Pulmonary artery thrombosis. Clinical aspects and the possibility of prognosis

Olga Ya. Porembskaya , Kirill V. Lobastov , Sergey N. Tsaplin , Leonid A. Laberko , Victoria A. Ilina , Maxim I. Galchenko , Viacheslav N. Kravchuk , Sergey A. Sayganov

HERALD of North-Western State Medical University named after I.I. Mechnikov ›› 2023, Vol. 15 ›› Issue (3) : 75 -84.

PDF
HERALD of North-Western State Medical University named after I.I. Mechnikov ›› 2023, Vol. 15 ›› Issue (3) :75 -84. DOI: 10.17816/mechnikov611007
Original study article
research-article

Pulmonary artery thrombosis. Clinical aspects and the possibility of prognosis

Author information +
History +
PDF

Abstract

BACKGROUND: Recently, there has been a growing interest to the pulmonary artery thrombosis due to the collected data on pathogenesis of this complication and the awareness about developing diagnostic and therapeutic strategy distinctive from those in pulmonary embolism.

AIM: To estimate the pulmonary artery thrombosis clinical presentation, its electrocardiographic and echocardiographic signs and the possibility of applying venous thromboembolism risk assessment scores and diagnostic scoring systems in the cohort of deceased patients with verified pulmonary artery thrombosis.

MATERIALS AND METHODS: A retrospective study based on the medical records analysis of two groups of deceased patients has been carried out. The first group included 80 patients with pulmonary artery thrombosis and the second one included 42 patients with pulmonary embolism. All the patients’ diagnoses were confirmed by the results of sectional and histological studies. 61 patient with COVID-19 and 19 non-COVID urgent patients with different pathologies were included in pulmonary artery thrombosis group. All 42 patients in pulmonary embolism group had verified venous thrombosis or heart chambers thrombi. Clinical presentation peculiarities, the electrocardiographic and echocardiographic reports as well as the possibility of application of Caprini, IMPROVE VTE, Padua, Wells and Geneva scoring systems were analyzed.

RESULTS: None of the 80 pulmonary artery thrombosis patients had hemoptysis, unexpected dyspnoea, sudden strong cough, chest pain, or syncopea. Electrocardiographic changes indicative of right ventricular strain were found in 52.5% in the pulmonary artery thrombosis group and in 57.1% in the pulmonary embolism group. Inversion of T waves, complete and incomplete right bundle branch block were recorded in 14.6% and in 12.5%, in 36.3% and in 47.5% in the pulmonary artery thrombosis group and in the pulmonary embolism group, respectively, without statistical significance between two groups. Echocardiographic findings of right ventricular overload and/or dysfunction were present in 5 out of 10 patients with pulmonary artery thrombosis and in 5 out of 9 patients with pulmonary embolism. The correlation between Caprini, IMPROVE VTE and Padua scores and the incidence of pulmonary artery thrombosis was as strong as with the incidence of pulmonary embolism. On the contrary, Wells and Geneva clinical prediction scores failed to determine the probability of pulmonary artery thrombosis.

CONCLUSIONS: Pulmonary artery thrombosis occurs without obvious clinical manifestations typical for pulmonary embolism. Electrocardiography and echocardiography reveal right ventricular overload in pulmonary artery thrombosis and in pulmonary embolism with equal frequency. Patients with high risk of pulmonary artery thrombosis can be identified by using the Caprini, IMPROVE VTE, Padua Prediction scores.

Keywords

pulmonary artery thrombosis / pulmonary embolism / risk assessment model / scoring systems

Cite this article

Download citation ▾
Olga Ya. Porembskaya, Kirill V. Lobastov, Sergey N. Tsaplin, Leonid A. Laberko, Victoria A. Ilina, Maxim I. Galchenko, Viacheslav N. Kravchuk, Sergey A. Sayganov. Pulmonary artery thrombosis. Clinical aspects and the possibility of prognosis. HERALD of North-Western State Medical University named after I.I. Mechnikov, 2023, 15(3): 75-84 DOI:10.17816/mechnikov611007

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cao Y, Geng C, Li Y, Zhang Y. In situ pulmonary artery thrombosis: a previously overlooked disease. Front Pharmacol. 2021;12:671589. DOI: 10.3389/fphar.2021.671589

[2]

Cao Y., Geng C., Li Y., Zhang Y. In situ pulmonary artery thrombosis: a previously overlooked disease // Front. Pharmacol. 2021. Vol. 12. P. 671589. DOI: 10.3389/fphar.2021.671589

[3]

Ng KH, Wu AK, Cheng VC, et al. Pulmonary artery thrombosis in a patient with severe acute respiratory syndrome. Postgrad Med J. 2005;81(956):e3. DOI: 10.1136/pgmj.2004.030049

[4]

Ng K.H., Wu A.K., Cheng V.C. et al. Pulmonary artery thrombosis in a patient with severe acute respiratory syndrome // Postgrad. Med. J. 2005. Vol. 81, No. 956. Р. e3. DOI: 10.1136/pgmj.2004.030049

[5]

Baranga L, Khanuja S, Scott J. In situ pulmonary arterial thrombosis: Literature review and clinical significance of a distinct entity. Am J Roentgenol. 2023;221(1):57–68. DOI: 10.2214/AJR.23.28996

[6]

Baranga L., Khanuja S., Scott J. In situ pulmonary arterial thrombosis: Literature review and clinical significance of a distinct entity // Am. J. Roentgenol. 2023. Vol. 221, No. 1. Р. 57–68. DOI: 10.2214/AJR.23.28996

[7]

Kumar DR, Hanlin E, Glurich I, et al. Virchow’s contribution to the understanding of thrombosis and cellular biology. Clin Med Res. 2010;8(3–4):168–172. DOI: 10.3121/cmr.2009.866

[8]

Kumar D.R., Hanlin E., Glurich I. et al. Virchow’s contribution to the understanding of thrombosis and cellular biology // Clin. Med. Res. 2010. Vol. 8, No. 3–4. Р. 168–172. DOI: 10.3121/cmr.2009.866

[9]

Ten Cate V, Prochaska JH, Schulz A, et al. Clinical profile and outcome of isolated pulmonary embolism: a systematic review and meta-analysis. EClinicalMedicine. 2023;59:101973. DOI: 10.1016/j.eclinm.2023.101973

[10]

Ten Cate V., Prochaska J.H., Schulz A. et al. Clinical profile and outcome of isolated pulmonary embolism: a systematic review and meta-analysis // EClinicalMedicine. 2023. Vol. 59. P. 101973. DOI: 10.1016/j.eclinm.2023.101973

[11]

Tadlock MD, Chouliaras K, Kennedy M, et al. The origin of fatal pulmonary emboli: a postmortem analysis of 500 deaths from pulmonary embolism in trauma, surgical, and medical patients. Am J Surg. 2015;209(6):959–968. DOI: 10.1016/j.amjsurg.2014.09.027

[12]

Tadlock M.D., Chouliaras K., Kennedy M. et al. The origin of fatal pulmonary emboli: a postmortem analysis of 500 deaths from pulmonary embolism in trauma, surgical, and medical patients // Am. J. Surg. 2015. Vol. 209, No. 6. P. 959–968. DOI: 10.1016/j.amjsurg.2014.09.027

[13]

von Brühl ML, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–835. DOI: 10.1084/jem.20112322

[14]

von Brühl M.L., Stark K., Steinhart A. et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo // J. Exp. Med. 2012. Vol. 209, No. 4. P. 819–835. DOI: 10.1084/jem.20112322

[15]

Porembskaya OYa, Lobastov KV, Kravchuk VN, et al. Pulmonary embolism — scattered elements of incomplete puzzle. Flebologiya. 2021;15(3):188–198. (In Russ.) DOI: 10.17116/flebo202115031188

[16]

Порембская О.Я., Лобастов К.В., Кравчук В.Н. и др. Легочная эмболия — разрозненные части несобранной мозаики // Флебология. 2021. Т. 15, № 3. С. 188–198. DOI: 10.17116/flebo202115031188

[17]

Okano M, Hara T, Nishimori M, et al. In vivo imaging of venous thrombus and pulmonary embolism using novel murine venous thromboembolism model. JACC Basic Transl Sci. 2020;5(4):344–356. DOI: 10.1016/j.jacbts.2020.01.010

[18]

Okano M., Hara T., Nishimori M. et al. In vivo imaging of venous thrombus and pulmonary embolism using novel murine venous thromboembolism model // JACC Basic. Transl. Sci. 2020. Vol. 5, No. 4. Р. 344–356. DOI: 10.1016/j.jacbts.2020.01.010

[19]

Chernysh IN, Nagaswami C, Kosolapova S, et al. The distinctive structure and composition of arterial and venous thrombi and pulmonary emboli. Sci Rep. 2020;10(1):5112. DOI: 10.1038/s41598-020-59526-x

[20]

Chernysh I.N., Nagaswami C., Kosolapova S. et al. The distinctive structure and composition of arterial and venous thrombi and pulmonary emboli // Sci. Rep. 2020. Vol. 10, No. 1. Р. 5112. DOI: 10.1038/s41598-020-59526-x

[21]

Kearon C, Gent M, Hirsh J, et al. A comparison of three months of anticoagulation with extended anticoagulation for a first episode of idiopathic venous thromboembolism. N Engl J Med. 1999;340(12):901–907. DOI: 10.1056/NEJM199903253401201

[22]

Kearon C., Gent M., Hirsh J. et al. A comparison of three months of anticoagulation with extended anticoagulation for a first episode of idiopathic venous thromboembolism // N. Engl. J. Med. 1999. Vol. 340, No. 12. Р. 901–907. DOI: 10.1056/NEJM199903253401201

[23]

Khan F, Rahman A, Carrier M, et al. Long term risk of symptomatic recurrent venous thromboembolism after discontinuation of anticoagulant treatment for first unprovoked venous thromboembolism event: Systematic review and meta-analysis. BMJ. 2019;366:14363. DOI: 10.1136/bmj.l4363

[24]

Khan F., Rahman A., Carrier M. et al. Long term risk of symptomatic recurrent venous thromboembolism after discontinuation of anticoagulant treatment for first unprovoked venous thromboembolism event: Systematic review and meta-analysis // BMJ. 2019. Vol. 366. P. 14363. DOI: 10.1136/bmj.l4363

[25]

Bertoletti L, Quenet S, Laporte S, et al. Pulmonary embolism and 3-month outcomes in 4036 patients with venous thromboembolism and chronic obstructive pulmonary disease: Data from the RIETE registry. Respir Res. 2013;14(1):75. DOI: 10.1186/1465-9921-14-75

[26]

Bertoletti L., Quenet S., Laporte S. et al. Pulmonary embolism and 3-month outcomes in 4036 patients with venous thromboembolism and chronic obstructive pulmonary disease: Data from the RIETE registry // Respir. Res. 2013. Vol. 14, No. 1. P. 75. DOI: 10.1186/1465-9921-14-75

[27]

Erelel M, Çuhadaro ĞÇ, Ece T, Arseven O. The frequency of deep venous thrombosis and pulmonary embolus in acute exacerbation of chronic obstructive pulmonary disease. Respir Med. 2002;96(7):515–518. DOI: 10.1053/rmed.2002.1313

[28]

Erelel M., Çuhadaro Ğ.Ç., Ece T., Arseven O. The frequency of deep venous thrombosis and pulmonary embolus in acute exacerbation of chronic obstructive pulmonary disease // Respir. Med. 2002. Vol. 96, No. 7. Р. 515–518. DOI: 10.1053/rmed.2002.1313

[29]

Lundy JB, Oh JS, Chung KK, et al. Frequency and relevance of acute peritraumatic pulmonary thrombus diagnosed by computed tomographic imaging in combat casualties. J Trauma Acute Care Surg. 2013;75(2 Suppl 2):S215–S220. DOI: 10.1097/TA.0b013e318299da66

[30]

Lundy J.B., Oh J.S., Chung K.K. et al. Frequency and relevance of acute peritraumatic pulmonary thrombus diagnosed by computed tomographic imaging in combat casualties // J. Trauma Acute Care Surg. 2013. Vol. 75, No. 2 Suppl 2. P. S215–S220. DOI: 10.1097/TA.0b013e318299da66

[31]

van Stralen KJ, Doggen CJM, Bezemer ID, et al. Mechanisms of the factor V Leiden paradox. Arterioscler Thromb Vasc Biol. 2008;28(10):1872–1877. DOI: 10.1161/ATVBAHA.108.169524

[32]

van Stralen K.J., Doggen C.J.M., Bezemer I.D. et al. Mechanisms of the factor V Leiden paradox // Arterioscler. Thromb. Vasc. Biol. 2008. Vol. 28, No. 10. Р. 1872–1877. DOI: 10.1161/ATVBAHA.108.169524

[33]

Sohns C, Amarteifio E, Sossalla S, et al. 64-Multidetector-row spiral CT in pulmonary embolism with emphasis on incidental findings. Clin Imaging. 2008;32(5):335–341. DOI: 10.1016/j.clinimag.2008.01.028

[34]

Sohns C., Amarteifio E., Sossalla S. et al. 64-Multidetector-row spiral CT in pulmonary embolism with emphasis on incidental findings // Clin. Imaging. 2008. Vol. 32, No. 5. Р. 335–341. DOI: 10.1016/j.clinimag.2008.01.028

[35]

van Langevelde K, Šrámek A, Vincken PWJ, et al. Finding the origin of pulmonary emboli with a total-body magnetic resonance direct thrombus imaging technique. Haematologica. 2013;98(2):309–315. DOI: 10.3324/haematol.2012.069195

[36]

van Langevelde K., Šrámek A., Vincken P.W.J. et al. Finding the origin of pulmonary emboli with a total-body magnetic resonance direct thrombus imaging technique // Haematologica. 2013. Vol. 98, No. 2. Р. 309–315. DOI: 10.3324/haematol.2012.069195

[37]

Milross L, Majo J, Cooper N, et al. Post-mortem lung tissue: the fossil record of the pathophysiology and immunopathology of severe COVID-19. Lancet Respir Med. 2022;10(1):95–106. DOI: 10.1016/S2213-2600(21)00408-2

[38]

Milross L., Majo J., Cooper N. et al. Post-mortem lung tissue: the fossil record of the pathophysiology and immunopathology of severe COVID-19 // Lancet Respir. Med. 2022. Vol. 10, No. 1. Р. 95–106. DOI: 10.1016/S2213-2600(21)00408-2

[39]

Menezes RG, Rizwan T, Saad Ali S, et al. Postmortem findings in COVID-19 fatalities: A systematic review of current evidence. Leg Med (Tokyo). 2022;54:102001. DOI: 10.1016/j.legalmed.2021.102001

[40]

Menezes R.G., Rizwan T., Saad Ali S. et al. Postmortem findings in COVID-19 fatalities: A systematic review of current evidence // Leg. Med. (Tokyo). 2022. Vol. 54. P. 102001. DOI: 10.1016/j.legalmed.2021.102001

[41]

Fox SE, Akmatbekov A, Harbert JL, et al. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med. 2020;8(7):681–686. DOI: 10.1016/S2213-2600(20)30243-5

[42]

Fox S.E., Akmatbekov A., Harbert J.L. et al. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans // Lancet Respir. Med. 2020. Vol. 8, No. 7. P. 681–686. DOI: 10.1016/S2213-2600(20)30243-5

[43]

Weiss EJ, Hamilton JR, Lease KE, Coughlin SR. Protection against thrombosis in mice lacking PAR3. Blood. 2002;100(9):3240–3244. DOI: 10.1182/blood-2002-05-1470

[44]

Weiss E.J., Hamilton J.R., Lease K.E., Coughlin S.R. Protection against thrombosis in mice lacking PAR3 // Blood. 2002. Vol. 100, No. 9. Р. 3240–3244. DOI: 10.1182/blood-2002-05-1470

[45]

Xu J, Zhang X, Pelayo R, et al. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15(11):1318–1321. DOI: 10.1038/nm.2053

[46]

Xu J., Zhang X., Pelayo R. et al. Extracellular histones are major mediators of death in sepsis // Nat. Med. 2009. Vol. 15, No. 11. Р. 1318–1321. DOI: 10.1038/nm.2053

[47]

Kumar NG, Clark A, Roztocil E, et al. Fibrinolytic activity of endothelial cells from different venous beds. J Surg Res. 2015;194(1):297–303. DOI: 10.1016/j.jss.2014.09.028

[48]

Kumar N.G., Clark A., Roztocil E. et al. Fibrinolytic activity of endothelial cells from different venous beds // J. Surg. Res. 2015. Vol. 194, No. 1. Р. 297–303. DOI: 10.1016/j.jss.2014.09.028

[49]

Vogel S, Bodenstein R, Chen Q, et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin Invest. 2015;125(12):4638–4654. DOI: 10.1172/JCI81660

[50]

Vogel S., Bodenstein R., Chen Q. et al. Platelet-derived HMGB1 is a critical mediator of thrombosis // J. Clin. Invest. 2015. Vol. 125, No. 12. Р. 4638–4654. DOI: 10.1172/JCI81660

[51]

Porembskaya OYa, Kravchuk VN, Galchenko MI, et al. Pulmonary vascular thrombosis in COVID-19: clinical and morphological parallels. Rational Pharmacotherapy in Cardiology. 2022;18(4):376–384. (In Russ.) DOI: 10.20996/1819-6446-2022-08-01

[52]

Порембская О.Я., Кравчук В.Н., Гальченко М.И. и др. Тромбоз сосудистого русла легких при COVID-19: клинико-морфологические параллели // Рациональная фармакотерапия в кардиологии. 2022. Т. 18, № 4. С. 376–384. DOI: 10.20996/1819-6446-2022-08-01

[53]

Konstantinides SV, Meyer G, Bueno H, et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European respiratory society (ERS). Eur Heart J. 2020;41(4):543–603. DOI: 10.1093/eurheartj/ehz405

[54]

Konstantinides S.V., Meyer G., Bueno H. et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European respiratory society (ERS) // Eur. Heart J. 2020. Vol. 41, No. 4. P. 543–603. DOI: 10.1093/eurheartj/ehz405

[55]

Lobastov K, Schastlivtsev I, Tsaplin S, et al. Prediction of symptomatic venous thromboembolism in Covid-19 Patients: A retrospective comparison of Caprini, Padua, and IMPROVE-DD Scores. J Vasc Surg Venous Lymphat Disord. 2022;10(2):572–573. DOI: 10.1016/j.jvsv.2021.12.062

[56]

Lobastov K., Schastlivtsev I., Tsaplin S. et al. Prediction of symptomatic venous thromboembolism in Covid-19 Patients: A retrospective comparison of Caprini, Padua, and IMPROVE-DD Scores // J. Vasc. Surg. Venous Lymphat. Disord. 2022. Vol. 10, No. 2. Р. 572–573. DOI: 10.1016/j.jvsv.2021.12.062

[57]

Tsaplin S, Schastlivtsev I, Zhuravlev S, et al. The original and modified Caprini score equally predicts venous thromboembolism in COVID-19 patients. J Vasc Surg Venous Lymphat Disord. 2021;9(6):1371–1381.e4. DOI: 10.1016/j.jvsv.2021.02.018

[58]

Tsaplin S., Schastlivtsev I., Zhuravlev S. et al. The original and modified Caprini score equally predicts venous thromboembolism in COVID-19 patients // J. Vasc. Surg. Venous Lymphat. Disord. 2021. Vol. 9, No. 6. Р. 1371–1381.e4. DOI: 10.1016/j.jvsv.2021.02.018

[59]

Lobastov KV, Sautina EV, Kovalchuk AV, et al. Concurrent validation of the russian version of patient-completed caprini risk assessment tool in surgical patients. Flebologiya. 2022;16(1):6–15. (In Russ.) DOI: 10.17116/flebo2022160116

[60]

Лобастов К.В., Саутина Е.В., Ковальчук А.В. Конкурентная валидация русскоязычной версии пациент-ориентированного опросника на основе шкалы Каприни у хирургических пациентов // Флебология. 2022. Т. 16, № 1. С. 6–15. DOI: 10.17116/flebo2022160116

[61]

Lobastov K, Barinov V, Schastlivtsev I, Laberko L. Validation of the Caprini risk assessment model for venous thromboembolism in high-risk surgical patients in the background of standard prophylaxis. J Vasc Surg Venous Lymphat Disord. 2016;4(5):153–610. DOI: 10.1016/j.jvsv.2015.09.004

[62]

Lobastov K., Barinov V., Schastlivtsev I., Laberko L. Validation of the Caprini risk assessment model for venous thromboembolism in high-risk surgical patients in the background of standard prophylaxis // J. Vasc. Surg. Venous Lymphat. Disord. 2016. Vol. 4, No. 5. P. 153–610. DOI: 10.1016/j.jvsv.2015.09.004

[63]

Barbar S, Noventa F, Rossetto V, et al. A risk assessment model for the identification of hospitalized medical patients at risk for venous thromboembolism: the Padua Prediction Score. J Thromb Haemost. 2010;8(11):2450–2457. DOI: 10.1111/j.1538-7836.2010.04044.x

[64]

Barbar S., Noventa F., Rossetto V. et al. A risk assessment model for the identification of hospitalized medical patients at risk for venous thromboembolism: the Padua Prediction Score // J. Thromb. Haemost. 2010. Vol. 8, No. 11. Р. 2450–2457. DOI: 10.1111/j.1538-7836.2010.04044.x

[65]

Schünemann HJ, Cushman M, Burnett AE, et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: prophylaxis for hospitalized and nonhospitalized medical patients. Blood Adv. 2018;2(22):3198. DOI: 10.1182/bloodadvances.2018022954

[66]

Schünemann H.J., Cushman M., Burnett A.E. et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: prophylaxis for hospitalized and nonhospitalized medical patients // Blood Adv. 2018. Vol. 2, No. 22. Р. 3198. DOI: 10.1182/bloodadvances.2018022954

[67]

Spyropoulos AC, Anderson FA, FitzGerald G, et al. Predictive and associative models to identify hospitalized medical patients at risk for VTE. Chest. 2011;140(3):706–714. DOI: 10.1378/chest.10-1944

[68]

Spyropoulos A.C., Anderson F.A., FitzGerald G. et al. Predictive and associative models to identify hospitalized medical patients at risk for VTE // Chest. 2011. Vol. 140, No. 3. Р. 706–714. DOI: 10.1378/chest.10-1944

[69]

Wells PS, Anderson DR, Rodger M, et al. Excluding pulmonary embolism at the bedside without diagnostic imaging: management of patients with suspected pulmonary embolism presenting to the emergency department by using a simple clinical model and d-dimer. Ann Intern Med. 2001;13(2):98–107. DOI: 10.7326/0003-4819-135-2-200107170-00010

[70]

Wells P.S., Anderson D.R., Rodger M. et al. Excluding pulmonary embolism at the bedside without diagnostic imaging: management of patients with suspected pulmonary embolism presenting to the emergency department by using a simple clinical model and d-dimer // Ann. Intern. Med. 2001. Vol. 13, No. 2. Р. 98–107. DOI: 10.7326/0003-4819-135-2-200107170-00010

[71]

Le Gal G, Righini M, Roy PM, et al. Prediction of pulmonary embolism in the emergency department: the revised Geneva score. Ann Intern Med. 2006;4(3):165–171. DOI: 10.7326/0003-4819-144-3-200602070-00004

[72]

Le Gal G., Righini M., Roy P.M. et al. Prediction of pulmonary embolism in the emergency department: the revised Geneva score // Ann. Intern. Med. 2006. Vol. 4, No. 3. Р. 165–171. DOI: 10.7326/0003-4819-144-3-200602070-00004

[73]

Huang S, Vignon P, Mekontso-Dessap A, et al. Echocardiography findings in COVID-19 patients admitted to intensive care units: a multi-national observational study (the ECHO-COVID study). Intensive Care Med. 2022;48(6):667–678. DOI: 10.1007/s00134-022-06685-2

[74]

Huang S., Vignon P., Mekontso-Dessap A. et al. Echocardiography findings in COVID-19 patients admitted to intensive care units: a multi-national observational study (the ECHO-COVID study) // Intensive Care Med. 2022. Vol. 48, No. 6. Р. 667–678. DOI: 10.1007/s00134-022-06685-2

[75]

Karthik Adiga B, Shashi BL, Deepa A. A study on echocardiography findings in severe COVID-19 pneumonia patients. Int J Adv Med. 2022;9(4):468–472. DOI: 10.18203/2349-3933.ijam20220786

[76]

Karthik Adiga B., Shashi B.L., Deepa A. A study on echocardiography findings in severe COVID-19 pneumonia patients // Int. J. Adv. Med. 2022. Vol. 9, No. 4. Р. 468–472. DOI: 10.18203/2349-3933.ijam20220786

RIGHTS & PERMISSIONS

Eco-Vector

PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

/