Long term effects of de-escalation antimicrobial strategy in the burn unit
Denis S. Medvedev , Natalia V. Bakulina
HERALD of North-Western State Medical University named after I.I. Mechnikov ›› 2022, Vol. 14 ›› Issue (4) : 71 -81.
Long term effects of de-escalation antimicrobial strategy in the burn unit
BACKGROUND: De-escalation strategy of antimicrobial therapy demonstrates favorable short-term results: it lowers the mortality and reduces the cost of treatment. The long-term results of applying this strategy in the burn unit had not been studied previously.
AIM: To compare the long-term results of the de-escalation approach to antimicrobial therapy on the microbial spectrum, resistance of the hospital microflora and consumption of antimicrobials in the burn unit.
MATERIALS AND METHODS: The study comprises the data from the burn unit of the Severstal hospital for 2006, 2012 and 2021: statistical data on mortality and the average duration of hospital stay; microbiological data on spectrum and resistance of bacteria to antimicrobials.
RESULTS: The use of the de-escalation strategy of antimicrobial therapy in the burn unit of the Healthcare Institution “Severstal” for 10 years has reduced mortality, length of stay, consumption of antimicrobials. De-escalation strategy has not significantly affect the spectrum of nosocomial microflora but has lowered the resistance of gram-positive microorganisms to antibiotics. There was a decrease in the drug resistance index for the main pathogens of infectious complications as a result of implementing the de-escalation strategy.
CONCLUSIONS: The implementation a de-escalation strategy of antimicrobial therapy requires conducting periodic microbiological monitoring for early correction of starting antimicrobial regimens.
de-escalation / burns / drug resistance index / DDD-analysis
| [1] |
Dyar OJ, Huttner B, Schouten J, et al. What is antimicrobial stewardship? Clin Microbiol Infect. 2017;23(11):793–798. DOI: 10.1016/j.cmi.2017.08.026 |
| [2] |
Dyar O.J., Huttner B., Schouten J. et al. What is antimicrobial stewardship? // Clin. Microbiol. Infect. 2017. Vol. 23, No. 11. P. 793–798. DOI: 10.1016/j.cmi.2017.08.026 |
| [3] |
Timsit JF, Bassetti M, Cremer O, et al. Rationalizing antimicrobial therapy in the ICU: A narrative review. Intensive Care Med. 2019;45(2):172–189. DOI: 10.1007/s00134-019-05520-5 |
| [4] |
Timsit J.F., Bassetti M., Cremer O. et al. Rationalizing antimicrobial therapy in the ICU: A narrative review // Intensive Care Med. 2019. Vol. 45, No. 2. P. 172–189. DOI: 10.1007/s00134-019-05520-5 |
| [5] |
Marquet K, Liesenborgs A, Bergs J, et al. Incidence and outcome of inappropriate in-hospital empiric antibiotics for severe infection: A systematic review and meta-analysis. Crit Care. 2015;19(1):63. DOI: 10.1186/s13054-015-0795-y |
| [6] |
Marquet K., Liesenborgs A., Bergs J. et al. Incidence and outcome of inappropriate in-hospital empiric antibiotics for severe infection: A systematic review and meta-analysis // Crit. Care. 2015. Vol. 19, No. 1. P. 63. DOI: 10.1186/s13054-015-0795-y |
| [7] |
Buckman SA, Turnbull IR, Mazuski JE. Empiric antibiotics for sepsis. Surg Infect (Larchmt). 2018;19(2):147–154. DOI: 10.1089/sur.2017.282 |
| [8] |
Buckman S.A., Turnbull I.R., Mazuski J.E. Empiric antibiotics for sepsis // Surg. Infect. (Larchmt). 2018. Vol. 19, No. 2. P. 147–154. DOI: 10.1089/sur.2017.282 |
| [9] |
Saltoglu N, Surme S, Ezirmik E, et al. The effects of antimicrobial resistance and the compatibility of initial antibiotic treatment on clinical outcomes in patients with diabetic foot infection. Int J Low Extrem Wounds. 2021:153473462110041. DOI: 10.1177/15347346211004141 |
| [10] |
Saltoglu N., Surme S., Ezirmik E. et al. The effects of antimicrobial resistance and the compatibility of initial antibiotic treatment on clinical outcomes in patients with diabetic foot infection // Int. J. Low. Extrem. Wounds. 2021. P. 153473462110041. DOI: 10.1177/15347346211004141 |
| [11] |
van den Bosch CM, Hulscher ME, Akkermans RP, et al. Appropriate antibiotic use reduces length of hospital stay. J Antimicrob Chemother. 2017;72(3):923–932. DOI: 10.1093/jac/dkw469 |
| [12] |
van den Bosch C.M., Hulscher M.E., Akkermans R.P. et al. Appropriate antibiotic use reduces length of hospital // J. Antimicrob. Chemother. 2017. Vol. 72, No. 3. P. 923–932. DOI: 10.1093/jac/dkw469 |
| [13] |
Zakharova NV, Medvedev DS. Decreasing of fatality rate and lowering of direct costs of treatment for using of de-escalation strategy to antibiotic therapy of infection due to thermal injury. Preventive and Clinical Medicine. 2012;4(45):42–45. (In Russ.) |
| [14] |
Захарова Н.В., Медведев Д.С. Снижение летальности и уменьшение прямых затрат на лечение при применении деэскалационной стратегии антимикробной терапии инфекционных осложнений ожоговой травмы // Профилактическая и клиническая медицина. 2012. Т. 4, № 45. С. 42–45. |
| [15] |
Zakharova NV, Medvedev DS. Pharmacoeconomics of escalation and de-escalation strategies to antibiotic therapy of infection due to thermal injury. Herald of North-Western State Medical University named after I.I. Mechnikov. 2013;5(1):73–76. (In Russ.) |
| [16] |
Захарова Н.В., Медведев Д.С. Эскалационная и деэскалационная стратегия антимикробной терапии инфекционных осложнений ожоговой травмы с позиции фармакоэкономики // Вестник Северо-Западного государственного медицинского университета им. И.И. Мечникова. 2013. Т. 5, № 1. С. 73–76. |
| [17] |
ATC/DDD index 2022 [Internet]. WHOCC. Available from: http://www.whocc.no/atc_ddd_index. Accessed: 21.09.2022. |
| [18] |
ATC/DDD index 2022 [Электронный ресурс] // WHOCC. Режим доступа: http://www.whocc.no/atc_ddd_index. Дата обращения: 21.09.2022. |
| [19] |
Analyze a 2x2 contingency table [Internet]. GraphPad by Dotmatics. Available from: https://www.graphpad.com/quickcalcs/contingency1. Accessed: 21.09.2022. |
| [20] |
Analyze a 2x2 contingency table [Электронный ресурс] // GraphPad by Dotmatics. Режим доступа: https://www.graphpad.com/quickcalcs/contingency1. Дата обращения: 21.09.2022. |
| [21] |
Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci. Clin Microbiol Rev. 2014;27(4):870–926. DOI: 10.1128/cmr.00109-13 |
| [22] |
Becker K., Heilmann C., Peters G. Coagulase-negative staphylococci // Clin. Miсrobiol. Rev. 2014. Vol. 27, No. 4. P. 870–926. DOI: 10.1128/cmr.00109-13 |
| [23] |
Gisselø KL, Rubin IMC, Knudsen MS, et al. Substantial decrease in vancomycin-resistant Enterococcus faecium outbreak duration and number of patients during the Danish covid-19 lockdown: A prospective observational study. Microb Drug Resist. 2022;28(1):73–80. DOI: 10.1089/mdr.2021.0040 |
| [24] |
Gisselø K.L., Rubin I.M.C., Knudsen M.S. et al. Substantial decrease in vancomycin-resistant Enterococcus faecium outbreak duration and number of patients during the Danish covid-19 lockdown: A prospective observational study // Microb. Drug Resist. 2022. Vol. 28, No. 1. P. 73–80. DOI: 10.1089/mdr.2021.0040 |
| [25] |
Kampmeier S, Tönnies H, Correa-Martinez CL, et al. A nosocomial cluster of vancomycin resistant enterococci among COVID-19 patients in an Intensive Care Unit. Antimicrob Resist Infect Control. 2020;9(1):154. DOI: 10.1186/s13756-020-00820-8 |
| [26] |
Kampmeier S., Tönnies H., Correa-Martinez C.L. et al. A nosocomial cluster of vancomycin resistant enterococci among COVID-19 patients in an Intensive Care Unit // Antimicrob. Resist. Infect. Control. 2020. Vol. 9, No. 1. P. 154. DOI: 10.1186/s13756-020-00820-8 |
| [27] |
Clinical breakpoints — breakpoints and guidance, 2022 [Internet]. EUCAST. Available from: https://www.eucast.org/clinical_breakpoints. Accessed: 21.09.2022. |
| [28] |
Clinical breakpoints — breakpoints and guidance, 2022 [Электронный ресурс] // EUCAST. Режим доступа: https://www.eucast.org/clinical_breakpoints. Дата обращения: 21.09.2022. |
Eco-Vector
/
| 〈 |
|
〉 |