The role of redox status in platelet dysfunction in severe COVID-19-associated pneumonia

Mikhail V. Osikov , Vladimir N. Antonov , Semen O. Zotov , Galina L. Ignatova

HERALD of North-Western State Medical University named after I.I. Mechnikov ›› 2022, Vol. 14 ›› Issue (3) : 69 -78.

PDF
HERALD of North-Western State Medical University named after I.I. Mechnikov ›› 2022, Vol. 14 ›› Issue (3) :69 -78. DOI: 10.17816/mechnikov109076
Original study article
research-article

The role of redox status in platelet dysfunction in severe COVID-19-associated pneumonia

Author information +
History +
PDF

Abstract

BACKGROUND: Platelet dysfunction in patients with COVID-19 is a well-known fact; however, its formation mechanisms remain unclear.

AIM: To evaluate the role of oxidative stress in dysfunction of platelets in the patients with severe COVID-19-associated pneumonia.

MATERIALS AND METHODS: The study has involved patients with COVID-19 (n = 27) aged 47 to 75 with more than 50% lung damage according to the chest multi-slice computed tomography. The control group has included healthy people comparable in sex and age (n = 24). All the patients have undergone evaluation of the number of platelets in blood, measurement of platelet aggregation induced by adenosine diphosphate, collagen, adrenaline and ristocetin and the level of lipid peroxidation and protein oxidative modifications products in platelet-rich plasma. The calculation and analysis of the obtained data has been carried out using the IBM SPSS Statistics v. 23.

RESULTS: For the patients with severe COVID-19, a decrease in the number of platelets in the blood is characteristic. Acceleration of platelet aggregation induced by collagen and ristocetin has been observed on the 1st day, with the induction of adenosine diphosphate, collagen, adrenaline and ristocetin — on the 8th day of the admission. Oxidative stress in COVID-19 leads to a significant increase in the level of primary markers of protein oxidative modifications in the platelets and an increase in the level of products of primary and secondary lipid peroxidation markers in the platelets. A direct correlation between the products of lipid peroxidation and protein oxidative modifications in the platelets and their aggregation has been found.

CONCLUSIONS: The following study deepens the knowledge of the status of oxidative stress in SARS-CoV-2 infection, confirming its important role in the pathogenesis of COVID-19. The growth of protein oxidative modifications and lipid peroxidation products in patients with severe COVID-19-associated pneumonia in the course of the disease may be one of the causes of platelet dysfunction and, as a result, lead to lethal thrombotic complications.

Keywords

COVID-19 / platelets / aggregation / redox status / oxidative stress / free radicals

Cite this article

Download citation ▾
Mikhail V. Osikov, Vladimir N. Antonov, Semen O. Zotov, Galina L. Ignatova. The role of redox status in platelet dysfunction in severe COVID-19-associated pneumonia. HERALD of North-Western State Medical University named after I.I. Mechnikov, 2022, 14(3): 69-78 DOI:10.17816/mechnikov109076

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang X, Yang Q, Wang Y, et al. Thrombocytopenia and its association with mortality in patients with COVID-19. J Thromb Haemost. 2020;18(6):1469–1472. DOI: 10.1111/jth.14848

[2]

Yang X., Yang Q., Wang Y. et al. Thrombocytopenia and its association with mortality in patients with COVID-19 // J. Thromb. Haemost. 2020. Vol. 18, No. 6. P. 1469–1472. DOI: 10.1111/jth.14848

[3]

Xu XR, Zhang D, Oswald BE, et al. Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit Rev Clin Lab Sci. 2016;53(6):409–430. DOI: 10.1080/10408363.2016.1200008

[4]

Xu X.R., Zhang D., Oswald B.E. et al. Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond // Crit. Rev. Clin. Lab. Sci. 2016. Vol. 53, No. 6. P. 409–430. DOI: 10.1080/10408363.2016.1200008

[5]

Asakura H, Ogawa H. COVID-19-associated coagulopathy and disseminated intravascular coagulation. Int J Hematol. 2021;113(1):45–57. DOI: 10.1007/s12185-020-03029-y

[6]

Asakura H., Ogawa H. COVID-19-associated coagulopathy and disseminated intravascular coagulation // Int. J. Hematol. 2021. Vol. 113, No. 1. P. 45–57. DOI: 10.1007/s12185-020-03029-y

[7]

Warkentin TE, Kaatz S. COVID-19 versus HIT hypercoagulability. Thromb Res. 2020;196:38–51. DOI: 10.1016/j.thromres.2020.08.017

[8]

Warkentin T.E., Kaatz S. COVID-19 versus HIT hypercoagulability // Thromb. Res. 2020. Vol. 196. P. 38–51. DOI: 10.1016/j.thromres.2020.08.017

[9]

Assinger A, Kral JB, Yaiw K, et al. Human cytomegalovirus-platelet interaction triggers toll-like receptor 2-dependent proinflammatory and proangiogenic responses. Arterioscler Thromb Vasc Biol. 2014;34(4):801–809. DOI: 10.1161/ATVBAHA.114.303287

[10]

Assinger A., Kral J.B., Yaiw K. et al. Human cytomegalovirus-platelet interaction triggers toll-like receptor 2-dependent proinflammatory and proangiogenic responses // Arterioscler. Thromb. Vasc. Biol. 2014. Vol. 34, No. 4. P. 801–809. DOI: 10.1161/ATVBAHA.114.303287

[11]

Guo L, Feng K, Wang YC, e al. Critical role of CXCL4 in the lung pathogenesis of influenza (H1N1) respiratory infection. Mucosal Immunol. 2017;10(6):1529–1541. DOI: 10.1038/mi.2017.1

[12]

Guo L., Feng K., Wang Y.C. e al. Critical role of CXCL4 in the lung pathogenesis of influenza (H1N1) respiratory infection // Mucosal. Immunol. 2017. Vol. 10, No. 6. P. 1529–1541. DOI: 10.1038/mi.2017.1

[13]

Chen W, Lan Y, Yuan X, et al. Detectable 2019-nCoV viral RNA in blood is a strong indicator for the further clinical severity. Emerg Microbes Infect. 2020;9(1):469–473. DOI: 10.1080/22221751.2020.1732837

[14]

Chen W., Lan Y., Yuan X. et al. Detectable 2019-nCoV viral RNA in blood is a strong indicator for the further clinical severity // Emerg. Microbes Infect. 2020. Vol. 9, No. 1. P. 469–473. DOI: 10.1080/22221751.2020.1732837

[15]

Zhang S, Liu Y, Wang X, et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol. 2020;13(1):120. DOI: 10.1186/s13045-020-00954-7

[16]

Zhang S., Liu Y., Wang X. et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19 // J. Hematol. Oncol. 2020. Vol. 13, No. 1. P. 120. DOI: 10.1186/s13045-020-00954-7

[17]

Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844–847. DOI: 10.1111/jth.14768

[18]

Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia // J. Thromb. Haemost. 2020. Vol. 18, No. 4. P. 844–847. DOI: 10.1111/jth.14768

[19]

Camini FC, da Silva Caetano CC, Almeida LT, de Brito Magalhães CL. Implications of oxidative stress on viral pathogenesis. Arch Virol. 2017;162(4):907–917. DOI: 10.1007/s00705-016-3187-y

[20]

Camini F.C., da Silva Caetano C.C., Almeida L.T., de Brito Magalhães C.L. Implications of oxidative stress on viral pathogenesis // Arch. Virol. 2017. Vol. 162, No. 4. P. 907–917. DOI: 10.1007/s00705-016-3187-y

[21]

Ntyonga-Pono MP. COVID-19 infection and oxidative stress: an under-explored approach for prevention and treatment? Pan Afr Med J. 2020;35(Suppl 2):12. DOI: 10.11604/pamj.2020.35.2.22877

[22]

Ntyonga-Pono M.P. COVID-19 infection and oxidative stress: an under-explored approach for prevention and treatment? // Pan. Afr. Med. J. 2020. Vol. 35, No. Suppl 2. P. 12. DOI: 10.11604/pamj.2020.35.2.22877

[23]

Derouiche S. Oxidative stress associated with SARS-Cov-2 (COVID-19) increases the severity of the lung disease — a systematic review. J Infect Dis Epidemiol. 2020. DOI: 10.23937/2474-3658/1510121

[24]

Derouiche S. Oxidative stress associated with SARS-Cov-2 (COVID-19) increases the severity of the lung disease — a systematic review // J. Infect. Dis. Epidemiol. 2020. DOI: 10.23937/2474-3658/1510121

[25]

Cecchini R, Cecchini AL. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med Hypotheses. 2020;143:110102. DOI: 10.1016/j.mehy.2020.110102

[26]

Cecchini R., Cecchini A.L. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression // Med. Hypotheses. 2020. Vol. 143. P. 110102. DOI: 10.1016/j.mehy.2020.110102

[27]

Federal clinical guidelines Prevention, diagnosis and treatment of a new coronavirus infection (COVID-19), 15 version 02.02.2022 [Internet]. Available from: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/059/392/original/ВМР_COVID-19_V15.pdf. Accessed: 15.09.2022. (In Russ.)

[28]

Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19), 15 версия от 22.02.2022 [Электронный ресурс]. Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/059/392/original/ВМР_COVID-19_V15.pdf. Дата обращения: 15.09.2022.

[29]

Llitjos JF, Leclerc M, Chochois C. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost. 2020;18(07):1743–1746. DOI: 10.1111/jth.14869

[30]

Llitjos J.F., Leclerc M., Chochois C. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients // J. Thromb. Haemost. 2020. Vol. 18, No. 7. P. 1743–1746. DOI: 10.1111/jth.14869

[31]

Warkentin TE, Kaatz S. COVID-19 versus HIT hypercoagulability. Thromb Res. 2020;196:38–51. DOI: 10.1016/j.thromres.2020.08.017

[32]

Warkentin T.E., Kaatz S. COVID-19 versus HIT hypercoagulability // Thromb. Res. 2020. Vol. 196. P. 38–51. DOI: 10.1016/j.thromres.2020.08.017

[33]

Patell R, Khan AM, Bogue T. et al. Heparin induced thrombocytopenia antibodies in Covid-19. Am J Hematol. 2020;95(10):E295–E296. DOI: 10.1002/ajh.25935

[34]

Patell R., Khan A.M., Bogue T. et al. Heparin induced thrombocytopenia antibodies in Covid-19 // Am. J. Hematol. 2020. Vol. 95, No. 10. P. E295–E296. DOI: 10.1002/ajh.25935

[35]

Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513. DOI: 10.1016/S0140-6736(20)30211-7

[36]

Chen N., Zhou M., Dong X. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study // Lancet. 2020. Vol. 395, No. 10223. P. 507–513. DOI: 10.1016/S0140-6736(20)30211-7

[37]

Sugiyama MG, Gamage A, Zyla R, et al. Influenza virus infection induces platelet-endothelial adhesion which contributes to lung injury. J Virol. 2015;90(4):1812–1823. DOI: 10.1128/JVI.02599-15

[38]

Sugiyama M.G., Gamage A., Zyla R. et al. Influenza virus infection induces platelet-endothelial adhesion which contributes to lung injury // J. Virol. 2015. Vol. 90, No. 4. P. 1812–1823. DOI: 10.1128/JVI.02599-15

[39]

Aykac K, Ozsurekci Y, Yayla BCC, et al. Oxidant and antioxidant balance in patients with COVID-19. Pediatr Pulmonol. 2021;56:2803–2810. DOI: 10.1002/ppul.25549

[40]

Aykac K., Ozsurekci Y., Yayla B.C.C. et al. Oxidant and antioxidant balance in patients with COVID-19 // Pediatr. Pulmonol. 2021. Vol. 56. P. 2803–2810. DOI: 10.1002/ppul.25549

[41]

Buffinton GD, Christen S, Peterhans E, Stocker R. Oxidative stress in lungs of mice infected with influenza A virus. Free Radic Res Commun. 1992;16:99–110. DOI: 10.3109/10715769209049163

[42]

Buffinton G.D., Christen S., Peterhans E., Stocker R. Oxidative stress in lungs of mice infected with influenza A virus // Free Radic. Res. Commun. 1992. Vol. 16. P. 99–110. DOI: 10.3109/10715769209049163

[43]

Selemidis S, Seow HJ, Broughton BRS, et al. Nox1 oxidase suppresses influenza a virus-induced lung inflammation and oxidative stress. PLoS One. 2013;8(4):e60792. DOI: 10.1371/journal.pone.0060792

[44]

Selemidis S., Seow H.J., Broughton B.R.S. et al. Nox1 oxidase suppresses influenza a virus-induced lung inflammation and oxidative stress // PLoS One. 2013. Vol. 8, No. 4. P. e60792. DOI: 10.1371/journal.pone.0060792

[45]

Pincemail J, Cavalier E, Charlier C, et al. Oxidative stress status in COVID-19 patients hospitalized in intensive care unit for severe pneumonia. A pilot study. Antioxidants (Basel). 2021;10(2):257. DOI: 10.3390/antiox10020257

[46]

Pincemail J., Cavalier E., Charlier C. et al. Oxidative stress status in COVID-19 patients hospitalized in intensive care unit for severe pneumonia. A pilot study // Antioxidants (Basel). 2021. Vol. 10, No. 2. P. 257. DOI: 10.3390/antiox10020257

[47]

Abdi A, Jalilian M, Sarbarzeh PA, Vlaisavljevic Z. Diabetes and COVID-19: a systematic review on the current evidences. Diabetes Res Clin Pract. 2020;166:108347. DOI: 10.1016/j.diabres.2020.108347

[48]

Abdi A., Jalilian M., Sarbarzeh P.A., Vlaisavljevic Z. Diabetes and COVID-19: a systematic review on the current evidences // Diabetes Res. Clin. Pract. 2020. Vol. 166. P. 108347. DOI: 10.1016/j.diabres.2020.108347

[49]

Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–1263. DOI: 10.1126/science.abb2507

[50]

Wrapp D., Wang N., Corbett K.S. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation // Science. 2020. Vol. 367, No. 6483. P. 1260–1263. DOI: 10.1126/science.abb2507

[51]

Hati S, Bhattacharyya S. Impact of thiol-disulfide balance on the binding of Covid-19 spike protein with angiotensin-converting enzyme 2 receptor. ACS Omega. 2020;5(26):16292–16298. DOI: 10.1021/acsomega.0c02125

[52]

Hati S., Bhattacharyya S. Impact of thiol-disulfide balance on the binding of Covid-19 spike protein with angiotensin-converting enzyme 2 receptor // ACS Omega. 2020. Vol. 5, No. 26. P. 16292–16298. DOI: 10.1021/acsomega.0c02125

RIGHTS & PERMISSIONS

Osikov M., Antonov V., Zotov S., Ignatova G.

PDF

68

Accesses

0

Citation

Detail

Sections
Recommended

/