A modern view of the processes of mechanotransduction in healthy and damaged skin: review

Ilya V. Pavlenko , Vitaliy N. Gostev , Kirill V. Andriukhin

HERALD of North-Western State Medical University named after I.I. Mechnikov ›› 2022, Vol. 14 ›› Issue (1) : 17 -30.

PDF
HERALD of North-Western State Medical University named after I.I. Mechnikov ›› 2022, Vol. 14 ›› Issue (1) :17 -30. DOI: 10.17816/mechnikov104610
Reviews
review-article

A modern view of the processes of mechanotransduction in healthy and damaged skin: review

Author information +
History +
PDF

Abstract

Questions concerning the study of mechanotransduction in the skin are currently of interest to many researchers, especially those engaged in the study of the problem of high-quality surgical treatment of soft tissue wounds. The possibility of developing new ways of treating various pathologies of the integumentary tissues, including wound defects, depends on understanding the processes of transmission and transformation of mechanical stimuli coming to skin cells into chains of biochemical reactions. The review presents the main historical stages of the development of scientific knowledge about mechanotransduction, describes the features of mechanotransduction in integumentary tissues, currently known mediators and signaling pathways that realize the transmission of mechanical influences from the cell surface to its nucleus, and also suggests possible directions for using this phenomenon in practice. The work also noted changes occurring at the cellular level during the “recoding” of mechanical signals in wounds prone to slowing down natural healing processes — chronic wounds. We believe that one of the promising trends in the practical application of mechanotransduction is the possibility of using its effects when stretching the skin during the treatment of wound defects of soft tissues.

Keywords

mechanotransduction / skin / integumentary tissue defects / chronic wounds / tissue stretching / dermotension

Cite this article

Download citation ▾
Ilya V. Pavlenko, Vitaliy N. Gostev, Kirill V. Andriukhin. A modern view of the processes of mechanotransduction in healthy and damaged skin: review. HERALD of North-Western State Medical University named after I.I. Mechnikov, 2022, 14(1): 17-30 DOI:10.17816/mechnikov104610

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ermakov AS. The theory of tensegrity and spatial organization of living matter. Russian Journal of Developmental Biology. 2018;49(2):87–100. DOI: 10.1134/S1062360418020030

[2]

Ермаков А.С. Теория тенсегрити и пространственная организация живого // Ontogenez. 2018. Т. 49, № 2. С. 101–115. DOI: 10.7868/S0475145018020039

[3]

Brézulier D, Pellen-Mussi P, Sorel O, Jeanne S. La mécanobiologie osseuse, un domaine émergeant: revue de littérature [Bone mechanobiology, an emerging field: a review]. Orthod Fr. 2018;89(4):343–353. (In French). DOI: 10.1051/orthodfr/2018034

[4]

Brézulier D., Pellen-Mussi P., Sorel O., Jeanne S. La mécanobiologie osseuse, un domaine émergeant: revue de littérature [Bone mechanobiology, an emerging field: a review] // Orthod Fr. 2018. Vol. 89, No. 4. Р. 343–353. (In French). DOI: 10.1051/orthodfr/2018034

[5]

Uzer G, Fuchs RK, Rubin J, Thompson WR. Concise review: plasma and nuclear membranes convey mechanical information to regulate mesenchymal stem cell lineage. Stem Cells. 2016;34(6):1455–1463. DOI: 10.1002/stem.2342

[6]

Uzer G., Fuchs R.K., Rubin J., Thompson W.R. Concise review: plasma and nuclear membranes convey mechanical information to regulate mesenchymal stem cell lineage // Stem Cells. 2016. Vol. 34, No. 6. P. 1455–1463. DOI: 10.1002/stem.2342

[7]

Potekhina YuP, Filatova AI, Tregubova ES, Mokhov DE. Mechanosensitivity of various cells: a possible role in the regulation and realization of the effects of physical methods of treatment [review]. Modern technologies in medicine. 2020.12(4):77–90. (In Russ.). DOI: 10.17691/stm2020.12.4.10

[8]

Потехина Ю.П., Филатова А.И., Трегубова Е.С., Мохов Д.Е. Механосенситивность различных клеток: возможная роль в регуляции и реализации эффектов физических методов лечения [обзор] // Современные технологии в медицине. 2020. Т. 12, № 4. С. 77–90. DOI: 10.17691/stm2020.12.4.10

[9]

Unsere Körperform und das physiologische Problem ihrer Entstehung. Lpz.; 1874.

[10]

Unsere Körperform und das physiologische Problem ihrer Entstehung. Lpz., 1874.

[11]

Wolff J. Das Gesetz der Transformation der Knochen. Berlin: Hirschwald; 1892.

[12]

Wolff J. Das Gesetz der Transformation der Knochen, Berlin: Hirschwald,1892.

[13]

Serov VV, Shekhter AB. Connective tissue. Moscow: Medicine; 1981. (In Russ.)

[14]

Серов В.В., Шехтер А.Б. Соединительная ткань. М.: Медицина, 1981.

[15]

Ingber DE. Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci. 2003;116(Pt 7):1157–1173. DOI: 10.1242/jcs.00359

[16]

Ingber D.E. Tensegrity I. Cell structure and hierarchical systems Biology // J. Cell Sci. 2003. Vol. 116, No. Pt 7. P. 1157–1173. DOI: 10.1242/jcs.00359

[17]

Beloussov LV, Grabovsky VI. Morphomechanics: goals, basic experiments and models. Int J Dev Biol. 2006;50(2–3):81–92. DOI: 10.1387/ijdb.052056lb

[18]

Beloussov L.V., Grabovsky V.I. Morphomechanics: goals, basic experiments and models // Int. J. Dev. Biol. 2006. Vol. 50, No. 2–3. P. 81–92. DOI: 10.1387/ijdb.052056lb

[19]

Ingber DE, Wang N, Stamenovic D. Tensegrity, cellular biophysics, and the mechanics of living systems. Rep Prog Phys. 2014;77(4):046603. DOI: 10.1088/0034-4885/77/4/046603

[20]

Ingber D.E., Wang N., Stamenovic D. Tensegrity, cellular biophysics, and the mechanics of living systems // Rep. Prog. Phys. 2014. Vol. 77, No. 4. Р. 046603. DOI: 10.1088/0034-4885/77/4/046603

[21]

Hamant O, Inoue D, Bouchez D, et al. Are microtubules tension sensors? Nat Commun. 2019;10(1):2360. DOI: 10.1038/s41467-019-10207-y

[22]

Hamant O., Inoue D., Bouchez D. et al. Are microtubules tension sensors? // Nat. Commun. 2019. Vol. 10, No. 1. Р. 2306. DOI: 10.1038/s41467-019-10207-y

[23]

Beloussov LV, Lakirev AV, Naumidi II, Novoselov VV. Effects of relaxation of mechanical tensions upon the early morphogenesis of Xenopus laevis embryos. Int J Dev Biol. 1990;34(4):409–419.

[24]

Beloussov L.V., Lakirev A.V., Naumidi I.I., Novoselov V.V. Effects of relaxation of mechanical tensions upon the early morphogenesis of Xenopus laevis embryos // Int. J. Dev. Biol. 1990. Vol. 34, No. 4. Р. 409–419.

[25]

Beloussov LV, Luchinskaya NN, Ermakov AS, Glagoleva NS. Gastrulation in amphibian embryos, regarded as a succession of biomechanical feedback events. Int J Dev Biol. 2006;50(2–3):113–122. DOI: 10.1387/ijdb.052057lb

[26]

Beloussov L.V., Luchinskaya N.N., Ermakov A.S., Glagoleva N.S. Gastrulation in amphibian embryos, regarded as a succession of biomechanical feedback events // Int. J. Dev. Biol. 2006. Vol. 50, No. 2–3. Р. 113–122. DOI: 10.1387/ijdb.052057lb

[27]

Beloussov LV. Morphomechanics of Development. Springer; 2015. DOI: 10.1007/978-3-319-13990-6

[28]

Beloussov L.V. Morphomechanics of Development. Springer; 2015. DOI: 10.1007/978-3-319-13990-6

[29]

Farge E. Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr Biol. 2003;13(16):1365–1377. DOI: 10.1016/s0960-9822(03)00576-1

[30]

Farge E. Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium // Curr. Biol. 2003. Vol. 13, No. 16. Р. 1365–1377. DOI: 10.1016/s0960-9822[03]00576-1

[31]

Mitrossilis D, Röper JC, Le Roy D, et al. Mechanotransductive cascade of Myo-II-dependent mesoderm and endoderm invaginations in embryo gastrulation. Nat Commun. 2017;8:13883. DOI: 10.1038/ncomms13883

[32]

Mitrossilis D., Röper J.C., Roy D.L. et al. Mechanotransductive cascade of Myo-II-dependent mesoderm and endoderm invaginations in embryo gastrulation // Nat. Commun. 2017. No. 8. Р. 13883. DOI: 10.1038/ncomms13883

[33]

Dupont S, Morsut L, Aragona M, et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474(7350):179–183. DOI: 10.1038/nature10137

[34]

Dupont S., Morsut L., Aragona M. et al. Role of YAP/TAZ in mechanotransduction // Nature. 2011. Vol. 474, No. 7350. Р. 179–183. DOI: 10.1038/nature10137

[35]

Aragona M, Sifrim A, Malfait M, et al. Mechanisms of stretch-mediated skin expansion at single-cell resolution. Nature. 2020;584(7820):268–273. DOI: 10.1038/s41586-020-2555-7

[36]

Aragona M., Sifrim A., Malfait M. et al. Mechanisms of stretch-mediated skin expansion at single-cell resolution // Nature. 2020. Vol. 584, No. 7820. Р. 268–273. DOI: 10.1038/s41586-020-2555-7

[37]

Parshikov VV, Loginov VI, Baburin AB, Kasimov RR. A half-century path of development of prevention of infectious complications in postoperative wounds. Medical Bulletin of Bashkortostan. 2017;12(1(67)):82–93. (In Russ.)

[38]

Паршиков В.В., Логинов В.И., Бабурин А.Б., Касимов Р.Р. Полувековой путь развития профилактики инфекционных осложнений в послеоперационных ранах // Медицинский вестник Башкортостана. 2017. Т. 12, № 1(67). С. 82–93.

[39]

Bishop JE, Rhodes S, Laurent GJ, et al. Increased collagen synthesis and decreased collagen degradation in right ventricular hypertrophy induced by pressure overload. Cardiovasc Res. 1994;28(10):1581–1585. DOI: 10.1093/cvr/28.10.1581

[40]

Bishop J.E., Rhodes S., Laurent G.J. et al. Increased collagen synthesis and decreased collagen degradation in right ventricular by pressure overload // Cardiovasc. Res. 1994. Vol. 28, No. 10. Р. 1581–1585. DOI: 10.1093/cvr/28.10.1581

[41]

Joodaki H, Panzer MB. Skin mechanical properties and modeling: A review. Proc Inst Mech Eng H. 2018;232(4):323–343. DOI: 10.1177/0954411918759801

[42]

Joodaki H., Panzer M.B. Skin mechanical properties and modeling: A review // Proc. Inst. Mech. Eng. H. 2018. Vol. 232, No. 4. Р. 323–343. DOI: 10.1177/0954411918759801

[43]

Huang C, Leavitt T, Bayer LR, Orgill DP. Effect of negative pressure wound therapy on wound healing. Curr Probl Surg. 2014;51(7):301–331. DOI: 10.1067/j.cpsurg.2014.04.001

[44]

Huang C., Leavitt T., Bayer L.R., Orgill D.P. Effect of negative pressure wound therapy on wound healing // Curr. Probl. Surg. 2014. Vol. 51, No. 7. Р. 301–331. DOI: 10.1067/j.cpsurg.2014.04.001

[45]

Huang C, Holfeld J, Schaden W, et al. Mechanotherapy: revisiting physical therapy and recruiting mechanobiology for a new era in medicine. Trends Mol Med. 2013;19(9):555–564. DOI: 10.1016/j.molmed.2013.05.005

[46]

Huang C., Holfeld J., Schaden W. et al. Mechanotherapy: revisiting physical therapy and recruiting mechanobiology for a new era in medicine // Trends Mol. Med. 2013. Vol. 19, No. 9. Р. 555–564. DOI: 10.1016/j.molmed.2013.05.005

[47]

Dymarek R, Halski T, Ptaszkowski K, et al. Extracorporeal shock wave therapy as an adjunct wound treatment: a systematic review of the literature. Ostomy Wound Manage. 2014;60(7):26–39.

[48]

Dymarek R., Halski T., Ptaszkowski K. et al. Extracorporeal shock wave therapy as an adjunct wound treatment: a systematic review of the literature // Ostomy. Wound Management. 2014. Vol. 60, No. 7. Р. 26–39.

[49]

Holbrook KA, Smith LT, Elias S. Prenatal diagnosis of genetic skin disease using fetal skin biopsy samples. Arch Dermatol. 1993;129(11):1437–1454.

[50]

Holbrook K.A., Smith L.T., Elias S. Prenatal diagnosis of genetic skin disease using fetal skin biopsy samples // Arch. Dermatol. 1993. Vol. 129, No. 11. Р. 1437–1454.

[51]

Petrov KB. The concept of myoviscerofascial connections of internal organs. Manual medicine. 1994;8:5–11. (In Russ.)

[52]

Петров К.Б. Концепция миовисцерофасциальных связей внутренних органов // Мануальная медицина. 1994. № 8. С. 5–11.

[53]

Mohammed D, Versaevel M, Bruyère C, et al. Innovative tools for mechanobiology: unraveling outside-in and inside-out mechanotransduction. Front Bioeng Biotechnol. 2019;7:162. DOI: 10.3389/fbioe.2019.00162

[54]

Mohammed D., Versaevel M., Bruyère C. et al. Innovative tools for mechanobiology: unraveling outside-in and inside-out mechanotransduction // Front. Bioeng. Biotechnol. 2019. Vol. 7. Р. 162. DOI: 10.3389/fbioe.2019.00162

[55]

Marjoram RJ, Lessey EC, Burridge K. Regulation of RhoA activity by adhesion molecules and mechanotransduction. Curr Mol Med. 2014;14(2):199–208. DOI: 10.2174/1566524014666140128104541

[56]

Marjoram R.J., Lessey E.C., Burridge K. Regulation of RhoA activity by adhesion molecules and mechanotransduction // Curr. Mol. Med. 2014. Vol. 14, No. 2. Р. 199–208. DOI: 10.2174/1566524014666140128104541

[57]

Holbrook KA, Odland GF. Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis. J Invest Dermatol. 1974;62(4):415–422. DOI: 10.1111/1523-1747.ep12701670

[58]

Holbrook K.A., Odland G.F. Regional differences in the thickness [cell layers] of the human stratum corneum: an ultrastructural analysis // J. Invest. Dermatol. 1974. Vol. 62, No. 4. Р. 415–422. DOI: 10.1111/1523-1747.ep12701670

[59]

Wang JH, Lin JS. Cell traction force and measurement methods. Biomech Model Mechanobiol. 2007;6(6):361–371. DOI: 10.1007/s10237-006-0068-4

[60]

Wang J.H., Lin J.S. Cell traction force and measurement methods // Biomech. Model. Mechanobiol. 2007. Vol. 6, No. 6. Р. 361–371. DOI: 10.1007/s10237-006-0068-4

[61]

Duscher D, Maan ZN, Wong VW, et al. Mechanotrans. duction and fibrosis. J Biomech. 2014;47(9):1997–2005. DOI: 10.1016/j.jbiomech.2014.03.031

[62]

Duscher D., Maan Z.N., Wong V.W. et al. Mechanotransduction and fibrosis // J. Biomech. 2014. Vol. 47, No. 9. Р. 1997–2005. DOI: 10.1016/j.jbiomech.2014.03.031

[63]

Boeri L, Albani D, Raimondi MT, Jacchetti E. Mechanical regulation of nucleocytoplasmic translocation in mesenchymal stem cells: characterization and methods for investigation. Biophys Rev. 2019;11(5):817–831. DOI: 10.1007/s12551-019-00594-3

[64]

Boeri L., Albani D., Raimondi M.T., Jacchetti E. Mechanical regulation of nucleocytoplasmic translocation in mesenchymal stem cells: characterization and methods for investigation // Biophys. Rev. 2019. Vol. 11, No. 5. Р. 817–831. DOI: 10.1007/s12551-019-00594-3

[65]

Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med. 2014;6(265):265sr6. DOI: 10.1126/scitranslmed.3009337

[66]

Eming S.A., Martin P., Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation // Sci. Transl. Med. 2014. Vol. 6, No. 265. Р. 265–266. DOI: 10.1126/scitranslmed.3009337

[67]

Chiquet M. Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biol. 1999;18(5):417–426. DOI: 10.1016/s0945-053x(99)00039-6

[68]

Chiquet M. Regulation of extracellular gene expression by mechanical stress // Matrix Biol. 1999. Vol. 18, No. 5. Р. 417–426. DOI: 10.1016/s0945-053x(99)00039-6

[69]

Grinnell F. Fibroblast-collagen-matrix contraction: growth-factor signalling and mechanical loading. Trends Cell Biol. 2000;10(9):362–365. DOI: 10.1016/s0962-8924(00)01802-x

[70]

Grinnell F. Fibroblast-collagen-matrix contraction: growth-factor signaling and mechanical loading // Trends Cell. Biol. 2000. Vol. 10, No. 9. Р. 362–365. DOI: 10.1016/s0962-8924(00)01802-x

[71]

Grinnell F. Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol. 2003;13(5):264–269. DOI: 10.1016/s0962-8924(03)00057-6

[72]

Grinnell F. Fibroblast biology in three-dimensional collagen matrices // Trends Cell. Biol. 2003. Vol. 13, No. 5. Р. 264–269. DOI: 10.1016/s0962-8924(03)00057-6

[73]

Langer K. On the anatomy and physiology of the skin. I. The cleavability of the cutis. (Translated from Langer, K. (1861). Zur Anatomie und Physiologie der Haut. I. Uber die Spaltbarkeit der Cutis. Sitzungsbericht der Mathematisch-naturwissenschaftlichen Classe der Kaiserlichen Academie der Wissenschaften, 44, 19.). Br J Plast Surg. 1978;31(1):3–8.

[74]

On the anatomy and physiology of the skin. I. The cleavability of the cutis. (Translated from Langer, K. (1861). Zur Anatomie und Physiologie der Haut. I. Uber die Spaltbarkeit der Cutis. Sitzungsbericht der Mathematisch-naturwissenschaftlichen Classe der Kaiserlichen Academie der Wissenschaften, 44, 19.) // Br. J. Plast. Surg. 1978. Vol. 31, No. 1. Р. 3–8.

[75]

Maksimova NV, Lyundup AV, Lubimov RO, et al. Pathophysiological aspects of wound healing in normal and diabetic foot. Vestn Ross Akad Med Nauk. 2014;(11–12):110–117. (In Russ.). DOI: 10.15690/vramn.v69i11-12.1192

[76]

Максимова Н.В., Люндуп А.В., Любимов Р.О. и др. Патофизиологические аспекты процесса заживления ран в норме и при синдроме диабетической стопы // Вестник Российской академии медицинских наук. 2014. Т. 69, № 11–12. С. 110–117. DOI: 10.15690/vramn.v69i11-12.1192

[77]

Komelyagina EYu, Antsiferov MB. Features of wound healing in patients with diabetic foot syndrome. Endocrinology: News. Opinions. Training. 2018;7(4):42–47. (In Russ.). DOI: 10.24411/2304-9529-2018-14005

[78]

Комелягина Е.Ю., Анциферов М.Б. Особенности заживления ран у больных с синдромом диабетической стопы // Эндокринология: Новости. Мнения. Обучение. 2018. Т. 7, № 4. С. 42–47. DOI: 10.24411/2304-9529-2018-14005

[79]

Gurtner GC, Dauskardt RH, Wong VW, et al. Improving cutaneous scar formation by controlling the mechanical environment: large animal and phase I studies. Ann Surg. 2011;254(2):217–225. DOI: 10.1097/SLA.0b013e318220b159

[80]

Gurtner G.C., Dauskardt R.H., Wong V.W. et al. Improving cutaneous scar formation by controlling the mechanical environment: Large animal and phase I studies // Ann. Surg. 2011. Vol. 254, No. 2. Р. 217–225. DOI: 10.1097/SLA.0b013e318220b159

[81]

Rosińczuk J, Taradaj J, Dymarek R, Sopel M. Mechanoregulation of wound healing and skin homeostasis. Biomed Res Int. 2016;2016:3943481. DOI: 10.1155/2016/3943481

[82]

Rosińczuk J., Taradaj J., Dymarek R., Sopel M. Mechanoregulation of wound healing and skin homeostasis // Biomed Res. Int. 2016. Vol. 2016. Р. 3943481. DOI: 10.1155/2016/3943481

[83]

Jaalouk DE, Lammerding J. Mechanotransduction gone awry. Nat Rev Mol Cell Biol. 2009;10(1):63–73. DOI: 10.1038/nrm2597

[84]

Jaalouk D.E., Lammerding J. Mechanotransduction gone awry // Nat. Rev. Mol. Cell Biol. 2009. Vol. 10, No. 1. Р. 63–73. DOI: 10.1038/nrm2597

[85]

Pyatakov SN, Porkhanov VA, Bensman VM, et al. Study of the clinical efficacy of the method of metered tissue destruction in the treatment of soft tissue defects of various etiologies in the lower extremities. Innovative medicine of Kuban. 2019;14(2):36–44. (In Russ.). DOI: 10.35401/2500-0268-2019-14-2-36-44

[86]

Пятаков С.Н., Порханов В.А., Бенсман В.М. и др. Изучение клинической эффективности метода дозированной тканевой дистракции при лечении дефектов мягких тканей различной этиологии в области нижних конечностей // Инновационная медицина Кубани. 2019. Т. 14, № 2. С. 36–44. DOI: 10.35401/2500-0268-2019-14-2-36-44

[87]

Kenny FN, Connelly JT. Integrin-mediated adhesion and mechano-sensing in cutaneous wound healing. Cell Tissue Res. 2015;360(3):571–582. DOI: 10.1007/s00441-014-2064-9

[88]

Kenny F.N., Connelly J.T. Integrin-mediated adhesion and mechano-sensing in cutaneous wound healing // Cell Tissue Res. 2014. Vol. 360, No. 3. Р. 571–582. DOI: 10.1007/s00441-014-2064-9

[89]

Ingber DE. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 2006;20(7):811–827. DOI: 10.1096/fj.05-5424rev

[90]

Ingber D.E. Cellular mechanotransduction: Putting all the pieces together again // FASEB J. 2006. Vol. 20, No. 7. Р. 811–827. DOI: 10.1096/fj.05-5424rev

[91]

Sukharev S, Betanzos M, Chiang CS, Guy HR. The gating mechanism of the large mechanosensitive channel MscL. Nature. 2001;409(6821):720–724. DOI: 10.1038/35055559

[92]

Sukharev S., Betanzos M., Chiang C.S., Guy H.R. The gating mechanism of the large mechanosensitive channel MscL // Nature. 2001. Vol. 409, No. 6821. Р. 720–724. DOI: 10.1038/35055559

[93]

Liarte S, Bernabé-García Á, Nicolás FJ. Role of TGF-β in skin chronic wounds: A keratinocyte perspective. Cells. 2020;9(2):306. DOI: 10.3390/cells9020306

[94]

Liarte S., Bernabé-García Á., Nicolás F.J. Role of TGF-β in skin chronic wounds: a keratinocyte perspective // Cells. 2020. Vol. 9, No. 2. Р. 306. DOI: 10.3390/cells9020306

[95]

Walton KL, Johnson KE, Harrison CA. Targeting TGF-β mediated SMAD signaling for the prevention of fibrosis. Front Pharmacol. 2017;8:461. DOI: 10.3389/fphar.2017.00461

[96]

Walton K.L., Johnson K.E., Harrison C.A. Targeting TGF-β Mediated SMAD Signaling for the Prevention of Fibrosis // Front. Pharmacol. 2017. Vol. 8. Р. 461. DOI: 10.3389/fphar.2017.00461

[97]

Coentro JQ, May U, Prince S, et al. Adapting the Scar-in-a-Jar to skin fibrosis and screening traditional and contemporary anti-fibrotic therapies. Front Bioeng Biotechnol. 2021;9:756399. DOI: 10.3389/fbioe.2021.756399

[98]

Coentro J.Q., May U., Prince S. et al. Adapting the Scar-in-a-Jar to skin fibrosis and screening traditional and contemporary anti-fibrotic therapies // Front. Bioeng. Biotechnol. 2021. Vol. 9. Р. 756399. DOI: 10.3389/fbioe.2021.756399

[99]

Santiago B, Gutierrez-Cañas I, Dotor J, et al. Topical application of a peptide inhibitor of transforming growth factor-beta1 ameliorates bleomycin-induced skin fibrosis. J Invest Dermatol. 2005;125(3):450–455. DOI: 10.1111/j.0022-202X.2005.23859.x

[100]

Santiago B., Gutierrez-Cañas I., Dotor J. et al. Topical application of a peptide inhibitor of transforming growth factor-beta1 ameliorates bleomycin-induced skin fibrosis // J. Invest. Dermatol. 2005. Vol. 125, No. 3. Р. 450–455. DOI: 10.1111/j.0022-202X.2005.23859.x

[101]

Buscemi L, Ramonet D, Klingberg F, et al. The single-molecule mechanics of the latent TGF-β1 complex. Curr Biol. 2011;21(24):2046–2054. DOI: 10.1016/j.cub.2011.11.037

[102]

Buscemi L., Ramonet D., Klingberg F. et al. The single-molecule mechanics of the latent TGF-β1 complex // Curr. Biol. 2011. Vol. 21, No. 24. Р. 2046–2054. DOI: 10.1016/j.cub.2011.11.037

[103]

Occleston NL, Laverty HG, O’Kane S, Ferguson MW. Prevention and reduction of scarring in the skin by Transforming Growth Factor beta 3 (TGFbeta3): from laboratory discovery to clinical pharmaceutical. J Biomater Sci Polym Ed. 2008;19(8):1047–1063. DOI: 10.1163/156856208784909345

[104]

Occleston NL, Laverty HG, O’Kane S, Ferguson MW. Prevention and reduction of scarring in the skin by Transforming Growth Factor beta 3 [TGFbeta3]: From laboratory discovery to clinical pharmaceutical // J. Biomater. Sci. Polym. Ed. 2008. Vol. 19, No. 8. Р. 1047–1063. DOI: 10.1163/156856208784909345

[105]

Durani P, Occleston N, O’Kane S, Ferguson MW. Avotermin: a novel antiscarring agent. Int J Low Extrem Wounds. 2008;7(3):160–168. DOI: 10.1177/1534734608322983

[106]

Durani P., Occleston N., O’Kane S., Ferguson M.W. Avotermin: a novel antiscarring agent // Int. J. Low Extrem. Wounds. 2008. Vol. 7, No. 3. P. 160–168. DOI: 10.1177/1534734608322983

[107]

Ferguson MW, Duncan J, Bond J, et al. Prophylactic administration of avotermin for improvement of skin scarring: three double-blind, placebo-controlled, phase I/II studies. Lancet. 2009;373(9671):1264–1274. DOI: 10.1016/S0140-6736(09)60322-6

[108]

Ferguson M.W., Duncan J., Bond J. et al. Prophylactic administration of avotermin for improvement of skin scarring: Three double-blind, placebo-controlled, phase I/II studies // Lancet. 2009. Vol. 373, No. 9671. Р. 1264–1274. DOI: 10.1016/S0140-6736(09)60322-6

[109]

Wong VW, Rustad KC, Akaishi S, et al. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nat Med. 2011;18(1):148–152. DOI: 10.1038/nm.2574

[110]

Wong V.W., Rustad K.C., Akaishi S. et al. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling // Nat. Med. 2011. Vol. 18, No. 1. P. 148–152. DOI: 10.1038/nm.2574

[111]

Zhao X, Guan JL. Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev. 2011;63(8):610–615. DOI: 10.1016/j.addr.2010.11.001

[112]

Zhao X., Guan J.L. Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis // Adv. Drug Deliv. Rev. 2011. Vol. 63, No. 8. Р. 610–615. DOI: 10.1016/j.addr.2010.11.001

[113]

Parsons JT. Focal adhesion kinase: the first ten years. J Cell Sci. 2003;116(Pt 8):1409–1416. DOI: 10.1242/jcs.00373

[114]

Parsons J.T. Focal adhesion kinase: The first ten years // J. Cell Sci. 2003. Vol. 116, No. Pt 8. 1409–1416. DOI: 10.1242/jcs.00373

[115]

David FS, Zage PE, Marcantonio EE. Integrins interact with focal adhesions through multiple distinct pathways. J Cell Physiol. 1999;181(1):74–82. DOI: 10.1002/(SICI)1097-4652(199910)181:1<74::AID-JCP8>3.0.CO;2-H

[116]

David F.S., Zage P.E., Marcantonio E.E. Integrins interact with focal adhesions through multiple distinct pathways // J. Cell. Physiol. 1999. Vol. 181, No. 1. Р. 74–82. DOI: 10.1002/(SICI)1097-4652(199910)181:1<74::AID-JCP8>3.0.CO;2-H

[117]

Ma K, Kwon SH, Padmanabhan J, et al. Controlled delivery of a focal adhesion kinase inhibitor results in accelerated wound closure with decreased scar formation. J Invest Dermatol. 2018;138(11):2452–2460. DOI: 10.1016/j.jid.2018.04.034

[118]

Ma K., Kwon S.H., Padmanabhan J. et al. Controlled delivery of a focal adhesion kinase inhibitor results in accelerated wound closure with decreased scar formation // J. Invest. Dermatol. 2018. Vol. 138, No. 11. Р. 2452–2460. DOI: 10.1016/j.jid.2018.04.034

[119]

Jones AM, Griffiths JL, Sanders AJ, et al. The clinical significance and impact of interleukin 15 on keratinocyte cell growth and migration. Int J Mol Med. 2016;38(3):679–686. DOI: 10.3892/ijmm.2016.2687

[120]

Jones A.M., Griffiths J.L., Sanders A.J. et al. The clinical significance and impact of interleukin 15 on keratinocyte cell growth and migration // Int. J. Mol. Med. 2016. Vol. 38, No. 3. Р. 679–686. DOI: 10.3892/ijmm.2016.2687

[121]

Liu W, Ma K, Kwon SH, et al. The abnormal architecture of healed diabetic ulcers is the result of FAK degradation by calpain 1. J Invest Dermatol. 2017;137(5):1155–1165. DOI: 10.1016/j.jid.2016.11.039

[122]

Liu W., Ma K., Kwon S.H. et al. The abnormal architecture of healed diabetic ulcers is the result of FAK degradation by calpain 1 // J. Invest. Dermatol. 2017. Vol. 137, No. 5. Р. 1155–1165. DOI: 10.1016/j.jid.2016.11.039

[123]

Wong VW, Garg RK, Sorkin M, et al. Loss of keratinocyte focal adhesion kinase stimulates dermal proteolysis through upregulation of MMP9 in wound healing. Ann Surg. 2014;260(6):1138–1146. DOI: 10.1097/SLA.0000000000000219

[124]

Wong V.W., Garg R.K., Sorkin M. et al. Loss of keratinocyte focal adhesion kinase stimulates dermal proteolysis through upregulation of MMP9 in wound healing // Ann. Surg. 2014. Vol. 260, No. 6. Р. 1138–1146. DOI: 10.1097/SLA.0000000000000219

[125]

Shan S, Fang B, Zhang Y, et al. Mechanical stretch promotes tumoricidal M1 polarization via the FAK/NF-κB signaling pathway. FASEB J. 2019;33(12):13254–13266. DOI: 10.1096/fj.201900799RR

[126]

Shan S., Fang B., Zhang Y. et al. Mechanical stretch promotes tumoricidal M1 polarization via the FAK/NF-κB signaling pathway // FASEB J. 2019. Vol. 33, No. 12. Р. 13254–13266. DOI: 10.1096/fj.201900799RR

[127]

van Amerongen R, Nusse R. Towards an integrated view of Wnt signaling in development. Development. 2009;136(19):3205–3214. DOI: 10.1242/dev.033910

[128]

Van Amerongen R., Nusse R. Towards an integrated view of Wnt signaling in development // Development. 2009. Vol. 136, No. 19. P. 3205–3214. DOI: 10.1242/dev.03391

[129]

Сheon SS, Cheah AY, Turley S, et al. beta-Catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds. Proc Natl Acad Sci USA. 2002;99(10):6973–6978. DOI: 10.1073/pnas.102657399

[130]

Cheon S.S., Cheah A.Y.L., Turley S. et al. beta-Catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds // Proc. Natl. Acad. Sci. USA. 2002. Vol. 99, No. 10. Р. 6973–6978. DOI: 10.1073/pnas.102657399

[131]

Bastakoty D, Young PP. Wnt/β-catenin pathway in tissue injury: roles in pathology and therapeutic opportunities for regeneration. FASEB J. 2016;30(10):3271–3284. DOI: 10.1096/fj.201600502R

[132]

Bastakoty D., Young P.P. Wnt/beta-catenin pathway in tissue injury: Roles in pathology and therapeutic opportunities for regeneration // FASEB J. 2016. Vol. 30, No. 10. Р. 3271–3284. DOI: 10.1096/fj.201600502R

[133]

Amini-Nik S, Cambridge E, Yu W, et al. β-Catenin-regulated myeloid cell adhesion and migration determine wound healing. J Clin Invest. 2014;124(6):2599–2610. DOI: 10.1172/JCI62059

[134]

Amini-Nik S., Cambridge E., Yu W. et al. beta-Catenin-regulated myeloid cell adhesion and migration determine wound healing // J. Clin. Invest. 2014. Vol. 124, No. 6. Р. 2599–2610. DOI: 10.1172/JCI62059

[135]

Duscher D, Maan ZN, Wong VW, et al. Mechanotransduction and fibrosis. J Biomech. 2014;47(9):1997–2005. DOI: 10.1016/j.jbiomech.2014.03.031

[136]

Duscher D., Maan Z.N., Wong V.W. et al. Mechanotransduction and fibrosis // J. Biomech. 2014. Vol. 47, No. 9. Р. 1997–2005. DOI: 10.1016/j.jbiomech.2014.03.031

[137]

Totaro A, Panciera T, Piccolo S. YAP/TAZ upstream signals and downstream responses. Nat Cell Biol. 2018;20(8):888–899. DOI: 10.1038/s41556-018-0142-z

[138]

Totaro A., Panciera T., Piccolo S. YAP/TAZ upstream signals and downstream responses // Nat. Cell Biol. 2018. Vol. 20, No. 8. Р. 888–899. DOI: 10.1038/s41556-018-0142-z

[139]

Yano S, Komine M, Fujimoto M, et al. Activation of Akt by mechanical stretching in human epidermal keratinocytes. Exp Dermatol. 2006;15(5):356–361. DOI: 10.1111/j.0906-6705.2006.00425.x

[140]

Yano S., Komine M., Fujimoto M. et al. Activation of Akt by mechanical stretching in human epidermal keratinocytes // Exp. Dermatol. 2006. Vol. 15, No. 5. Р. 356–361. DOI: 10.1111/j.0906-6705.2006.00425.x

[141]

Gao YL, Liu CS, Zhao R, et al. Effects of PI3K/Akt pathway in wound healing process of mice skin. Fa Yi Xue Za Zhi. 2016;32(1):7–12. (In Chinese)

[142]

Gao Y.L., Liu C.S., Zhao R. et al. Effects of PI3K/Akt pathway in wound healing process of mice skin // Fa Yi Xue Za Zhi. 2016. Vol. 32, No. 1. Р. 7–12. (In Chinese)

[143]

Lessey EC, Guilluy C, Burridge K. From mechanical force to RhoA activation. Biochemistry. 2012;51(38):7420–7432. DOI: 10.1021/bi300758e

[144]

Lessey E.C., Guilluy C., Burridge K. From mechanical force to RhoA activation // Biochemistry. 2012. Vol. 51, No. 38. P. 7420–7432. DOI: 10.1021/bi300758e

[145]

Rahaman SO, Grove LM, Paruchuri S, et al. TRPV4 mediates myofibroblast differentiation and pulmonary fibrosis in mice. J Clin Invest. 2014;124(12):5225–5238. DOI: 10.1172/JCI75331

[146]

Rahaman S., Grove L., Paruchuri S. et al. TRPV4 mediates myofibroblast differentiation and pulmonary fibrosis in mice // J. Clin. Invest. 2014. Vol. 124, No. 12. Р. 5225–5238. DOI: 10.1172/JCI75331

[147]

Barnes LA, Marshall CD, Leavitt T, et al. Mechanical forces in cutaneous wound healing: emerging therapies to minimize scar formation. Adv Wound Care (New Rochelle). 2018;7(2):47–56. DOI: 10.1089/wound.2016.0709

[148]

Barnes L.A., Marshall C.D., Leavitt T. et al. Mechanical forces in cutaneous wound healing: emerging therapies to minimize scar formation // Adv. Wound Care (New Rochelle). 2018. Vol. 7, No. 2. Р. 47–56. DOI: 10.1089/wound.2016.0709

[149]

Kuehlmann B, Bonham CA, Zucal I, et al. Mechanotransduction in wound healing and fibrosis. J Clin Med. 2020;9(5):1423. DOI: 10.3390/jcm9051423

[150]

Kuehlmann B., Bonham C.A., Zucal I. et al. Mechanotransduction in wound healing and fibrosis // J. Clin. Med. 2020. Vol. 9, No. 5. Р. 1423. DOI: 10.3390/jcm9051423

[151]

Wong VW, Longaker MT, Gurtner GC. Soft tissue mechanotransduction in wound healing and fibrosis. Semin Cell Dev Biol. 2012;23(9):981–986. DOI: 10.1016/j.semcdb.2012.09.010

[152]

Wong V.W., Longaker M.T., Gurtner G.C. Soft tissue mechanotransduction in wound healing and fibrosis // Semin. Cell Dev. Biol. 2012. Vol. 23, No. 9. Р. 981–986. DOI: 10.1016/j.semcdb.2012.09.010

[153]

Rittié L. Cellular mechanisms of skin repair in humans and other mammals. J Cell Commun Signal. 2016;10(2):103–120. DOI: 10.1007/s12079-016-0330-1

[154]

Rittie L. Cellular mechanisms of skin repair in humans and other mammals // J. Cell Commun. Signal. 2016. Vol. 10, No. 2. P. 103–120. DOI: 10.1007/s12079-016-0330-1

[155]

Ehrlich HP, Hunt TK. Collagen Organization Critical Role in Wound Contraction. Adv Wound Care (New Rochelle). 2012;1(1):3–9. DOI: 10.1089/wound.2011.0311

[156]

Ehrlich H.P., Hunt T. K. Collagen organization critical role in wound contraction // Adv. Wound Care. 2012. Vol. 1, No. 1. P. 3–9. DOI: 10.1089/wound.2011.0311

[157]

Dunphy JЕ, Udupa KN. Chemical and histo-chemical sequences in the normal healing of wounds. N Engl J Med. 1955;253(20):847–852. DOI: 10.1056/NEJM1955111725320028

[158]

Dunphy J.Е., Udupa K.N. Chemical and histo-chemical sequences in the normal healing of wounds // N. Engl. J. Med. 1955. Vol. 253, No. 20. Р. 847–852. DOI: 10.1056/NEJM195511172532002

[159]

Gabbiani G, Ryan GB, Majne G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia. 1971;27(5):549–550. DOI: 10.1007/BF02147594

[160]

Gabbiani G., Ryan G.B., Majne G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction // Experientia. 1971. Vol. 27, No. 5. P. 549–550. DOI: 10.1007/BF02147594

[161]

Majno G, Gabbiani G, Hirschel BJ, et al. Contraction of granulation tissue in vitro: similarity to smooth muscle. Science. 1971;173(3996):548–550. DOI: 10.1126/science.173.3996.548

[162]

Majno G., Gabbiani G., Hinschel B.J. et al. Statkov Contraction of granulation tissue in vitro: similarity to smooth muscle // Science. 1971. Vol. 173, No. 3996. P. 548–550. DOI: 10.1126/science.173.3996.548

[163]

Efimov EA. Post-traumatic skin regeneration: an experimental study. Moscow: Medicine; 1975. (In Russ.)

[164]

Ефимов Е.А. Посттравматическая регенерация кожи: экспериментальное исследование. М.: Медицина, 1975.

[165]

Forrest L. Current concepts in soft connective tissue wound healing. Br J Surg. 1983;70(3):133–140. DOI: 10.1002/bjs.1800700302

[166]

Forrest L. Current concept in soft connective tissue wound healing // Br. J. Surg. 1983. Vol. 70, No. 3. P. 133–140. DOI: 10.1002/bjs.1800700302

[167]

Hunt TK. Basic principles of wound healing. J Trauma. 1990;30(12 Suppl):S122–S128. DOI: 10.1097/00005373-199012001-00025

[168]

Hunt T.K. Basic principles of wound healing // J. Trauma. 1990. Vol. 30, No. 12 Suppl. P. S122–S128. DOI: 10.1097/00005373-199012001-00025

[169]

Pathological physiology. Textbook. Ed. by A.D. Ado, V.V. Novitsky. Tomsk; 1994. (In Russ.)

[170]

Патологическая физиология: учебник для медицинских вузов / под ред. А.Д. Адо, В.В. Новицкого. Томск, 1994.

[171]

Kee JL, Paulanka BJ, Polek C. Handbook of fluid, electrolyte, and acid-base imbalances. 3rd ed. Cengage Learning; 2010.

[172]

Kee J.L., Paulanka B.J., Polek C. Handbook of fluid, electrolyte, and acid-base imbalances. 3rd ed. Cengage Learning, 2010.

[173]

Nunikoshi J. Oxygen and wound healing. Clin Plast Surg. 1977;4(3):361–374.

[174]

Nunikoshi J. Oxygen and wound healing // Clin. Plast. Surg. 1977. Vol. 4, No. 3. P. 361–374.

[175]

Hopf HW, Hunt TK. The role of oxygen in wound repair and wound infection. In: Musculoskeletal infection. Ed. by JL Esterhai, AG Gristina, R Poss. American Academy of Orthopaedic Surgeons; 1992. P. 329–339.

[176]

Hopf H.W., Hunt T.K. The role of oxygen in wound repair and wound infection // Musculoskeletal infection. Ed. by J.L. Esterhai, A.G. Gristina, R. Poss. American Academy of Orthopaedic Surgeons, 1992. P. 329–339.

[177]

Kimura S, Tsuji T. Mechanical and immunological regulation in wound healing and skin reconstruction. Int J Mol Sci. 2021;22(11):5474. DOI: 10.3390/ijms22115474

[178]

Kimura S., Tsuji T. Mechanical and immunological regulation in wound healing and skin reconstruction // Int. J. Mol. Sci. 2021. Vol. 22, No. 11. Р. 5474. DOI: 10.3390/ijms22115474

[179]

Fujishiro T, Nishikawa T, Shibanuma N, et al. Effect of cyclic mechanical stretch and titanium particles on prostaglandin E2 production by human macrophages in vitro. J Biomed Mater Res A. 2004;68(3):531–536. DOI: 10.1002/jbm.a.20098

[180]

Fujishiro T., Nishikawa T., Shibanuma N. et al. Effect of cyclic mechanical stretch and titanium particles on prostaglandin E2 production by human macrophages in vitro // J. Biomed. Mater. Res. A. 2004. Vol. 68, No. 3. Р. 531–536. DOI: 10.1002/jbm.a.20098

[181]

Huang C, Miyazaki K, Akaishi S, et al. Biological effects of cellular stretch on human dermal fibroblasts. J Plast Reconstr Aesthet Surg. 2013;66(12):e351–e361. DOI: 10.1016/j.bjps.2013.08.002

[182]

Huang C., Miyazaki K., Akaishi S. et al. Biological effects of cellular stretch on human dermal fibroblasts // J. Plast. Reconstr. Aesthet. Surg. 2013. Vol. 66, No. 12. Р. e351–e361. DOI: 10.1016/j.bjps.2013.08.002

[183]

Nowell CS, Odermatt PD, Azzolin L, et al. Chronic inflammation imposes aberrant cell fate in regenerating epithelia through mechanotransduction. Nat Cell Biol. 2016;18(2):168–180. DOI: 10.1038/ncb3290

[184]

Nowell C.S., Odermatt P.D., Azzolin L. et al. Chronic inflammation imposes aberrant cell fate in regenerating epithelia through mechanotransduction // Nat. Cell Biol. 2016. Vol. 18, No. 2. Р. 168–180. DOI: 10.1038/ncb3290

[185]

Yano S, Komine M, Fujimoto M, et al. Mechanical stretching in vitro regulates signal transduction pathways and cellular proliferation in human epidermal keratinocytes. J Invest Dermatol. 2004;122(3):783–790. DOI: 10.1111/j.0022-202X.2004.22328.x

[186]

Yano S., Komine M., Fujimoto M. et al. Mechanical stretching in vitro regulates signal transduction pathways and cellular proliferation in human epidermal keratinocytes // J. Invest. Dermatol. 2004. Vol. 122, No. 3. Р. 783–790. DOI: 10.1111/j.0022-202X.2004.22328.x

[187]

Abe G, Hayashi T, Yoshida K, et al. Insights regarding skin regeneration in non-amniote vertebrates: Skin regeneration without scar formation and potential step-up to a higher level of regeneration. Semin Cell Dev Biol. 2020;100:109–121. DOI: 10.1016/j.semcdb.2019.11.014

[188]

Abe G., Hayashi T., Yoshida K. et al. Insights regarding skin regeneration in non-amniote vertebrates: Skin regeneration without scar formation and potential step-up to a higher level of regeneration // Semin. Cell Dev. Biol. 2020. Vol. 100. Р. 109–121. DOI: 10.1016/j.semcdb.2019.11.014

[189]

Harn HI, Ogawa R, Hsu CK, et al. The tension biology of wound healing. Exp Dermatol. 2019;28(4):464–471. DOI: 10.1111/exd.13460

[190]

Harn H.I., Ogawa R., Hsu C.K. et al. The tension biology of wound healing // Exp. Dermatol. 2019. Vol. 28, No. 4. Р. 464–471. DOI: 10.1111/exd.13460

[191]

Kimura S, Tsuchiya A, Ogawa M, et al. Tissue-scale tensional homeostasis in skin regulates structure and physiological function. Commun Biol. 2020;3(1):637. DOI: 10.1038/s42003-020-01365-7

[192]

Kimura S., Tsuchiya A., Ogawa M. et al. Tissue-scale tensional homeostasis in skin regulates structure and physiological function // Commun. Biol. 2020. Vol. 3, No. 1. Р. 637. DOI: 10.1038/s42003-020-01365-7

[193]

Ulyanina AA. The method of acute and dosed tissue stretching in the plastic surgery of extensive wound defects of soft tissues [dissertation]. Moscow; 2006. (In Russ.)

[194]

Ульянина А.А. Метод острого и дозированного тканевого растяжения в пластике обширных раневых дефектов мягких тканей: дис. … канд. мед. наук. М., 2006.

[195]

Mitish VA, Medinsky PV, Bagaev VG. Surgical treatment of an extensive scalped wound of the parietal-occipital region. Wounds and wound infections. The prof. B.M. Kostyuchenok Journal. 2021;8(1):42–49. (In Russ.). DOI: 10.25199/2408-9613-2021-8-1-42-49

[196]

Митиш В.А., Мединский П.В., Багаев В.Г. Хирургическое лечение обширной скальпированной раны теменно-затылочной области // Раны и раневые инфекции. Журнал им. проф. Б.М. Костючёнка. 2021. Т. 8, № 1. С. 42–49. DOI: 10.25199/2408-9613-2021-8-1-42-49

[197]

Izmailov SG, Beschastnov VV. Hardware technique of wound suturing. Pirogov Russian Journal of Surgery. 2003;11:61. (In Russ.)

[198]

Измайлов С.Г., Бесчастнов В.В. Аппаратная техника ушивания ран // Хирургия. Журнал им. Н.И. Пирогова. 2003. № 11. С. 61.

[199]

Beschastnov VV, Orlinskaya NYu, Kudykin MN. Experimental and clinical justification of the use of dosed dermotension in the first phase of the wound process. Surgery News. 2012;20(2):55–59. (In Russ.)

[200]

Бесчастнов В.В., Орлинская Н.Ю., Кудыкин М.Н. Экспериментально-клиническое обоснование применения дозированной дермотензии в первую фазу раневого процесса // Новости хирургии. 2012. Т. 20. № 2. С. 55–59.

[201]

Martel II, Grebenyuk LA. Soft tissue defects of the foot supporting surface repaired with the ilizarov method under control of mechanical and biological condition of the skin. Polytrauma. 2018;1:39–46.

[202]

Мартель И.И., Гребенюк Л.А. Замещение дефекта мягких тканей опорной поверхности стопы по методике Илизарова под контролем механобиологического состояния кожи // Политравма. 2018. №1. С. 39–46.

[203]

Pyatakov SN, Zavrazhnov AA, Lukyanchenko IV, Ralko SN. Biophysical and pathogenetic substantiation of the application of the method of metered skin stretching in the treatment of extensive wound defects. Kuban Scientific Medical Bulletin. 2017;(1(162)):155–160. (In Russ.)

[204]

Пятаков С.Н., Завражнов А.А., Лукьянченко И.В., Ралко С.Н. Биофизическое и патогенетическое обоснование применения метода дозированного растяжения кожи в лечении обширных раневых дефектов // Кубанский научный медицинский вестник. 2017. Т.162, №1(162). С. 155–160.

[205]

Ingber DE. Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci. 2003;116(Pt 7):1157–1173. DOI: 10.1242/jcs.00359

[206]

Ingber D.E. Tensegrity I. Cell structure and hierarchical systems biology // J. Cell Sci. 2003. Vol. 116, No. Pt 7. Р. 1157–1173. DOI: 10.1242/jcs.00359

[207]

Ingber DE. Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci. 2003;116(Pt 8):1397–1408. DOI: 10.1242/jcs.00360

[208]

Ingber D.E. Tensegrity II. How structural networks influence cellular information processing networks // J. Cell Sci. 2003. Vol. 116, No. Pt 8. Р. 1397–1408. DOI: 10.1242/jcs.00360

[209]

Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol. 2009;10(1):21–33. DOI: 10.1038/nrm2593

[210]

Geiger B., Spatz J.P., Bershadsky A.D. Environmental sensing through focal adhesions // Nat. Rev. Mol. Cell Biol. 2009. Vol. 10, No. 1. Р. 21–33. DOI: 10.1038/nrm2593

[211]

Panciera T, Azzolin L, Cordenonsi M, Piccolo S. Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol. 2017;18(12):758–770. DOI: 10.1038/nrm.2017.87

[212]

Panciera T., Azzolin L., Cordenonsi M., Piccolo S. Mechanobiology of YAP and TAZ in physiology and disease // Nat. Rev. Mol. Cell Biol. 2017. Vol. 18, No. 12. Р. 758–770. DOI: 10.1038/nrm.2017.87

RIGHTS & PERMISSIONS

Pavlenko I.V., Gostev V.N., Andriukhin K.V.

PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

/