Methods for assessing the effectiveness of using bone morphogenetic proteins in spondylodesis

Ural F. Mukhametov , Sergey V. Lyulin , Dmitry Yu. Borzunov , Ilgiz F. Gareev

HERALD of North-Western State Medical University named after I.I. Mechnikov ›› 2022, Vol. 14 ›› Issue (3) : 13 -25.

PDF
HERALD of North-Western State Medical University named after I.I. Mechnikov ›› 2022, Vol. 14 ›› Issue (3) : 13 -25. DOI: 10.17816/mechnikov106089
Reviews
review-article

Methods for assessing the effectiveness of using bone morphogenetic proteins in spondylodesis

Author information +
History +
PDF

Abstract

BACKGROUND: Today, growth factors, in particular bone morphogenetic proteins in the composition of osteoplastic materials, are widely used to accelerate bone tissue regeneration after injuries or diseases of the musculoskeletal system. There are various methods for evaluating the effectiveness of using these proteins, in particular, the methods for medical imaging and determining specific markers. Bone loss often occurs after trauma or injury, including surgery. Rapid impairment of bone formation and increased bone resorption, as reflected by biochemical markers of bone metabolism, may cause this bone loss. Therefore, the detection of these markers in patients after spinal fusion using bone morphogenetic proteins is important in assessing the effectiveness of this therapy at various stages of observation in the postoperative period. However, due to the widespread use of bone morphogenetic proteins, their therapeutic efficacy can increasingly be seen in everyday radiological practice. X-ray or computed tomography is usually used to assess the effectiveness of the surgical intervention. Magnetic resonance imaging may be a useful adjunct, however, postoperative magnetic resonance imaging analysis is vulnerable to hardware artifacts. Although there is extensive data in the literature on the outcomes of surgical interventions for spondylodesis using bone morphogenetic proteins, radiographic data and data on the detection of specific markers and their use are scarce.

AIM: In this study, we will discuss the current knowledge about existing and possible methods for evaluating the effectiveness of the use of bone morphogenetic proteins in spondylodesis.

MATERIALS AND METHODS: Using PubMed, Embase, the Cochrane Database, and Google Scholar, we conducted a comprehensive literature search demonstrating possible methods for evaluating the effectiveness of bone morphogenetic proteins in spondylodesis.

RESULTS: This study presents various methods for determining the effectiveness of the use of bone morphogenetic proteins in spondylodesis. In addition, the results of preclinical and clinical studies, which analyzed the effectiveness of the use of bone morphogenetic proteins, have been analyzed.

CONCLUSIONS: To identify the effectiveness of bone morphogenetic proteins in spondylodesis further preclinical and clinical studies are required.

Keywords

bone morphogenetic proteins / fusion / remodeling / markers / therapy / efficacy / diagnostics

Cite this article

Download citation ▾
Ural F. Mukhametov, Sergey V. Lyulin, Dmitry Yu. Borzunov, Ilgiz F. Gareev. Methods for assessing the effectiveness of using bone morphogenetic proteins in spondylodesis. HERALD of North-Western State Medical University named after I.I. Mechnikov, 2022, 14(3): 13-25 DOI:10.17816/mechnikov106089

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Reid PC, Morr S, Kaiser MG. State of the union: a review of lumbar fusion indications and techniques for degenerative spine disease. J Neurosurg Spine. 2019;31(1):1–14. DOI: 10.3171/2019.4.SPINE18915

[2]

Reid P.C., Morr S., Kaiser M.G. State of the union: a review of lumbar fusion indications and techniques for degenerative spine disease // J. Neurosurg. Spine. 2019. Vol. 31, No. 1. P. 1–14. DOI: 10.3171/2019.4.SPINE18915

[3]

Siddiqui MM, Sta Ana AR, Yeo W, Yue WM. Bone morphogenic protein is a viable adjunct for fusion in minimally invasive transforaminal lumbar interbody fusion. Asian Spine J. 2016;10(6):1091–1099. DOI: 10.4184/asj.2016.10.6.1091

[4]

Siddiqui M.M., Sta Ana A.R., Yeo W., Yue W.M. Bone morphogenic protein is a viable adjunct for fusion in minimally invasive transforaminal lumbar interbody fusion // Asian Spine J. 2016. Vol. 10, No. 6. P. 1091–1099. DOI: 10.4184/asj.2016.10.6.1091

[5]

Lowery JW, Rosen V. Bone morphogenetic protein-based therapeutic approaches. Cold Spring Harb Perspect Biol. 2018;10(4):a022327. DOI: 10.1101/cshperspect.a022327

[6]

Lowery J.W., Rosen V. Bone morphogenetic protein-based therapeutic approaches // Cold Spring Harb. Perspect. Biol. 2018. Vol. 10, No. 4. P. a022327. DOI: 10.1101/cshperspect.a022327

[7]

de Kunder SL, van Kuijk SMJ, Rijkers K, et al. Transforaminal lumbar interbody fusion (TLIF) versus posterior lumbar interbody fusion (PLIF) in lumbar spondylolisthesis: a systematic review and meta-analysis. Spine J. 2017;17(11):1712–1721. DOI: 10.1016/j.spinee.2017.06.018

[8]

de Kunder S.L., van Kuijk S.M.J., Rijkers K. et al. Transforaminal lumbar interbody fusion (TLIF) versus posterior lumbar interbody fusion (PLIF) in lumbar spondylolisthesis: a systematic review and meta-analysis // Spine J. 2017. Vol. 17, No. 11. P. 1712–1721. DOI: 10.1016/j.spinee.2017.06.018

[9]

Burke JF, Dhall SS. Bone morphogenic protein use in spinal surgery. Neurosurg Clin N Am. 2017;28(3):331–334. DOI: 10.1016/j.nec.2017.03.001

[10]

Burke J.F., Dhall S.S. Bone morphogenic protein use in spinal surgery // Neurosurg. Clin. N. Am. 2017. Vol. 28, No. 3. P. 331–334. DOI: 10.1016/j.nec.2017.03.001

[11]

Formica M, Zanirato A, Cavagnaro L, et al. Extreme lateral interbody fusion in spinal revision surgery: clinical results and complications. Eur Spine J. 2017;26(Suppl 4):464–470. DOI: 10.1007/s00586-017-5115-6

[12]

Formica M., Zanirato A., Cavagnaro L. et al. Extreme lateral interbody fusion in spinal revision surgery: clinical results and complications // Eur. Spine J. 2017. Vol. 26, No. Suppl 4. P. 464–470. DOI: 10.1007/s00586-017-5115-6

[13]

Zeng ZY, Xu ZW, He DW, et al. Complications and prevention strategies of oblique lateral interbody fusion technique. Orthop Surg. 2018;10(2):98–106. DOI: 10.1111/os.12380

[14]

Zeng Z.Y., Xu Z.W., He D.W. et al. Complications and prevention strategies of oblique lateral interbody fusion technique // Orthop. Surg. 2018. Vol. 10, No. 2. P. 98–106. DOI: 10.1111/os.12380

[15]

Mendenhall SK, Priddy BH, Mobasser JP, Potts EA. Safety and efficacy of low-dose rhBMP-2 use for anterior cervical fusion. Neurosurg Focus. 2021;50(6):E2. DOI: 10.3171/2021.3.FOCUS2171

[16]

Mendenhall S.K., Priddy B.H., Mobasser J.P., Potts E.A. Safety and efficacy of low-dose rhBMP-2 use for anterior cervical fusion // Neurosurg. Focus. 2021. Vol. 50, No. 6. P. E2. DOI: 10.3171/2021.3.FOCUS2171

[17]

Ye F, Zeng Z, Wang J, et al. Comparison of the use of rhBMP-7 versus iliac crest autograft in single-level lumbar fusion: a meta-analysis of randomized controlled trials. J Bone Miner Metab. 2018;36(1):119–127. DOI: 10.1007/s00774-017-0821-z

[18]

Ye F., Zeng Z., Wang J. et al. Comparison of the use of rhBMP-7 versus iliac crest autograft in single-level lumbar fusion: a meta-analysis of randomized controlled trials // J. Bone Miner. Metab. 2018. Vol. 36, No. 1. P. 119–127. DOI: 10.1007/s00774-017-0821-z

[19]

François S, Eder V, Belmokhtar K, et al. Synergistic effect of human Bone Morphogenic Protein-2 and Mesenchymal Stromal Cells on chronic wounds through hypoxia-inducible factor-1 α induction. Sci Rep. 2017;7(1):4272. DOI: 10.1038/s41598-017-04496-w

[20]

François S., Eder V., Belmokhtar K. et al. Synergistic effect of human bone morphogenic protein-2 and mesenchymal stromal cells on chronic wounds through hypoxia-inducible factor-1 α induction // Sci. Rep. 2017. Vol. 7, No. 1. P. 4272. DOI: 10.1038/s41598-017-04496-w

[21]

Szulc P. Biochemical bone turnover markers in hormonal disorders in adults: a narrative review. J Endocrinol Invest. 2020;43(10):1409–1427. DOI: 10.1007/s40618-020-01269-7

[22]

Szulc P. Biochemical bone turnover markers in hormonal disorders in adults: a narrative review // J. Endocrinol. Invest. 2020. Vol. 43, No. 10. P. 1409–1427. DOI: 10.1007/s40618-020-01269-7

[23]

Weisbrod LJ, Arnold PM, Leever JD. Radiographic and CT evaluation of recombinant human bone morphogenetic protein-2-assisted cervical spinal interbody fusion. Clin Spine Surg. 2019;32(2):71–79. DOI: 10.1097/BSD.0000000000000720

[24]

Weisbrod L.J., Arnold P.M., Leever J.D. Radiographic and CT evaluation of recombinant human bone morphogenetic protein-2-assisted cervical spinal interbody fusion // Clin. Spine Surg. 2019. Vol. 32, No. 2. P. 71–79. DOI: 10.1097/BSD.0000000000000720

[25]

Florencio-Silva R, Sasso GR, Sasso-Cerri E, et al. Biology of bone tissue: Structure, function, and factors that influence bone cells. Biomed Res Int. 2015;2015:421746. DOI: 10.1155/2015/421746

[26]

Florencio-Silva R., Sasso G.R., Sasso-Cerri E. et al. Biology of bone tissue: Structure, function, and factors that influence bone cells // Biomed. Res. Int. 2015. Vol. 2015. P. 421746. DOI: 10.1155/2015/421746

[27]

Tiwari AK, Goyal A, Prasad J. Modeling cortical bone adaptation using strain gradients. Proc Inst Mech Eng H. 2021;235(6):636–654. DOI: 10.1177/09544119211000228

[28]

Tiwari A.K., Goyal A., Prasad J. Modeling cortical bone adaptation using strain gradients // Proc. Inst. Mech. Eng. H. 2021. Vol. 235, No. 6. P. 636–654. DOI: 10.1177/09544119211000228

[29]

Kylmaoja E, Nakamura M, Tuukkanen J. Osteoclasts and remodeling based bone formation. Curr Stem Cell Res Ther. 2016;11(8):626–633. DOI: 10.2174/1574888x10666151019115724

[30]

Kylmaoja E., Nakamura M., Tuukkanen J. Osteoclasts and remodeling based bone formation // Curr. Stem Cell Res. Ther. 2016. Vol. 11, No. 8. P. 626–633. DOI: 10.2174/1574888x10666151019115724

[31]

Kenkre JS, Bassett J. The bone remodelling cycle. Ann Clin Biochem. 2018;55(3):308–327. DOI: 10.1177/0004563218759371

[32]

Kenkre J.S., Bassett J. The bone remodelling cycle // Ann. Clin. Biochem. 2018. Vol. 55, No. 3. P. 308–327. DOI: 10.1177/0004563218759371

[33]

Katsimbri P. The biology of normal bone remodelling. Eur J Cancer Care (Engl). 2017;26(6). DOI: 10.1111/ecc.12740

[34]

Katsimbri P. The biology of normal bone remodeling // Eur. J. Cancer Care (Engl). 2017. Vol. 26, No. 6. DOI: 10.1111/ecc.12740

[35]

Bellido T. Osteocyte-driven bone remodeling. Calcif Tissue Int. 2014;94(1):25–34. DOI: 10.1007/s00223-013-9774-y

[36]

Bellido T. Osteocyte-driven bone remodeling // Calcif. Tissue Int. 2014. Vol. 94, No. 1. P. 25–34. DOI: 10.1007/s00223-013-9774-y

[37]

Delaisse JM, Andersen TL, Kristensen HB, et al. Re-thinking the bone remodeling cycle mechanism and the origin of bone loss. Bone. 2020;141:115628. DOI: 10.1016/j.bone.2020.115628

[38]

Delaisse J.M., Andersen T.L., Kristensen H.B. et al. Re-thinking the bone remodeling cycle mechanism and the origin of bone loss // Bone. 2020. Vol. 141. P. 115628. DOI: 10.1016/j.bone.2020.115628

[39]

Farlay D, Bala Y, Rizzo S, et al. Bone remodeling and bone matrix quality before and after menopause in healthy women. Bone. 2019;128:115030. DOI: 10.1016/j.bone.2019.08.003

[40]

Farlay D., Bala Y., Rizzo S. et al. Bone remodeling and bone matrix quality before and after menopause in healthy women // Bone. 2019. Vol. 128. P. 115030. DOI: 10.1016/j.bone.2019.08.003

[41]

Chew CK, Clarke BL. Biochemical testing relevant to bone. Endocrinol Metab Clin North Am. 2017;46(3):649–667. DOI: 10.1016/j.ecl.2017.04.003

[42]

Chew C.K., Clarke B.L. Biochemical testing relevant to bone // Endocrinol. Metab. Clin. North Am. 2017. Vol. 46, No. 3. P. 649–667. DOI: 10.1016/j.ecl.2017.04.003

[43]

Zaitseva OV, Shandrenko SG, Veliky MM. Biochemical markers of bone collagen type I metabolism. Ukr Biochem J. 2015;87(1):21–32. DOI: 10.15407/ubj87.01.021

[44]

Zaitseva O.V., Shandrenko S.G., Veliky M.M. Biochemical markers of bone collagen type I metabolism // Ukr Biochem. J. 2015. Vol. 87, No. 1. P. 21–32. DOI: 10.15407/ubj87.01.021

[45]

Khashayar P, Meybodi HA, Amoabediny G, Larijani B. Biochemical markers of bone turnover and their role in osteoporosis diagnosis: a narrative review. Recent Pat Endocr Metab Immune Drug Discov. 2015;9(2):79–89. DOI: 10.2174/1872214809666150806105433

[46]

Khashayar P., Meybodi H.A., Amoabediny G., Larijani B. Biochemical markers of bone turnover and their role in osteoporosis diagnosis: a narrative review // Recent Pat. Endocr. Metab. Immune Drug Discov. 2015. Vol. 9, No. 2. P. 79–89. DOI: 10.2174/1872214809666150806105433

[47]

Chapurlat RD, Confavreux CB. Novel biological markers of bone: from bone metabolism to bone physiology. Rheumatology (Oxford). 2016;55(10):1714–1725. DOI: 10.1093/rheumatology/kev410

[48]

Chapurlat R.D., Confavreux C.B. Novel biological markers of bone: from bone metabolism to bone physiology // Rheumatology (Oxford). 2016. Vol. 55, No. 10. P. 1714–1725. DOI: 10.1093/rheumatology/kev410

[49]

Johansson H, Odén A, Kanis JA, et al. A meta-analysis of reference markers of bone turnover for prediction of fracture. Calcif Tissue Int. 2014;94(5):560–567. DOI: 10.1007/s00223-014-9842-y

[50]

Johansson H., Odén A., Kanis J.A. et al. A meta-analysis of reference markers of bone turnover for prediction of fracture // Calcif. Tissue Int. 2014. Vol. 94, No. 5. P. 560–567. DOI: 10.1007/s00223-014-9842-y

[51]

Pagani F, Francucci CM, Moro L. Markers of bone turnover: biochemical and clinical perspectives. J Endocrinol Invest. 2005;28(10 Suppl):8–13.

[52]

Pagani F., Francucci C.M., Moro L. Markers of bone turnover: biochemical and clinical perspectives // J. Endocrinol. Invest. 2005. Vol. 28, No. 10 Suppl. P. 8–13.

[53]

Camozzi V, Tossi A, Simoni E, et al. Role of biochemical markers of bone remodeling in clinical practice. J Endocrinol Invest. 2007;30(6 Suppl):13–17.

[54]

Camozzi V., Tossi A., Simoni E. et al. Role of biochemical markers of bone remodeling in clinical practice // J. Endocrinol. Invest. 2007. Vol. 30, No. 6 Suppl. P. 13–17.

[55]

Yoon BH, Yu W. Clinical utility of biochemical marker of bone turnover: fracture risk prediction and bone healing. J Bone Metab. 2018;25(2):73–78. DOI: 10.11005/jbm.2018.25.2.73

[56]

Yoon B.H., Yu W. Clinical utility of biochemical marker of bone turnover: fracture risk prediction and bone healing // J. Bone Metab. 2018. Vol. 25, No. 2. P. 73–78. DOI: 10.11005/jbm.2018.25.2.73

[57]

Kwon S, Wang AH, Sadowski CA, et al. Urinary bone turnover markers as target indicators for monitoring bisphosphonate drug treatment in the management of osteoporosis. Curr Drug Targets. 2018;19(5):451–459. DOI: 10.2174/1389450118666170704143529

[58]

Kwon S., Wang A.H., Sadowski C.A. et al. Urinary bone turnover markers as target indicators for monitoring bisphosphonate drug treatment in the management of osteoporosis // Curr. Drug Targets. 2018. Vol. 19, No. 5. P. 451–459. DOI: 10.2174/1389450118666170704143529

[59]

Tacey A, Hayes A, Zulli A, Levinger I. Osteocalcin and vascular function: is there a cross-talk? Mol Metab. 2021;49:101205. DOI: 10.1016/j.molmet.2021.101205

[60]

Tacey A., Hayes A., Zulli A., Levinger I. Osteocalcin and vascular function: is there a cross-talk? // Mol. Metab. 2021. Vol. 49. P. 101205. DOI: 10.1016/j.molmet.2021.101205

[61]

Komori T. What is the function of osteocalcin? J Oral Biosci. 2020;62(3):223–227. DOI: 10.1016/j.job.2020.05.004

[62]

Komori T. What is the function of osteocalcin? // J. Oral Biosci. 2020. Vol. 62, No. 3. P. 223–227. DOI: 10.1016/j.job.2020.05.004

[63]

Gunsser J, Hermann R, Roth A, Lupp A. Comprehensive assessment of tissue and serum parameters of bone metabolism in a series of orthopaedic patients. PLoS One. 2019;14(12):e0227133. DOI: 10.1371/journal.pone.0227133

[64]

Gunsser J., Hermann R., Roth A., Lupp A. Comprehensive assessment of tissue and serum parameters of bone metabolism in a series of orthopaedic patients // PLoS One. 2019. Vol. 14, No. 12. P. e0227133. DOI: 10.1371/journal.pone.0227133

[65]

Parveen B, Parveen A, Vohora D. Biomarkers of osteoporosis: an update. Endocr Metab Immune Disord Drug Targets. 2019;19(7):895–912. DOI: 10.2174/1871530319666190204165207

[66]

Parveen B., Parveen A., Vohora D. Biomarkers of osteoporosis: an update // Endocr. Metab. Immune Disord. Drug Targets. 2019. Vol. 19, No. 7. P. 895–912. DOI: 10.2174/1871530319666190204165207

[67]

Vimalraj S. Alkaline phosphatase: Structure, expression and its function in bone mineralization. Gene. 2020;754:144855. DOI: 10.1016/j.gene.2020.144855

[68]

Vimalraj S. Alkaline phosphatase: Structure, expression and its function in bone mineralization // Gene. 2020. Vol. 754. P. 144855. DOI: 10.1016/j.gene.2020.144855

[69]

Masrour Roudsari J, Mahjoub S. Quantification and comparison of bone-specific alkaline phosphatase with two methods in normal and paget’s specimens. Caspian J Intern Med. 2012;3(3):478–483.

[70]

Masrour Roudsari J., Mahjoub S. Quantification and comparison of bone-specific alkaline phosphatase with two methods in normal and paget’s specimens // Caspian J. Intern. Med. 2012. Vol. 3, No. 3. P. 478–483.

[71]

Czech T, Oyewumi MO. Overcoming barriers confronting application of protein therapeutics in bone fracture healing. Drug Deliv Transl Res. 2021;11(3):842–865. DOI: 10.1007/s13346-020-00829-x

[72]

Czech T., Oyewumi M.O. Overcoming barriers confronting application of protein therapeutics in bone fracture healing // Drug Deliv. Transl. Res. 2021. Vol. 11, No. 3. P. 842–865. DOI: 10.1007/s13346-020-00829-x

[73]

Spinella-Jaegle S, Roman-Roman S, Faucheu C, et al. Opposite effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on osteoblast differentiation. Bone. 2001;29(4):323–330. DOI: 10.1016/s8756-3282(01)00580-4

[74]

Spinella-Jaegle S., Roman-Roman S., Faucheu C. et al. Opposite effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on osteoblast differentiation // Bone. 2001. Vol. 29, No. 4. P. 323–330. DOI: 10.1016/s8756-3282(01)00580-4

[75]

Zhang Y, Shuang Y, Fu H, et al. Characterization of a shorter recombinant polypeptide chain of bone morphogenetic protein 2 on osteoblast behaviour. BMC Oral Health. 2015;15:171. DOI: 10.1186/s12903-015-0154-z

[76]

Zhang Y., Shuang Y., Fu H. et al. Characterization of a shorter recombinant polypeptide chain of bone morphogenetic protein 2 on osteoblast behavior // BMC Oral Health. 2015. Vol. 15. P. 171. DOI: 10.1186/s12903-015-0154-z

[77]

Jensen ED, Pham L, Billington CJ Jr, et al. Bone morphogenic protein 2 directly enhances differentiation of murine osteoclast precursors. J Cell Biochem. 2010;109(4):672–682. DOI: 10.1002/jcb.22462

[78]

Jensen E.D., Pham L., Billington C.J. Jr. et al. Bone morphogenic protein 2 directly enhances differentiation of murine osteoclast precursors // J. Cell. Biochem. 2010. Vol. 109, No. 4. P. 672–682. DOI: 10.1002/jcb.22462

[79]

Sahin E, Orhan C, Balci TA, et al. Magnesium picolinate improves bone formation by regulation of RANK/RANKL/OPG and BMP-2/Runx2 signaling pathways in high-fat fed rats. Nutrients. 2021;13(10):3353. DOI: 10.3390/nu13103353

[80]

Sahin E., Orhan C., Balci T.A. et al. Magnesium picolinate improves bone formation by regulation of RANK/RANKL/OPG and BMP-2/Runx2 signaling pathways in high-fat fed rats // Nutrients. 2021. Vol. 13, No. 10. P. 3353. DOI: 10.3390/nu13103353

[81]

Seeherman HJ, Li XJ, Bouxsein ML, Wozney JM. rhBMP-2 induces transient bone resorption followed by bone formation in a nonhuman primate core-defect model. J Bone Joint Surg Am. 2010;92(2):411–426. DOI: 10.2106/JBJS.H.01732

[82]

Seeherman H.J., Li X.J., Bouxsein M.L., Wozney J.M. rhBMP-2 induces transient bone resorption followed by bone formation in a nonhuman primate core-defect model // J. Bone Joint Surg. Am. 2010. Vol. 92, No. 2. P. 411–426. DOI: 10.2106/JBJS.H.01732

[83]

Benglis D, Wang MY, Levi AD. A comprehensive review of the safety profile of bone morphogenetic protein in spine surgery. Neurosurgery. 2008;62(5 Suppl 2):ONS423–431;discussion ONS431. DOI: 10.1227/01.neu.0000326030.24220.d8

[84]

Benglis D., Wang M.Y., Levi A.D. A comprehensive review of the safety profile of bone morphogenetic protein in spine surgery // Neurosurgery. 2008. Vol. 62, No. 5 Suppl 2. P. ONS423–431; discussion ONS431. DOI: 10.1227/01.neu.0000326030.24220.d8

[85]

Drake MT, Clarke BL, Oursler MJ, Khosla S. Inhibitors for osteoporosis: biology, potential clinical utility, and lessons learned. Endocr Rev. 2017;38(4):325–350. DOI: 10.1210/er.2015-1114

[86]

Drake M.T., Clarke B.L., Oursler M.J., Khosla S. Inhibitors for osteoporosis: biology, potential clinical utility, and lessons learned // Endocr. Rev. 2017. Vol. 38, No. 4. P. 325–350. DOI: 10.1210/er.2015-1114

[87]

Lemaire PA, Huang L, Zhuo Y, et al. Chondroitin sulfate promotes activation of cathepsin K. J Biol Chem. 2014;289(31):21562–21572. DOI: 10.1074/jbc.M114.559898

[88]

Lemaire P.A., Huang L., Zhuo Y. et al. Chondroitin sulfate promotes activation of cathepsin K // J. Biol. Chem. 2014. Vol. 289, No. 31. P. 21562–21572. DOI: 10.1074/jbc.M114.559898

[89]

Kerschan-Schindl K, Hawa G, Kudlacek S, et al. Serum levels of cathepsin K decrease with age in both women and men. Exp Gerontol. 2005;40(6):532–535. DOI: 10.1016/j.exger.2005.04.001

[90]

Kerschan-Schindl K., Hawa G., Kudlacek S. et al. Serum levels of cathepsin K decrease with age in both women and men // Exp. Gerontol. 2005. Vol. 40, No. 6. P. 532–535. DOI: 10.1016/j.exger.2005.04.001

[91]

Kaneko H, Arakawa T, Mano H, et al. Direct stimulation of osteoclastic bone resorption by bone morphogenetic protein (BMP)-2 and expression of BMP receptors in mature osteoclasts. Bone. 2000;27(4):479–486. DOI: 10.1016/s8756-3282(00)00358-6

[92]

Kaneko H., Arakawa T., Mano H. et al. Direct stimulation of osteoclastic bone resorption by bone morphogenetic protein (BMP)-2 and expression of BMP receptors in mature osteoclasts // Bone. 2000. Vol. 27, No. 4. P. 479–486. DOI: 10.1016/s8756-3282(00)00358-6

[93]

Yasuda H. Discovery of the RANKL/RANK/OPG system. J Bone Miner Metab. 2021;39(1):2–11. DOI: 10.1007/s00774-020-01175-1

[94]

Yasuda H. Discovery of the RANKL/RANK/OPG system // J. Bone Miner. Metab. 2021. Vol. 39, № 1. P. 2–11. DOI: 10.1007/s00774-020-01175-1

[95]

Stuss M, Rieske P, Cegłowska A, et al. Assessment of OPG/RANK/RANKL gene expression levels in peripheral blood mononuclear cells (PBMC) after treatment with strontium ranelate and ibandronate in patients with postmenopausal osteoporosis. J Clin Endocrinol Metab. 2013;98(5):E1007–E1011. DOI: 10.1210/jc.2012-3885

[96]

Stuss M., Rieske P., Cegłowska A. et al. Assessment of OPG/RANK/RANKL gene expression levels in peripheral blood mononuclear cells (PBMC) after treatment with strontium ranelate and ibandronate in patients with postmenopausal osteoporosis // J. Clin. Endocrinol. Metab. 2013. Vol. 98, No. 5. P. E1007–E1011. DOI: 10.1210/jc.2012-3885

[97]

Tobeiha M, Moghadasian MH, Amin N, Jafarnejad S. RANKL/RANK/OPG pathway: a mechanism involved in exercise-induced bone remodeling. Biomed Res Int. 2020;2020:6910312. DOI: 10.1155/2020/6910312

[98]

Tobeiha M., Moghadasian M.H., Amin N., Jafarnejad S. RANKL/RANK/OPG pathway: a mechanism involved in exercise-induced bone remodeling // Biomed. Res. Int. 2020. Vol. 2020. P. 6910312. DOI: 10.1155/2020/6910312

[99]

Robling AG, Bonewald LF. The osteocyte: new insights. Annu Rev Physiol. 2020;82:485–506. DOI: 10.1146/annurev-physiol-021119-034332

[100]

Robling A.G., Bonewald L.F. The osteocyte: new insights // Annu. Rev. Physiol. 2020. Vol. 82. P. 485–506. DOI: 10.1146/annurev-physiol-021119-034332

[101]

Kužma M, Jackuliak P, Killinger Z, Payer J. Parathyroid hormone-related changes of bone structure. Physiol Res. 2021;70(Suppl 1):S3–S11. DOI: 10.33549/physiolres.934779

[102]

Kužma M., Jackuliak P., Killinger Z., Payer J. Parathyroid hormone-related changes of bone structure // Physiol. Res. 2021. Vol. 70, No. Suppl 1. P. S3–S11. DOI: 10.33549/physiolres.934779

[103]

Compston JE. Skeletal actions of intermittent parathyroid hormone: effects on bone remodelling and structure. Bone. 2007;40(6):1447–1452. DOI: 10.1016/j.bone.2006.09.008

[104]

Compston J.E. Skeletal actions of intermittent parathyroid hormone: effects on bone remodelling and structure // Bone. 2007. Vol. 40, No. 6. P. 1447–1452. DOI: 10.1016/j.bone.2006.09.008

[105]

Chen T, Wang Y, Hao Z, et al. Parathyroid hormone and its related peptides in bone metabolism. Biochem Pharmacol. 2021;192:114669. DOI: 10.1016/j.bcp.2021.114669

[106]

Chen T., Wang Y., Hao Z. et al. Parathyroid hormone and its related peptides in bone metabolism // Biochem. Pharmacol. 2021. Vol. 192. P. 114669. DOI: 10.1016/j.bcp.2021.114669

[107]

Henssler L, Kerschbaum M, Mukashevich MZ, et al. Molecular enhancement of fracture healing — Is there a role for Bone Morphogenetic Protein-2, parathyroid hormone, statins, or sclerostin-antibodies? Injury. 2021;52 Suppl 2:S49–S57. DOI: 10.1016/j.injury.2021.04.068

[108]

Henssler L., Kerschbaum M., Mukashevich M.Z. et al. Molecular enhancement of fracture healing — Is there a role for Bone Morphogenetic Protein-2, parathyroid hormone, statins, or sclerostin-antibodies? // Injury. 2021. Vol. 52 Suppl 2. P. S49–S57. DOI: 10.1016/j.injury.2021.04.068

[109]

Issack PS, Lauerman MH, Helfet DL, et al. Alendronate inhibits PTH (1-34)-induced bone morphogenetic protein expression in MC3T3-E1 preosteoblastic cells. HSS J. 2007;3(2):169–172. DOI: 10.1007/s11420-007-9042-7

[110]

Issack P.S., Lauerman M.H., Helfet D.L. et al. Alendronate inhibits PTH (1-34)-induced bone morphogenetic protein expression in MC3T3-E1 preosteoblastic cells // HSS J. 2007. Vol. 3, No. 2. P. 169–172. DOI: 10.1007/s11420-007-9042-7

[111]

Jiang D, Franceschi RT, Boules H, Xiao G. Parathyroid hormone induction of the osteocalcin gene. Requirement for an osteoblast-specific element 1 sequence in the promoter and involvement of multiple-signaling pathways. J Biol Chem. 2004;279(7):5329–5337. DOI: 10.1074/jbc.M311547200

[112]

Jiang D., Franceschi R.T., Boules H., Xiao G. Parathyroid hormone induction of the osteocalcin gene. Requirement for an osteoblast-specific element 1 sequence in the promoter and involvement of multiple-signaling pathways // J. Biol. Chem. 2004. Vol. 279, No. 7. P. 5329–5337. DOI: 10.1074/jbc.M311547200

[113]

Williams AL, Gornet MF, Burkus JK. CT evaluation of lumbar interbody fusion: current concepts. AJNR Am J Neuroradiol. 2005;26(8):2057–2066.

[114]

Williams A.L., Gornet M.F., Burkus J.K. CT evaluation of lumbar interbody fusion: current concepts // AJNR Am. J. Neuroradiol. 2005. Vol. 26, No. 8. P. 2057–2066.

[115]

Smoljanović T, Grgurević L, Jelić M, et al. Regeneration of the skeleton by recombinant human bone morphogenetic proteins. Coll Antropol. 2007;31(3):923–932.

[116]

Smoljanović T., Grgurević L., Jelić M. et al. Regeneration of the skeleton by recombinant human bone morphogenetic proteins // Coll. Antropol. 2007. Vol. 31, No. 3. P. 923–932.

[117]

Feng JT, Yang XG, Wang F, et al. Efficacy and safety of bone substitutes in lumbar spinal fusion: a systematic review and network meta-analysis of randomized controlled trials. Eur Spine J. 2020;29(6):1261–1276. DOI: 10.1007/s00586-019-06257-x

[118]

Feng J.T., Yang X.G., Wang F. et al. Efficacy and safety of bone substitutes in lumbar spinal fusion: a systematic review and network meta-analysis of randomized controlled trials // Eur. Spine J. 2020. Vol. 29, No. 6. P. 1261–1276. DOI: 10.1007/s00586-019-06257-x

[119]

Fu R, Selph S, McDonagh M, et al. Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: a systematic review and meta-analysis. Ann Intern Med. 2013;158(12):890–902. DOI: 10.7326/0003-4819-158-12-201306180-00006

[120]

Fu R., Selph S., McDonagh M. et al. Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: a systematic review and meta-analysis // Ann. Intern. Med. 2013. Vol. 158, No. 12. P. 890–902. DOI: 10.7326/0003-4819-158-12-201306180-00006

[121]

Liu S, Wang Y, Liang Z, et al. Comparative clinical effectiveness and safety of bone morphogenetic protein versus autologous iliac crest bone graft in lumbar fusion: a meta-analysis and systematic review. Spine (Phila Pa 1976). 2020;45(12):E729–E741. DOI: 10.1097/BRS.0000000000003372

[122]

Liu S., Wang Y., Liang Z. et al. Comparative clinical effectiveness and safety of bone morphogenetic protein versus autologous iliac crest bone graft in lumbar fusion: a meta-analysis and systematic review // Spine (Phila. Pa. 1976). 2020. Vol. 45, No. 12. P. E729–E741. DOI: 10.1097/BRS.0000000000003372

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

71

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/