J. Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies // Oxid Med Cell Longev. 2017. Vol. 2017. P. 4535194. doi: 10.1155/2017/4535194 |
| [91] |
Shen Y, Huang H, Wang Y, et al. Antioxidant effects of Se-glutathione peroxidase in alcoholic liver disease. J Trace Elem Med Biol. 2022;74:127048. doi: 10.1016/j.jtemb.2022.127048 |
| [92] |
Shen Y., Huang H., Wang Y., et al. Antioxidant effects of Se-glutathione peroxidase in alcoholic liver disease // J Trace Elem Med Biol. 2022. Vol. 74. P. 127048. doi: 10.1016/j.jtemb.2022.127048 |
| [93] |
Schwarz M, Gazdarica M, Froňková E, et al. Functional studies associate novel DUOX2 gene variants detected in heterozygosity to Crohn’s disease. Mol Biol Rep. 2024;51(1):399. doi: 10.1007/s11033-024-09317-8 |
| [94] |
Schwarz M., Gazdarica M., Froňková E., et al. Functional studies associate novel DUOX2 gene variants detected in heterozygosity to Crohn’s disease // Mol Biol Rep. 2024. Vol. 51, N. 1. P. 399. doi: 10.1007/s11033-024-09317-8 |
| [95] |
Poncelet L, Dumont JE, Miot F, De Deken X. The Dual Oxidase Duox2 stabilized with DuoxA2 in an enzymatic complex at the surface of the cell produces extracellular H2O2able to induce DNA damage in an inducible cellular model. Exp Cell Res. 2019;384(1):111620. doi: 10.1016/j.yexcr.2019.111620 |
| [96] |
Poncelet L., Dumont J.E., Miot F., De Deken X. The Dual Oxidase Duox2 stabilized with DuoxA2 in an enzymatic complex at the surface of the cell produces extracellular H2O2able to induce DNA damage in an inducible cellular model // Exp Cell Res. 2019. Vol. 384, N. 1. P. 111620. doi: 10.1016/j.yexcr.2019.111620 |
| [97] |
Kyodo R, Takeuchi I, Narumi S, et al. Novel biallelic mutations in the DUOX2 gene underlying very early-onset inflammatory bowel disease: a case report. Clin Immunol. 2022;238:109015. doi: 10.1016/j.clim.2022.109015 |
| [98] |
Kyodo R., Takeuchi I., Narumi S., et al. Novel biallelic mutations in the DUOX2 gene underlying very early-onset inflammatory bowel disease: a case report // Clin Immunol. 2022. Vol. 238. P. 109015. doi: 10.1016/j.clim.2022.109015 |
| [99] |
Dang PM, Rolas L, El-Benna J. The dual role of reactive oxygen species-generating nicotinamide adenine dinucleotide phosphate oxidases in gastrointestinal inflammation and therapeutic perspectives. Antioxid Redox Signal. 2020;33(5):354–373. doi: 10.1089/ars.2020.8018 |
| [100] |
Dang P.M., Rolas L., El-Benna J. the dual role of reactive oxygen species-generating nicotinamide adenine dinucleotide phosphate oxidases in gastrointestinal inflammation and therapeutic perspectives // Antioxid Redox Signal. 2020. Vol. 33, N. 5. P. 354–373. doi: 10.1089/ars.2020.8018 |
| [101] |
Guan Q, Zhang J. Recent advances: the imbalance of cytokines in the pathogenesis of inflammatory bowel disease. Mediators Inflamm. 2017;2017:4810258. doi: 10.1155/2017/4810258 |
| [102] |
Guan Q., Zhang J. Recent advances: The imbalance of cytokines in the pathogenesis of inflammatory bowel disease // Mediators Inflamm. 2017. Vol. 2017. P. 4810258. doi: 10.1155/2017/4810258 |
| [103] |
Flohé L, Toppo S, Orian L. The glutathione peroxidase family: Discoveries and mechanism. Free Radic Biol Med. 2022;187:113–122. doi: 10.1016/j.freeradbiomed.2022.05.003 |
| [104] |
Flohé L., Toppo S., Orian L. The glutathione peroxidase family: Discoveries and mechanism // Free Radic Biol Med. 2022. Vol. 187. P. 113–122. doi: 10.1016/j.freeradbiomed.2022.05.003 |
| [105] |
Ammar M, Bahloul N, Amri O, et al. Oxidative stress in patients with asthma and its relation to uncontrolled asthma. J Clin Lab Anal. 2022;36(5):e24345. doi: 10.1002/jcla.24345 |
| [106] |
Ammar M., Bahloul N., Amri O., et al. Oxidative stress in patients with asthma and its relation to uncontrolled asthma // J Clin Lab Anal. 2022. Vol. 36, N. 5. P. 24345. doi: 10.1002/jcla.24345 |
| [107] |
Peñailillo L, Miranda-Fuentes C, Gutiérrez S, et al. Systemic inflammation but not oxidative stress is associated with physical performance in moderate chronic obstructive pulmonary disease. Adv Exp Med Biol. 2024;1450:121–130. doi: 10.1007/5584_2023_784 |
| [108] |
Peñailillo L., Miranda-Fuentes C., Gutiérrez S., et al. Systemic inflammation but not oxidative stress is associated with physical performance in moderate chronic obstructive pulmonary disease // Adv Exp Med Biol. 2024. Vol. 1450. P. 121–130. doi: 10.1007/5584_2023_784 |
| [109] |
Janetzki JL, Pratt NL, Ward MB, Sykes MJ. Application of an integrative drug safety model for detection of adverse drug events associated with inhibition of glutathione peroxidase 1 in chronic obstructive pulmonary disease. Pharm Res. 2023;40(6):1553–1568. doi: 10.1007/s11095-023-03516-x |
| [110] |
Janetzki J.L., Pratt N.L., Ward M.B., Sykes M.J. Application of an integrative drug safety model for detection of adverse drug events associated with inhibition of glutathione peroxidase 1 in chronic obstructive pulmonary disease // Pharm Res. 2023. Vol. 40, N. 6. P. 1553–1568. doi: 10.1007/s11095-023-03516-x |
| [111] |
Brigelius-Flohé R, Flohé L. Regulatory phenomena in the glutathione peroxidase superfamily. Antioxid Redox Signal. 2020;33(7):498–516. doi: 10.1089/ars.2019.7905 |
| [112] |
Brigelius-Flohé R., Flohé L. Regulatory phenomena in the glutathione peroxidase superfamily // Antioxid Redox Signal. 2020. Vol. 33, N. 7. P. 498–516. doi: 10.1089/ars.2019.7905 |
| [113] |
Mayr L, Grabherr F, Schwärzler J, et al. Dietary lipids fuel GPX4-restricted enteritis resembling Crohn’s disease. Nat Commun. 2020;11(1):1775. doi: 10.1038/s41467-020-15646-6 |
| [114] |
Mayr L., Grabherr F., Schwärzler J., et al. Dietary lipids fuel GPX4-restricted enteritis resembling Crohn’s disease // Nat Commun. 2020. Vol. 11, N. 1. P. 1775. doi: 10.1038/s41467-020-15646-6 |
| [115] |
Xie Y, Kang R, Klionsky DJ, Tang D. GPX4 in cell death, autophagy, and disease. Autophagy. 2023;19(10):2621–2638. doi: 10.1080/15548627.2023.2218764 |
| [116] |
Xie Y., Kang R., Klionsky D.J., Tang D. GPX4 in cell death, autophagy, and disease // Autophagy. 2023. Vol. 19, N. 10. P. 2621–2638. doi: 10.1080/15548627.2023.2218764 |
| [117] |
Short SP, Pilat JM, Williams CS. Roles for selenium and selenoprotein P in the development, progression, and prevention of intestinal disease. Free Radic Biol Med. 2018;127:26–35. doi: 10.1016/j.freeradbiomed.2018.05.066 |
| [118] |
Short S.P., Pilat J.M., Williams C.S. Roles for selenium and selenoprotein P in the development, progression, and prevention of intestinal disease // Free Radic Biol Med. 2018. Vol. 127. P. 26–35. doi: 10.1016/j.freeradbiomed.2018.05.066 |
| [119] |
Nettleford SK, Liao C, Short SP, et al. Selenoprotein W ameliorates experimental colitis and promotes intestinal epithelial repair. Antioxidants (Basel). 2023;12(4):850. doi: 10.3390/antiox12040850 |
| [120] |
Nettleford S.K., Liao C., Short S.P., et al. Selenoprotein W ameliorates experimental colitis and promotes intestinal epithelial repair // Antioxidants (Basel). 2023. Vol. 12, N. 4. P. 850. doi: 10.3390/antiox12040850 |
| [121] |
Zhou B, Yuan Y, Zhang S, et al. Intestinal flora and disease mutually shape the regional immune system in the intestinal tract. Front Immunol. 2020;11:575. doi: 10.3389/fimmu.2020.00575 |
| [122] |
Zhou B., Yuan Y., Zhang S., et al. Intestinal flora and disease mutually shape the regional immune system in the intestinal tract // Front Immunol. 2020. Vol. 11. P. 575. doi: 10.3389/fimmu.2020.00575 |
| [123] |
Kang DY, Park JL, Yeo MK, et al. Diagnosis of Crohn’s disease and ulcerative colitis using the microbiome. BMC Microbiol. 2023;23(1):336. doi: 10.1186/s12866-023-03084-5 |
| [124] |
Kang D.Y., Park J.L., Yeo M.K., et al. Diagnosis of Crohn’s disease and ulcerative colitis using the microbiome // BMC Microbiol. 2023. Vol. 23, N. 1. P. 336. doi: 10.1186/s12866-023-03084-5 |
| [125] |
Qian X, Jiang H, Wu Y, et al. Fecal microbiota transplantation combined with prebiotics ameliorates ulcerative colitis in mice. Future Microbiol. 2023;18:1251–1263. doi: 10.2217/fmb-2023-0001 |
| [126] |
Qian X., Jiang H., Wu Y., et al. Fecal microbiota transplantation combined with prebiotics ameliorates ulcerative colitis in mice // Future Microbiol. 2023. Vol. 18. P. 1251–1263. doi: 10.2217/fmb-2023-0001 |
| [127] |
Shang S, Zhu J, Liu X, et al. The impacts of fecal microbiota transplantation from same sex on the symptoms of ulcerative colitis patients. Pol J Microbiol. 2023;72(3):247–268. doi: 10.33073/pjm-2023-025 |
| [128] |
Shang S., Zhu J., Liu X., et al. The Impacts of fecal microbiota transplantation from same sex on the symptoms of ulcerative colitis patients // Pol J Microbiol. 2023. Vol. 72, N. 3. P. 247–268. doi: 10.33073/pjm-2023-025 |
| [129] |
Akahoshi N, Anan Y, Hashimoto Y, et al. Dietary selenium deficiency or selenomethionine excess drastically alters organ selenium contents without altering the expression of most selenoproteins in mice. J Nutr Biochem. 2019;69:120–129. doi: 10.1016/j.jnutbio.2019.03.020 |
| [130] |
Akahoshi N., Anan Y., Hashimoto Y., et al. Dietary selenium deficiency or selenomethionine excess drastically alters organ selenium contents without altering the expression of most selenoproteins in mice // J Nutr Biochem. 2019. Vol. 69. P. 120–129. doi: 10.1016/j.jnutbio.2019.03.020 |
| [131] |
Kang R, Wang W, Liu Y, et al. Dietary selenium sources alleviate immune challenge induced by Salmonella Enteritidis potentially through improving the host immune response and gut microbiota in laying hens. Front Immunol. 2022;13:928865. doi: 10.3389/fimmu.2022.928865 |
| [132] |
Kang R., Wang W., Liu Y., et al. Dietary selenium sources alleviate immune challenge induced by Salmonella Enteritidis potentially through improving the host immune response and gut microbiota in laying hens // Front Immunol. 2022. Vol. 13. P. 928865. doi: 10.3389/fimmu.2022.928865 |
| [133] |
Zhao Y, Chen H, Li W, et al. Selenium-containing tea polysaccharides ameliorate DSS-induced ulcerative colitis via enhancing the intestinal barrier and regulating the gut microbiota. Int J Biol Macromol. 2022;209:356–366. doi: 10.1016/j.ijbiomac.2022.04.028 |
| [134] |
Zhao Y., Chen H., Li W., et al. Selenium-containing tea polysaccharides ameliorate DSS-induced ulcerative colitis via enhancing the intestinal barrier and regulating the gut microbiota // Int J Biol Macromol. 2022. Vol. 209. P. 356–366. doi: 10.1016/j.ijbiomac.2022.04.028 |
| [135] |
Keshteli AH, Valcheva R, Nickurak C, et al. Anti-inflammatory diet prevents subclinical colonic inflammation and alters metabolomic profile of ulcerative colitis patients in clinical remission. Nutrients. 2022;14(16):3294. doi: 10.3390/nu14163294 |
| [136] |
Keshteli A.H., Valcheva R., Nickurak C., et al. Anti-inflammatory diet prevents subclinical colonic inflammation and alters metabolomic profile of ulcerative colitis patients in clinical remission // Nutrients. 2022. Vol. 14, N. 16. P. 3294. doi: 10.3390/nu14163294 |
| [137] |
Wang K, Qin L, Cao J, et al. κ-Selenocarrageenan oligosaccharides prepared by deep-sea enzyme alleviate inflammatory responses and modulate gut microbiota in ulcerative colitis mice. Int J Mol Sci. 2023;24(5):4672. doi: 10.3390/ijms24054672 |
| [138] |
Wang K., Qin L., Cao J., et al. κ-selenocarrageenan oligosaccharides prepared by deep-sea enzyme alleviate inflammatory responses and modulate gut microbiota in ulcerative colitis mice // Int J Mol Sci. 2023. Vol. 24, N. 5. P. 4672. doi: 10.3390/ijms24054672 |
| [139] |
Zhu D, Wu H, Jiang K, et al. Zero-valence selenium-enriched prussian blue nanozymes reconstruct intestinal barrier against inflammatory bowel disease via inhibiting ferroptosis and T cells differentiation. Adv Healthc Mater. 2023;12(12):e2203160. doi: 10.1002/adhm.202203160 |
| [140] |
Zhu D., Wu H., Jiang K., et al. Zero-valence selenium-enriched Prussian blue nanozymes reconstruct intestinal barrier against inflammatory bowel disease via inhibiting ferroptosis and T cells differentiation // Adv Healthc Mater. 2023. Vol. 12, N. 12. P. 2203160. doi: 10.1002/adhm.202203160 |
| [141] |
Danciu AM, Ghitea TC, Bungau AF, Vesa CM. The crucial role of diet therapy and selenium on the evolution of clinical and paraclinical parameters in patients with metabolic syndrome. J Nutr Metab. 2023;2023:6632197. doi: 10.1155/2023/6632197 |
| [142] |
Danciu A.M., Ghitea T.C., Bungau A.F., Vesa C.M. The crucial role of diet therapy and selenium on the evolution of clinical and paraclinical parameters in patients with metabolic syndrome // J Nutr Metab. 2023. Vol. 2023. P. 6632197. doi: 10.1155/2023/6632197 |
| [143] |
Crooks B, Misra R, Arebi N, et al. The dietary practices and beliefs of British South Asian people living with inflammatory bowel disease: a multicenter study from the United Kingdom. Intest Res. 2022;20(1):53–63. doi: 10.5217/ir.2020.00079 |
| [144] |
Crooks B., Misra R., Arebi N., et al. The dietary practices and beliefs of British South Asian people living with inflammatory bowel disease: a multicenter study from the United Kingdom // Intest Res. 2022. Vol. 20, N. 1. P. 53–63. doi: 10.5217/ir.2020.00079 |
| [145] |
Xia X, Zhang X, Liu M, et al. Toward improved human health: efficacy of dietary selenium on immunity at the cellular level. Food Funct. 2021;12(3):976–989. doi: 10.1039/d0fo03067h |
| [146] |
Xia X., Zhang X., Liu M., et al. Toward improved human health: efficacy of dietary selenium on immunity at the cellular level // Food Funct. 2021. Vol. 12, N. 3. P. 976–989. doi: 10.1039/d0fo03067h |
| [147] |
Kopp TI, Outzen M, Olsen A, et al. Genetic polymorphism in selenoprotein P modifies the response to selenium-rich foods on blood levels of selenium and selenoprotein P in a randomized dietary intervention study in Danes. Genes Nutr. 2018;13:20. doi: 10.1186/s12263-018-0608-4 |
| [148] |
Kopp T.I., Outzen M., Olsen A., et al. Genetic polymorphism in selenoprotein P modifies the response to selenium-rich foods on blood levels of selenium and selenoprotein P in a randomized dietary intervention study in Danes // Genes Nutr. 2018. Vol. 13. P. 20. doi: 10.1186/s12263-018-0608-4 |
| [149] |
Alexander J, Olsen AK. Selenium — a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res. 2023;67. doi: 10.29219/fnr.v67.10320 |
| [150] |
Alexander J., Olsen A.K. Selenium — a scoping review for Nordic Nutrition Recommendations 2023 // Food Nutr Res. 2023. Vol. 67. doi: 10.29219/fnr.v67.10320 |
| [151] |
Reddavide R, Rotolo O, Caruso MG, et al. The role of diet in the prevention and treatment of Inflammatory Bowel Diseases. Acta Biomed. 2018;89(9–S):60–75. doi: 10.23750/abm.v89i9-S.7952 |
| [152] |
Reddavide R., Rotolo O., Caruso M.G., et al. The role of diet in the prevention and treatment of Inflammatory Bowel Diseases // Acta Biomed. 2018. Vol. 89, N. 9. P. 60–75. doi: 10.23750/abm.v89i9-S.7952 |
| [153] |
Di Renzo L, Gualtieri P, De Lorenzo A. Diet, nutrition and chronic degenerative diseases. Nutrients. 2021;13(4):1372. doi: 10.3390/nu13041372 |
| [154] |
Di Renzo L., Gualtieri P., De Lorenzo A. Diet, nutrition and chronic degenerative diseases // Nutrients. 2021. Vol. 13, N. 4. P. 1372. doi: 10.3390/nu13041372 |
| [155] |
Akasheva DU, Drapkina OM. Mediterranean diet: origin history, main components, evidence of benefits and feasibility to adapt to the Russian reality. Rational Pharmacotherapy in Cardiology. 2020;16(2):307–316. EDN: VFPXRL doi: 10.20996/1819-6446-2020-04-03 |
| [156] |
Акашева Д.У, Драпкина О.М. Средиземноморская диета: история, основные компоненты, доказательства пользы и возможность применения в российской реальности // Рациональная фармакотерапия в кардиологии. 2020. Т. 16, № 2. С. 307–316. EDN: VFPXRL doi: 10.20996/1819-6446-2020-04-03 |
| [157] |
Chicco F, Magrì S, Cingolani A, et al. Multidimensional impact of mediterranean diet on IBD patients. Inflamm Bowel Dis. 2021;27(1):1–9. doi: 10.1093/ibd/izaa097 |
| [158] |
Chicco F., Magrì S., Cingolani A., et al. Multidimensional impact of mediterranean diet on IBD patients // Inflamm Bowel Dis. 2021. Vol. 27, N. 1. P. 1–9. doi: 10.1093/ibd/izaa097 |
| [159] |
Khazdouz M, Daryani NE, Cheraghpour M, et al. The effect of selenium supplementation on disease activity and immune-inflammatory biomarkers in patients with mild-to-moderate ulcerative colitis: a randomized, double-blind, placebo-controlled clinical trial. Eur J Nutr. 2023;62(8):3125–3134. doi: 10.1007/s00394-023-03214-9 |
| [160] |
Khazdouz M., Daryani N.E., Cheraghpour M., et al. The effect of selenium supplementation on disease activity and immune-inflammatory biomarkers in patients with mild-to-moderate ulcerative colitis: a randomized, double-blind, placebo-controlled clinical trial // Eur J Nutr. 2023. Vol. 62, N. 8. P. 3125–3134. doi: 10.1007/s00394-023-03214-9 |
| [161] |
Xiao D, Li T, Huang X, et al. Advances in the study of selenium-enriched probiotics: from the inorganic Se into Se nanoparticles. Mol Nutr Food Res. 2023;67(23):e2300432. doi: 10.1002/mnfr.202300432 |
| [162] |
Xiao D., Li T., Huang X., et al. Advances in the study of selenium-enriched probiotics: from the inorganic SE into SE nanoparticles // Mol Nutr Food Res. 2023. Vol. 67, N. 23. P. 2300432. doi: 10.1002/mnfr.202300432 |
| [163] |
Khattab AE, Darwish AM, Othman SI, et al. Anti-inflammatory and immunomodulatory potency of selenium-enriched probiotic mutants in mice with induced ulcerative colitis. Biol Trace Elem Res. 2023;201(1):353–367. doi: 10.1007/s12011-022-03154-1 |
| [164] |
Khattab A.E., Darwish A.M., Othman S.I., et al. Anti-inflammatory and immunomodulatory potency of selenium-enriched probiotic mutants in mice with induced ulcerative colitis // Biol Trace Elem Res. 2023. Vol. 201, N. 1. P. 353–367. doi: 10.1007/s12011-022-03154-1 |
| [165] |
Hu Y, Jin X, Gao F, et al. Selenium-enriched Bifidobacterium longum DD98 effectively ameliorates dextran sulfate sodium-induced ulcerative colitis in mice. Front Microbiol. 2022;13:955112. doi: 10.3389/fmicb.2022.955112 |
| [166] |
Hu Y., Jin X., Gao F., et al. Selenium-enriched Bifidobacterium longum DD98 effectively ameliorates dextran sulfate sodium-induced ulcerative colitis in mice // Front Microbiol. 2022. Vol. 13. P. 955112. doi: 10.3389/fmicb.2022.955112 |
| [167] |
Hosnedlova B, Kepinska M, Skalickova S, et al. Nano-selenium and its nanomedicine applications: a critical review. Int J Nanomedicine. 2018;13:2107–2128. doi: 10.2147/IJN.S157541 |
| [168] |
Hosnedlova B., Kepinska M., Skalickova S., et al. Nano-selenium and its nanomedicine applications: a critical review // Int J Nanomedicine. 2018. Vol. 13. P. 2107–2128. doi: 10.2147/IJN.S157541 |
| [169] |
Xiao X, Deng H, Lin X, et al. Selenium nanoparticles: Properties, preparation methods, and therapeutic applications. Chem Biol Interact. 2023;378:110483. doi: 10.1016/j.cbi.2023.110483 |
| [170] |
Xiao X., Deng H., Lin X., et al. Selenium nanoparticles: Properties, preparation methods, and therapeutic applications // Chem Biol Interact. 2023. Vol. 378. P. 110483. doi: 10.1016/j.cbi.2023.110483 |
| [171] |
Ye R, Guo Q, Huang J, et al. Eucommia ulmoides polysaccharide modified nano-selenium effectively alleviated DSS-induced colitis through enhancing intestinal mucosal barrier function and antioxidant capacity. J Nanobiotechnology. 2023;21(1):222. doi: 10.1186/s12951-023-01965-5 |
| [172] |
Ye R., Guo Q., Huang J., et al. Eucommia ulmoides polysaccharide modified nano-selenium effectively alleviated DSS-induced colitis through enhancing intestinal mucosal barrier function and antioxidant capacity // J Nanobiotechnology. 2023. Vol. 21, N. 1. P. 222. doi: 10.1186/s12951-023-01965-5 |
| [173] |
Song D, Cheng Y, Li X, et al. Biogenic nanoselenium particles effectively attenuate oxidative stress-induced intestinal epithelial barrier injury by activating the Nrf2 antioxidant pathway. ACS Appl Mater Interfaces. 2017;9(17):14724–14740. doi: 10.1021/acsami.7b03377 |
| [174] |
Song D., Cheng Y., Li X., et al. Biogenic nanoselenium particles effectively attenuate oxidative stress-induced intestinal epithelial barrier injury by activating the Nrf2 antioxidant pathway // ACS Appl Mater Interfaces. 2017. Vol. 9, N. 17. P. 14724–14740. doi: 10.1021/acsami.7b03377 |
Eco-Vector
/
| 〈 |
|
〉 |