Polymorphism of folate metabolism genes in breast cancer patients

Anna A. Timofeeva , Varvara I. Minina , Evgeniya A. Astafeva

HERALD of North-Western State Medical University named after I.I. Mechnikov ›› 2022, Vol. 14 ›› Issue (4) : 5 -16.

PDF
HERALD of North-Western State Medical University named after I.I. Mechnikov ›› 2022, Vol. 14 ›› Issue (4) :5 -16. DOI: 10.17816/mechnikov108505
Reviews
review-article

Polymorphism of folate metabolism genes in breast cancer patients

Author information +
History +
PDF

Abstract

Breast cancer is a widespread oncological disorder, which is considered one of the leading causes of mortality among women. DNA repair processes a well as it’s methylation involving genes of folate cycle play a crucial role in cancerogenesis. The aim of the study is to generalize the current data about association between polymorphic variants of folate cycle genes MTHFR С677Т (rs1801133), MTR A2756G (rs1805087), MTRR А66G (rs1801394) with risk of breast cancer development. The search of scientific papers has been conducted using PubMed and elibrary.ru sources. Original and randomized surveys published from 2008 till 2022 have been included in this review.

The study has accumulated sufficient data on MTHFR С677Т polymorphic variant in breast cancer patients, having significant influence on disease development. However, the data about MTR A2756G and MTRR A66G variants is quite limited. According to the findigs of many scientific papers, there is no link between polymorphic variants of these genes and breast cancerogenesis manifestation. Such factors like ethniсity and sufficient consumption of folates with nutrition can have significant impact on results and conclusions of studies about role of folate cycle genes in breast cancer patients.

Further investigation of MTHFR С677Т (rs1801133), MTR A2756G (rs1805087) and MTRR А66G (rs1801394) genetic polymorphic variants with consideration of gene-environment and gene-gene interactions could explain the presence of individual differences of breast cancer risk.

Keywords

breast cancer / polymorphism of folate cycle genes / MTHFR / MTR / MTRR

Cite this article

Download citation ▾
Anna A. Timofeeva, Varvara I. Minina, Evgeniya A. Astafeva. Polymorphism of folate metabolism genes in breast cancer patients. HERALD of North-Western State Medical University named after I.I. Mechnikov, 2022, 14(4): 5-16 DOI:10.17816/mechnikov108505

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics. CA Cancer J Clin. 2021;71(1):7–33. DOI: 10.3322/caac.21654

[2]

Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. Cancer Statistics // CA Cancer J. Clin. 2021. Vol. 71, No. 1. P. 7–33. DOI: 10.3322/caac.21654

[3]

Cecilio AP, Takakura ET, Jumes JJ, et al. Breast cancer in Brazil: epidemiology and treatment challenges. Breast Cancer (Dove Med Press). 2015;7:43–49. DOI: 10.2147/BCTT.S50361

[4]

Cecilio A.P., Takakura E.T., Jumes J.J. et al. Breast cancer in Brazil: epidemiology and treatment challenges // Breast Cancer (Dove Med. Press). 2015. Vol. 7. P. 43–49. DOI: 10.2147/BCTT.S50361

[5]

Goldhirsch A, Winer EP, Coates AS, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol. 2013;24(9):2206–2223. DOI: 10.1093/annonc/mdt303

[6]

Goldhirsch A., Winer E.P., Coates A.S. et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013 // Ann. Oncol. 2013. Vol. 24, No. 9. P. 2206–2223. DOI: 10.1093/annonc/mdt303

[7]

Michailidou K, Lindström S, Dennis J, et al. Association analysis identifies 65 new breast cancer risk loci. Nature. 2017;551(7678):92–94. DOI: 10.1038/nature24284

[8]

Michailidou K., Lindström S., Dennis J. et al. Association analysis identifies 65 new breast cancer risk loci // Nature. 2017. Vol. 551, No. 7678. P. 92–94. DOI: 10.1038/nature24284

[9]

Ferreira MA, Gamazon ER, Al-Ejeh F, et al. Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer. Nat Commun. 2019;10(1):1741. DOI: 10.1038/s41467-018-08053-5

[10]

Ferreira M.A., Gamazon E.R., Al-Ejeh F. et al. Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer // Nat. Commun. 2019. Vol. 10, No. 1. P. 1741. DOI: 10.1038/s41467-018-08053-5

[11]

Pan Q, Liu YJ, Bai XF, et al. VARAdb: a comprehensive variation annotation database for human. Nucleic Acids Res. 2021;49(D1):D1431–D1444. DOI: 10.1093/nar/gkaa922

[12]

Pan Q., Liu Y.J., Bai X.F. et al. VARAdb: a comprehensive variation annotation database for human // Nucleic Acids Res. 2021. Vol. 49, No. D1. P. D1431–D1444. DOI: 10.1093/nar/gkaa922

[13]

Kuchenbaecker KB, Hopper JL, Barnes DR, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317(23):2402–2416. DOI: 10.1001/jama.2017.7112

[14]

Kuchenbaecker K.B., Hopper J.L., Barnes D.R. et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers // JAMA. 2017. Vol. 317, No. 23. P. 2402–2416. DOI: 10.1001/jama.2017.7112

[15]

Michailidou K, Lindström S, Dennis J, et al. Association analysis identifies 65 new breast cancer risk loci. Nature. 2017;551(7678):92–94. DOI: 10.1038/nature24284

[16]

Michailidou K., Lindström S., Dennis J. et al. Association analysis identifies 65 new breast cancer risk loci // Nature. 2017. Vol. 551, No. 7678. P. 92–94. DOI: 10.1038/nature24284

[17]

Cao S, Zhu Z, Zhou J, et al. Associations of one-carbon metabolism-related gene polymorphisms with breast cancer risk are modulated by diet, being higher when adherence to the Mediterranean dietary pattern is low. Breast Cancer Res Treat. 2021;187(3):793–804. DOI: 10.1007/s10549-021-06108-8

[18]

Cao S., Zhu Z., Zhou J. et al. Associations of one-carbon metabolism-related gene polymorphisms with breast cancer risk are modulated by diet, being higher when adherence to the Mediterranean dietary pattern is low // Breast Cancer Res. Treat. 2021. Vol. 187, No. 3. P. 793–804. DOI: 10.1007/s10549-021-06108-8

[19]

Golden E, Rashwan R, Woodward EA, et al. The oncogene AAMDC links PI3K-AKT-mTOR signaling with metabolic reprograming in estrogen receptor-positive breast cancer. Nat Commun. 2021;12(1):1920. DOI: 10.1038/s41467-021-22101-7

[20]

Golden E., Rashwan R., Woodward E.A. et al. The oncogene AAMDC links PI3K-AKT-mTOR signaling with metabolic reprograming in estrogen receptor-positive breast cancer // Nat. Commun. 2021. Vol. 12, No. 1. P. 1920. DOI: 10.1038/s41467-021-22101-7

[21]

Harmon DL, Shields DC, Woodside JV, et al. Methionine synthase D919G polymorphism is a significant but modest determinant of circulating homocysteine concentrations. Genet Epidemiol. 1999;17(4):298–309. DOI: 10.1002/(SICI)1098-2272(199911)17:4<298::AID-GEPI5>3.0.CO;2-V

[22]

Harmon D.L., Shields D.C., Woodside J.V. et al. Methionine synthase D919G polymorphism is a significant but modest determinant of circulating homocysteine concentrations // Genet. Epidemiol. 1999. Vol. 17, No. 4. P. 298–309. DOI: 10.1002/(SICI)1098-2272(199911)17:4<298::AID-GEPI5>3.0.CO;2-V

[23]

Farkas SA, Böttiger AK, Isaksson HS, et al. Epigenetic alterations in folate transport genes in placental tissue from fetuses with neural tube defects and in leukocytes from subjects with hyperhomocysteinemia. Epigenetics. 2013;8(3):303–316. DOI: 10.4161/epi.23988

[24]

Farkas S.A., Böttiger A.K., Isaksson H.S. et al. Epigenetic alterations in folate transport genes in placental tissue from fetuses with neural tube defects and in leukocytes from subjects with hyperhomocysteinemia // Epigenetics. 2013. Vol. 8, No. 3. P. 303–316. DOI: 10.4161/epi.23988

[25]

Bethke L, Webb E, Murray A, et al. Functional polymorphisms in folate metabolism genes influence the risk of meningioma and glioma. Cancer Epidemiol Biomarkers Prev. 2008;17(5):1195–1202. DOI: 10.1158/1055-9965.EPI-07-2733

[26]

Bethke L., Webb E., Murray A. et al. Functional polymorphisms in folate metabolism genes influence the risk of meningioma and glioma // Cancer Epidemiol. Biomarkers Prev. 2008. Vol. 17, No. 5. P. 1195–1202. DOI: 10.1158/1055-9965.EPI-07-2733

[27]

Goyette P, Rozen R. The thermolabile variant 677C-->T can further reduce activity when expressed in cis with severe mutations for human methylenetetrahydrofolate reductase. Hum Mutat. 2000;16(2):132–138. DOI:10.1002/1098-1004(200008)16:2<132::AID-HUMU5>3.0.CO;2-T

[28]

Goyette P., Rozen R. The thermolabile variant 677C-->T can further reduce activity when expressed in cis with severe mutations for human methylenetetrahydrofolate reductase // Hum. Mutat. 2000. Vol. 16, No. 2. P. 132–138. DOI: 10.1002/1098-1004(200008)16:2<132::AID-HUMU5>3.0.CO;2-T

[29]

Cui LH, Shin MH, Kim HN, et al. Methylenetetrahydrofolate reductase C677T polymorphism in patients with lung cancer in a Korean population. BMC Med Genet. 2011;12:28. DOI: 10.1186/1471-2350-12-28

[30]

Cui L.H., Shin M.H., Kim H.N. et al. Methylenetetrahydrofolate reductase C677T polymorphism in patients with lung cancer in a Korean population // BMC Med. Genet. 2011. Vol. 12. P. 28. DOI: 10.1186/1471-2350-12-28

[31]

Chen X, Ahamada H, Zhang T, et al. Association of intake folate and related gene polymorphisms with breast cancer. J Nutr Sci Vitaminol (Tokyo). 2019;65(6):459–469. DOI: 10.3177/jnsv.65.459

[32]

Chen X., Ahamada H., Zhang T. et al. Association of intake folate and related gene polymorphisms with breast cancer // J. Nutr. Sci. Vitaminol. (Tokyo). 2019. Vol. 65, No. 6. P. 459–469. DOI: 10.3177/jnsv.65.459

[33]

Bravatà V. Controversial roles of methylenetetrahydrofolate reductase polymorphisms and folate in breast cancer disease. Int J Food Sci Nutr. 2015;66(1):43–49. DOI: 10.3109/09637486.2014.959896

[34]

Bravatà V. Controversial roles of methylenetetrahydrofolate reductase polymorphisms and folate in breast cancer disease // Int. J. Food Sci. Nutr. 2015. Vol. 66, No. 1. P. 43–49. DOI: 10.3109/09637486.2014.959896

[35]

Yan J, Yin M, Dreyer ZE, et al. A meta-analysis of MTHFR C677T and A1298C polymorphisms and risk of acute lymphoblastic leukemia in children. Pediatr Blood Cancer. 2012;58(4):513–518. DOI: 10.1002/pbc.23137

[36]

Yan J., Yin M., Dreyer Z.E. et al. A meta-analysis of MTHFR C677T and A1298C polymorphisms and risk of acute lymphoblastic leukemia in children // Pediatr. Blood Cancer. 2012. Vol. 58, No. 4. P. 513–518. DOI: 10.1002/pbc.23137

[37]

Kurzwelly D, Knop S, Guenther M, et al. Genetic variants of folate and methionine metabolism and PCNSL incidence in a German patient population. J Neurooncol. 2010;100(2):187–192. DOI: 10.1007/s11060-010-0154-4

[38]

Kurzwelly D., Knop S., Guenther M. et al. Genetic variants of folate and methionine metabolism and PCNSL incidence in a German patient population // J. Neurooncol. 2010. Vol. 100, No. 2. P. 187–192. DOI: 10.1007/s11060-010-0154-4

[39]

Kim HN, Lee IK, Kim YK, et al. Association between folate-metabolizing pathway polymorphism and non-Hodgkin lymphoma. Br J Haematol. 2008;140(3):287–294. DOI: 10.1111/j.1365-2141.2007.06893.x

[40]

Kim H.N., Lee I.K., Kim Y.K. et al. Association between folate-metabolizing pathway polymorphism and non-Hodgkin lymphoma // Br. J. Haematol. 2008. Vol. 140, No. 3. P. 287–294. DOI: 10.1111/j.1365-2141.2007.06893.x

[41]

Wen YY, Yang SJ, Zhang JX, Chen XY. Methylenetetrahydrofolate reductase genetic polymorphisms and esophageal squamous cell carcinoma susceptibility: a meta-analysis of case-control studies. Asian Pac J Cancer Prev. 2013;14(1):21–25. DOI: 10.7314/apjcp.2013.14.1.21

[42]

Wen Y.Y., Yang S.J., Zhang J.X., Chen X.Y. Methylenetetrahydrofolate reductase genetic polymorphisms and esophageal squamous cell carcinoma susceptibility: a meta-analysis of case-control studies // Asian Pac. J. Cancer Prev. 2013. Vol. 14, No. 1. P. 21–25. DOI: 10.7314/apjcp.2013.14.1.21

[43]

Fang Y, Xiao F, An Z, Hao L. Systematic review on the relationship between genetic polymorphisms of methylenetetrahydrofolate reductase and esophageal squamous cell carcinoma. Asian Pac J Cancer Prev. 2011;12(7):1861–1866.

[44]

Fang Y., Xiao F., An Z., Hao L. Systematic review on the relationship between genetic polymorphisms of methylenetetrahydrofolate reductase and esophageal squamous cell carcinoma // Asian Pac. J. Cancer Prev. 2011. Vol. 12, No. 7. P. 1861–1866.

[45]

Bakanova ML, Soboleva OA, Minina VI, et al. Association of polymorphism of folate metabolism genes and chromosomal aberrations in blood cells of lung cancer patients. Medical Genetics. 2017;16(3):12–19. (In Russ.)

[46]

Баканова М.Л., Соболева О.А., Минина В.И. и др. Вклад полиморфных вариантов генов фолатного цикла в цитогенетическую нестабильность клеток крови больных раком легкого // Медицинская генетика. 2017. Т. 16, № 3. C. 12–19.

[47]

Ozen F, Erdis E, Sik E, et al. Germ-line MTHFR C677T, FV H1299R and PAI-1 5G/4G variations in breast carcinoma. Asian Pac J Cancer Prev. 2013;14(5):2903–2908. DOI: 10.7314/apjcp.2013.14.5.2903

[48]

Ozen F., Erdis E., Sik E., et al. Germ-line MTHFR C677T, FV H1299R and PAI-1 5G/4G variations in breast carcinoma // Asian Pac. J. Cancer Prev. 2013. Vol. 14, No. 5. P. 2903–2908. DOI: 10.7314/apjcp.2013.14.5.2903

[49]

Rahimi Z, Ahmadian Z, Akramipour R, et al. Thymidylate synthase and methionine synthase polymorphisms are not associated with susceptibility to childhood acute lymphoblastic leukemia in Kurdish population from Western Iran. Mol Biol Rep. 2012;39(3):2195–2200. DOI: 10.1007/s11033-011-0968-y

[50]

Rahimi Z., Ahmadian Z., Akramipour R. et al. Thymidylate synthase and methionine synthase polymorphisms are not associated with susceptibility to childhood acute lymphoblastic leukemia in Kurdish population from Western Iran // Mol. Biol. Rep. 2012. Vol. 39, No. 3. P. 2195–2200. DOI: 10.1007/s11033-011-0968-y

[51]

Henao OL, Piyathilake CJ, Waterbor JW, et al. Women with polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase (MS) are less likely to have cervical intraepithelial neoplasia (CIN) 2 or 3. Int J Cancer. 2005;113(6):991–997. DOI: 10.1002/ijc.20695

[52]

Henao O.L., Piyathilake C.J., Waterbor J.W. et al. Women with polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase (MS) are less likely to have cervical intraepithelial neoplasia (CIN) 2 or 3 // Int. J. Cancer. 2005. Vol. 113, No. 6. P. 991–997. DOI: 10.1002/ijc.20695

[53]

Lin J, Spitz MR, Wang Y, et al. Polymorphisms of folate metabolic genes and susceptibility to bladder cancer: a case-control study. Carcinogenesis. 2004;25(9):1639–1647. DOI: 10.1093/carcin/bgh175

[54]

Lin J., Spitz M.R., Wang Y. et al. Polymorphisms of folate metabolic genes and susceptibility to bladder cancer: a case-control study // Carcinogenesis. 2004. Vol. 25, No. 9. P. 1639–1647. DOI: 10.1093/carcin/bgh175

[55]

Skibola CF, Forrest MS, Coppedé F, et al. Polymorphisms and haplotypes in folate-metabolizing genes and risk of non-Hodgkin lymphoma. Blood. 2004;104(7):2155–2162. DOI: 10.1182/blood-2004-02-0557

[56]

Skibola C.F., Forrest M.S., Coppedé F. et al. Polymorphisms and haplotypes in folate-metabolizing genes and risk of non-Hodgkin lymphoma // Blood. 2004. Vol. 104, No. 7. P. 2155–2162. DOI: 10.1182/blood-2004-02-0557

[57]

Olteanu H, Munson T, Banerjee R. Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase. Biochemistry. 2002;41(45):13378–13385. DOI: 10.1021/bi020536s

[58]

Olteanu H., Munson T., Banerjee R. Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase // Biochemistry. 2002. Vol. 41, No. 45. P. 13378–13385. DOI: 10.1021/bi020536s

[59]

Rezaee M, Akbari H, Momeni-Moghaddam MA, et al. Association of C677T (rs1081133) and A1298C (rs1801131) Methylenetetrahydrofolate reductase variants with breast cancer susceptibility among Asians: a systematic review and meta-analysis. Biochem Genet. 2021;59(2):367–397. DOI: 10.1007/s10528-020-10020-z

[60]

Rezaee M., Akbari H., Momeni-Moghaddam M.A. et al. Association of C677T (rs1081133) and A1298C (rs1801131) methylenetetrahydrofolate reductase variants with breast cancer susceptibility among Asians: a systematic review and meta-analysis // Biochem. Genet. 2021. Vol. 59, No. 2. P. 367–397. DOI: 10.1007/s10528-020-10020-z

[61]

Markovsky AV. The role of folate metabolism genes polymorphism and serum aminotiols in the formation of various histological types of breast cancer. Transbaikalian Medical Bulletin. 2019;(2):40–47. (In Russ.). DOI: 10.52485/19986173_2019_2_40

[62]

Марковский А.В. Роль полиморфизма генов фолатного метаболизма и сывороточных аминотиолов в формировании различных гистологических типов рака молочной железы // Забайкальский медицинский вестник. 2019. № 2. C. 40–47. DOI: 10.52485/19986173_2019_2_40

[63]

Zara-Lopes T, Gimenez-Martins AP, Nascimento-Filho CH, et al. Role of MTHFR C677T and MTR A2756G polymorphisms in thyroid and breast cancer development. Genet Mol Res. 2016;15(2). DOI: 10.4238/gmr.15028222

[64]

Zara-Lopes T., Gimenez-Martins A.P., Nascimento-Filho C.H. et al. Role of MTHFR C677T and MTR A2756G polymorphisms in thyroid and breast cancer development // Genet. Mol. Res. 2016. Vol. 15, No. 2. P. 10.4238/gmr.15028222. DOI: 10.4238/gmr.15028222

[65]

Hardi H, Melki R, Boughaleb Z, et al. Significant association between ERCC2 and MTHR polymorphisms and breast cancer susceptibility in Moroccan population: genotype and haplotype analysis in a case-control study. BMC Cancer. 2018;18(1):292. DOI: 10.1186/s12885-018-4214-z

[66]

Hardi H., Melki R., Boughaleb Z., et al. Significant association between ERCC2 and MTHR polymorphisms and breast cancer susceptibility in Moroccan population: genotype and haplotype analysis in a case-control study // BMC Cancer. 2018. Vol. 18, No. 1. P. 292. DOI: 10.1186/s12885-018-4214-z

[67]

Shilova AN, Shkoda OS, Lomivorotov VV, Shilova JN. Association of the folate metabolism genes with the risk for lung, prostate, breast and uterine cancer. Russian journal of oncology. 2017;22(4):203–208. (In Russ.). DOI:10.18821/1028-9984-2017-22-4-203-208

[68]

Шилова А.Н., Шкода О.С., Ломиворотов В.В., Шилова Ю.Н. Ассоциация полиморфных вариантов генов метаболизма фолиевой кислоты с риском развития рака легкого, рака предстательной железы, рака молочной железы и рака матки // Российский онкологический журнал. 2017. Т. 22, № 4. C. 203–208. DOI: 10.18821/1028-9984-2017-22-4-203-208

[69]

Kaya EF, Karakus N, Ulusoy AN, et al. Association of the MTHFR Gene C677T polymorphism with breast cancer in a Turkish population. Oncol Res Treat. 2016;39(9):534–538. DOI: 10.1159/000448084

[70]

Kaya E.F., Karakus N., Ulusoy A.N. et al. Association of the MTHFR Gene C677T polymorphism with breast cancer in a Turkish population // Oncol. Res. Treat. 2016. Vol. 39, No. 9. P. 534–538. DOI: 10.1159/000448084

[71]

Meneses-Sanchez P, Garcia-Hernandez SC, Porchia LM, et al. C677T and A1298C methylenetetrahydrofolate reductase polymorphisms and breast cancer susceptibility among Latinos: a meta-analysis. Breast Cancer. 2019;26(5):602–611. DOI: 10.1007/s12282-019-00961-8

[72]

Meneses-Sanchez P., Garcia-Hernandez S.C., Porchia L.M. et al. C677T and A1298C methylenetetrahydrofolate reductase polymorphisms and breast cancer susceptibility among Latinos: a meta-analysis // Breast Cancer. 2019. Vol. 26, No. 5. P. 602–611. DOI: 10.1007/s12282-019-00961-8

[73]

Weiner AS, Boiarskikh UA, Voronina EN, et al. Polymorphic variants of folate metabolizing genes (C677T and A1298C MTHFR, C1420T SHMT1 and G1958A MTHFD) are not associated with the risk of breast cancer in West Siberian Region of Russia. Mol Biol (Mosk). 2010;44(5):720–727.

[74]

Вайнер А.С., Боярских У.А., Воронина Е.Н. и др. Не выявлено ассоциации полиморфных локусов генов фолатного цикла (C677T и A1298C MTHFR, C1420T SHMT1 и G1958A MTHFD) с риском развития рака молочной железы в Западно-Сибирском регионе России // Молекулярная биология. 2010. Т. 44, № 5. С. 816–823.

[75]

Sengupta D, Banerjee S, Mukhopadhyay P, et al. A meta-analysis and in silico analysis of polymorphic variants conferring breast cancer risk in the Indian subcontinent. Future Oncol. 2020;16(27):2121–2142. DOI: 10.2217/fon-2020-0333

[76]

Sengupta D., Banerjee S., Mukhopadhyay P. et al. A meta-analysis and in silico analysis of polymorphic variants conferring breast cancer risk in the Indian subcontinent // Future Oncol. 2020. Vol. 16, No. 27. P. 2121–2142. DOI: 10.2217/fon-2020-0333

[77]

Ramos-Silva A, Figuera LE, Soto-Quintana OM, et al. Association of the C677T polymorphism in the methylenetetrahydrofolate reductase gene with breast cancer in a Mexican population. Genet Mol Res. 2015;14(2):4015–4026. DOI: 10.4238/2015.April.27.16

[78]

Ramos-Silva A., Figuera L.E., Soto-Quintana O.M. et al. Association of the C677T polymorphism in the methylenetetrahydrofolate reductase gene with breast cancer in a Mexican population // Genet. Mol. Res. 2015. Vol. 14, No. 2. P. 4015–4026. DOI: 10.4238/2015.April.27.16

[79]

Gimenez-Martins APD, Castanhole-Nunes MMU, Nascimento-Filho CHVD, et al. Association between folate metabolism polymorphisms and breast cancer: a case-control study. Genet Mol Biol. 2021;44(4):e20200485. DOI: 10.1590/1678-4685-GMB-2020-0485

[80]

Gimenez-Martins A.P.D., Castanhole-Nunes M.M.U., Nascimento-Filho C.H.V.D. et al. Association between folate metabolism polymorphisms and breast cancer: a case-control study // Genet. Mol. Biol. 2021. Vol. 44, No. 4. P. e20200485. DOI: 10.1590/1678-4685-GMB-2020-0485

[81]

Wang X, Xiong M, Pan B, et al. Association between SNPs in the one-carbon metabolism pathway and the risk of female breast cancer in a Chinese population. Pharmgenomics Pers Med. 2022;15:9–16. DOI: 10.2147/PGPM.S328612

[82]

Wang X., Xiong M., Pan B. et al. Association between SNPs in the one-carbon metabolism pathway and the risk of female breast cancer in a Chinese population // Pharmgenomics Pers. Med. 2022. Vol. 15. P. 9–16. DOI: 10.2147/PGPM.S328612

[83]

Suzuki T, Matsuo K, Hirose K, et al. One-carbon metabolism-related gene polymorphisms and risk of breast cancer. Carcinogenesis. 2008;29(2):356–362. DOI: 10.1093/carcin/bgm295

[84]

Suzuki T., Matsuo K., Hirose K. et al. One-carbon metabolism-related gene polymorphisms and risk of breast cancer // Carcinogenesis. 2008. Vol. 29, No. 2. P. 356–362. DOI: 10.1093/carcin/bgm295

[85]

Akilzhanova A, Nurkina Z, Momynaliev K, et al. Genetic profile and determinants of homocysteine levels in Kazakhstan patients with breast cancer. Anticancer Res. 2013;33(9):4049–4059.

[86]

Akilzhanova A., Nurkina Z., Momynaliev K. et al. Genetic profile and determinants of homocysteine levels in Kazakhstan patients with breast cancer // Anticancer Res. 2013. Vol. 33, No. 9. P. 4049–4059.

[87]

Huang CY, Chang WS, Shui HA, et al. Evaluation of the contribution of methylenetetrahydrofolate reductase genotypes to Taiwan breast cancer. Anticancer Res. 2014;34(8):4109–4115.

[88]

Huang C.Y., Chang W.S., Shui H.A. et al. Evaluation of the contribution of methylenetetrahydrofolate reductase genotypes to Taiwan breast cancer // Anticancer Res. 2014. Vol. 34, No. 8. P. 4109–4115.

[89]

de Cássia Carvalho Barbosa R, da Costa DM, Cordeiro DE, et al. Interaction of MTHFR C677T and A1298C, and MTR A2756G gene polymorphisms in breast cancer risk in a population in Northeast Brazil. Anticancer Res. 2012;32(11):4805–4811.

[90]

de Cássia Carvalho Barbosa R., da Costa D.M., Cordeiro D.E. et al. Interaction of MTHFR C677T and A1298C, and MTR A2756G gene polymorphisms in breast cancer risk in a population in Northeast Brazil // Anticancer Res. 2012. Vol. 32, No. 11. P. 4805–4811.

[91]

Waseem M, Hussain SR, Kumar S, et al. Association of MTHFR (C677T) gene polymorphism with breast cancer in North India. Biomark Cancer. 2016;8:111–117. DOI: 10.4137/BIC.S40446

[92]

Waseem M., Hussain S.R., Kumar S. et al. Association of MTHFR (C677T) gene polymorphism with breast cancer in North India // Biomark. Cancer. 2016. No. 8. P. 111–117. DOI: 10.4137/BIC.S40446

[93]

Naushad SM, Pavani A, Digumarti RR, et al. Epistatic interactions between loci of one-carbon metabolism modulate susceptibility to breast cancer. Mol Biol Rep. 2011;38(8):4893–4901. DOI: 10.1007/s11033-010-0631-z

[94]

Naushad S.M., Pavani A., Digumarti R.R. et al. Epistatic interactions between loci of one-carbon metabolism modulate susceptibility to breast cancer // Mol. Biol. Rep. 2011. Vol. 38, No. 8. P. 4893–4901. DOI: 10.1007/s11033-010-0631-z

[95]

Gong Z, Yao S, Zirpoli G, et al. Genetic variants in one-carbon metabolism genes and breast cancer risk in European American and African American women. Int J Cancer. 2015;137(3):666–677. DOI: 10.1002/ijc.29434

[96]

Gong Z., Yao S., Zirpoli G. et al. Genetic variants in one-carbon metabolism genes and breast cancer risk in European American and African American women // Int. J. Cancer. 2015. Vol. 137, No. 3. P. 666–677. DOI: 10.1002/ijc.29434

[97]

Weiner AS, Boyarskikh UA, Voronina EN, et al. Polymorphisms in the folate-metabolizing genes MTR, MTRR, and CBS and breast cancer risk. Cancer Epidemiol. 2012;36(2):e95–e100. DOI: 10.1016/j.canep.2011.11.010

[98]

Weiner A.S., Boyarskikh U.A., Voronina E.N. et al. Polymorphisms in the folate-metabolizing genes MTR, MTRR, and CBS and breast cancer risk // Cancer Epidemiol. 2012. Vol. 36, No. 2. P. e95–e100. DOI: 10.1016/j.canep.2011.11.010

[99]

Zhong S, Xu J, Li W, et al. Methionine synthase A2756G polymorphism and breast cancer risk: an up-to-date meta-analysis. Gene. 2013;527(2):510–515. DOI: 10.1016/j.gene.2013.06.054

[100]

Zhong S., Xu J., Li W. et al. Methionine synthase A2756G polymorphism and breast cancer risk: an up-to-date meta-analysis // Gene. 2013. Vol. 527, No. 2. P. 510–515. DOI: 10.1016/j.gene.2013.06.054

[101]

Hosseini M. Role of polymorphism of methyltetrahydrofolate-homocysteine methyltransferase (MTR) A2756G and breast cancer risk. Pol J Pathol. 2013;64(3):191–195. DOI: 10.5114/pjp.2013.38138

[102]

Hosseini M. Role of polymorphism of methyltetrahydrofolate-homocysteine methyltransferase (MTR) A2756G and breast cancer risk // Pol. J. Pathol. 2013. Vol. 64, No. 3. P. 191–195. DOI: 10.5114/pjp.2013.38138

[103]

Hu S, Liu HC, Xi SM. Methionine synthase reductase A66G polymorphism is not associated with breast cancer susceptibility – a meta-analysis. Asian Pac J Cancer Prev. 2014;15(7):3267–3271. DOI: 10.7314/apjcp.2014.15.7.3267

[104]

Hu S., Liu H.C., Xi S.M. Methionine synthase reductase A66G polymorphism is not associated with breast cancer susceptibility – a meta-analysis // Asian Pac. J. Cancer Prev. 2014. Vol. 15, No. 7. P. 3267–3271. DOI: 10.7314/apjcp.2014.15.7.3267

[105]

Hu J, Zhou GW, Wang N, Wang YJ. MTRR A66G polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. 2010;124(3):779–784. DOI: 10.1007/s10549-010-0892-1

[106]

Hu J., Zhou G.W., Wang N., Wang Y.J. MTRR A66G polymorphism and breast cancer risk: a meta-analysis // Breast Cancer Res. Treat. 2010. Vol. 124, No. 3. P. 779–784. DOI: 10.1007/s10549-010-0892-1

[107]

Lajin B, Alhaj Sakur A, Ghabreau L, Alachkar A. Association of polymorphisms in one-carbon metabolizing genes with breast cancer risk in Syrian women. Tumour Biol. 2012;33(4):1133–1139. DOI: 10.1007/s13277-012-0354-y

[108]

Lajin B., Alhaj Sakur A., Ghabreau L., Alachkar A. Association of polymorphisms in one-carbon metabolizing genes with breast cancer risk in Syrian women // Tumour Biol. 2012. Vol. 33, No. 4. P. 1133–1139. DOI: 10.1007/s13277-012-0354-y

[109]

Wu X, Xu W, Zhou T, et al. The Role of genetic polymorphisms as related to one-carbon metabolism, vitamin B6, and gene-nutrient interactions in maintaining genomic stability and cell viability in Chinese breast cancer patients. Int J Mol Sci. 2016;17(7):1003. DOI: 10.3390/ijms17071003

[110]

Wu X., Xu W., Zhou T. et al. The Role of genetic polymorphisms as related to one-carbon metabolism, vitamin B6, and gene-nutrient interactions in maintaining genomic stability and cell viability in Chinese breast cancer patients // Int. J. Mol. Sci. 2016. Vol. 17, No. 7. P. 1003. DOI: 10.3390/ijms17071003

[111]

Maruti SS, Ulrich CM, Jupe ER, White E. MTHFR C677T and postmenopausal breast cancer risk by intakes of one-carbon metabolism nutrients: a nested case-control study. Breast Cancer Res. 2009;11(6):R91. DOI: 10.1186/bcr2462

[112]

Maruti S.S., Ulrich C.M., Jupe E.R., White E. MTHFR C677T and postmenopausal breast cancer risk by intakes of one-carbon metabolism nutrients: a nested case-control study // Breast Cancer Res. 2009. Vol. 11, No. 6. P. R91. DOI: 10.1186/bcr2462

[113]

Ma E, Iwasaki M, Junko I, et al. Dietary intake of folate, vitamin B6, and vitamin B12, genetic polymorphism of related enzymes, and risk of breast cancer: a case-control study in Brazilian women. BMC Cancer. 2009;9:122. DOI: 10.1186/1471-2407-9-122

[114]

Ma E., Iwasaki M., Junko I. et al. Dietary intake of folate, vitamin B6, and vitamin B12, genetic polymorphism of related enzymes, and risk of breast cancer: a case-control study in Brazilian women // BMC Cancer. 2009. Vol. 9. P. 122. DOI: 10.1186/1471-2407-9-122

[115]

Varela-Rey M, Woodhoo A, Martinez-Chantar ML, et al. Alcohol, DNA methylation, and cancer. Alcohol Res. 2013;35(1):25–35.

[116]

Varela-Rey M., Woodhoo A., Martinez-Chantar M.L. et al. Alcohol, DNA methylation, and cancer // Alcohol Res. 2013. Vol. 35, No. 1. P. 25–35.

[117]

Allen NE, Beral V, Casabonne D, et al. Moderate alcohol intake and cancer incidence in women. J Natl Cancer Inst. 2009;101(5):296–305. DOI: 10.1093/jnci/djn514

[118]

Allen N.E., Beral V., Casabonne D. et al. Moderate alcohol intake and cancer incidence in women // J. Natl. Cancer Inst. 2009. Vol. 101, No. 5. P. 296–305. DOI: 10.1093/jnci/djn514

[119]

Platek ME, Shields PG, Marian C, et al. Alcohol consumption and genetic variation in methylenetetrahydrofolate reductase and 5-methyltetrahydrofolate-homocysteine methyltransferase in relation to breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2009;18(9):2453–2459. DOI: 10.1158/1055-9965.EPI-09-0159

[120]

Platek M.E., Shields P.G., Marian C. et al. Alcohol consumption and genetic variation in methylenetetrahydrofolate reductase and 5-methyltetrahydrofolate-homocysteine methyltransferase in relation to breast cancer risk // Cancer Epidemiol. Biomarkers Prev. 2009. Vol. 18, No. 9. P. 2453–2459. DOI: 10.1158/1055-9965.EPI-09-0159

RIGHTS & PERMISSIONS

Eco-Vector

PDF

57

Accesses

0

Citation

Detail

Sections
Recommended

/