Pathology of COVID-19
Rafael H. Sagidullin , Airat A. Khalikov , Alina R. Nazmieva , Kirill O. Kuznetsov , Hyadi V. Kartoeva
Russian Journal of Forensic Medicine ›› 2022, Vol. 8 ›› Issue (1) : 41 -50.
Pathology of COVID-19
Coronavirus infection 2019 (COVID-19) has become a challenge for the health care system around the world due to the progressive increase in the number of cases with severe manifestations of the disease. Autopsy findings are fundamental and critical to better understanding how infection affects the human body. These data are needed to improve diagnostic and treatment methods, as well as to stratify risk groups.
The purpose of the review is to analyze and summarize the pathological data available to date related to COVID-19. In COVID-19, the lungs are usually severe and swollen. Histologically, the most frequent is the detection of both exudative and proliferative diffuse alveolar injury with the formation of hyaline membranes, inflammatory cell infiltration, and stagnant small vessels. There is also evidence that SARS-CoV-2 causes endothelial dysfunction. There is still insufficient data to reflect the complete pathophysiological picture of SARS-CoV-2 infection.
Almost all of the articles reviewed in this review focused on pulmonary macro- and microscopic changes; there is little data on the features of the virus affecting other organs and its systemic effect. Despite the tremendous attention and investment in the fight against the new coronavirus infection, diagnosis of most of the deaths associated with COVID-19 is difficult.
It is necessary to conduct further pathological studies, the purpose of which should be the development of a standardized diagnostic method, as well as the isolation of pathognomonic signs of the disease.
COVID-19 / novel coronavirus infection / autopsy / biopsy / diffuse alveolar injury
| [1] |
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi: 10.1016/S0140-6736(20)30566-3 |
| [2] |
Zhou F., Yu T., Du R., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study // Lancet. 2020. Vol. 395, N 10229. P. 1054–1062. doi: 10.1016/S0140-6736(20)30566-3 |
| [3] |
Salehi S, Abedi A, Balakrishnan S, Gholamrezanezhad A. Coronavirus Disease 2019 (COVID-19): a systematic review of imaging findings in 919 patients. AJR Am J Roentgenol. 2020;215(1):87–93. doi: 10.2214/AJR.20.23034 |
| [4] |
Salehi S., Abedi A., Balakrishnan S., Gholamrezanezhad A. Coronavirus Disease 2019 (COVID-19): a systematic review of imaging findings in 919 patients // AJR Am J Roentgenol. 2020. Vol. 215, N 1. P. 87–93. doi: 10.2214/AJR.20.23034 |
| [5] |
Li X, Ma X. Acute respiratory failure in COVID-19: is it “typical” ARDS? Crit Care. 2020;24(1):198. doi: 10.1186/s13054-020-02911-9 |
| [6] |
Li X., Ma X. Acute respiratory failure in COVID-19: is it “typical” ARDS? // Crit Care. 2020. Vol. 24, N 1. P. 198. doi: 10.1186/s13054-020-02911-9 |
| [7] |
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-30185 |
| [8] |
Huang C., Wang Y., Li X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China // Lancet. 2020. Vol. 395, N 10223. P. 497–506. doi: 10.1016/S0140-6736(20)30183-5 |
| [9] |
Devaux CA, Rolain JM, Raoult D. ACE2 receptor polymorphism: susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. J Microbiol Immunol Infect. 2020;53(3):425–435. doi: 10.1016/j.jmii.2020.04.015 |
| [10] |
Devaux C.A., Rolain J.M., Raoult D. ACE2 receptor polymorphism: susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome // J Microbiol Immunol Infect. 2020. Vol. 53, N 3. P. 425–435. doi: 10.1016/j.jmii.2020.04.015 |
| [11] |
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–422. doi: 10.1016/S2213-2600(20)30076-X |
| [12] |
Xu Z., Shi L., Wang Y., et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome // Lancet Respir Med. 2020. Vol. 8, N 4. P. 420–422. doi: 10.1016/S2213-2600(20)30076-X |
| [13] |
Zhang H, Zhou P, Wei Y, et al. Histopathologic changes and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann Intern Med. 2020;172(9):629–632. doi: 10.7326/M20-0533 |
| [14] |
Zhang H., Zhou P., Wei Y., et al. Histopathologic changes and SARS-CoV-2 Immunostaining in the lung of a patient with COVID-19 // Ann Intern Med. 2020. Vol. 172, N 9. P. 629–632. doi: 10.7326/M20-0533 |
| [15] |
Dolhnikoff M, Duarte-Neto AN, de Almeida Monteiro RA, et al. Pathological evidence of pulmonary thrombotic phenomena in severe COVID-19. J Thromb Haemost. 2020;18(6):1517–1519. doi: 10.1111/jth.14844 |
| [16] |
Dolhnikoff M., Duarte-Neto A.N., de Almeida Monteiro R.A., et al. Pathological evidence of pulmonary thrombotic phenomena in severe COVID-19 // J Thromb Haemost. 2020. Vol. 18, N 6. P. 1517–1519. doi: 10.1111/jth.14844 |
| [17] |
Li G, Fox SE, Summa B, et al. Multiscale 3-dimensional pathology findings of COVID-19 diseased lung using high-resolution cleared tissue microscopy. bioRxiv. 2020. doi: 10.1101/2020.04.11.037473 |
| [18] |
Li G., Fox S.E., Summa B., et al. Multiscale 3-dimensional pathology findings of COVID-19 diseased lung using high-resolution cleared tissue microscopy // bioRxiv. 2020. doi: 10.1101/2020.04.11.037473 |
| [19] |
Yao XH, Li TY, He ZC, et al. A pathological report of three COVID-19 cases by minimal invasive autopsies. Zhonghua Bing Li Xue Za Zhi. 2020;49(5):411–417. doi: 10.3760/cma.j.cn112151-20200312-00193 |
| [20] |
Yao X.H., Li T.Y., He Z.C., et al. A pathological report of three COVID-19 cases by minimal invasive autopsies // Zhonghua Bing Li Xue Za Zhi. 2020. Vol. 49, N 5. P. 411–417. doi: 10.3760/cma.j.cn112151-20200312-00193 |
| [21] |
Tian S, Xiong Y, Liu H, et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod Pathol. 2020;33(6):1007–1014. doi: 10.1038/s41379-020-0536-x |
| [22] |
Tian S., Xiong Y., Liu H., et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies // Mod Pathol. 2020. Vol. 33, N 6. P. 1007–1014. doi: 10.1038/s41379-020-0536-x |
| [23] |
Duarte-Neto AN, Monteiro RA, da Silva LF, et al. Pulmonary and systemic involvement in COVID-19 patients assessed with ultrasound-guided minimally invasive autopsy. Histopathology. 2020;77(2):186–197. doi: 10.1111/his.14160 |
| [24] |
Duarte-Neto A.N., Monteiro R.A., da Silva L.F., et al. Pulmonary and systemic involvement in COVID-19 patients assessed with ultrasound-guided minimally invasive autopsy // Histopathology. 2020. Vol. 77, N 2. P. 186–197. doi: 10.1111/his.14160 |
| [25] |
COVID-19 Autopsy. The first COVID-19 autopsy in Spain performed during the early stages of the pandemic. Rev Esp Patol. 2020;53(3):182–187. doi: 10.1016/j.patol.2020.05.004 |
| [26] |
COVID-19 Autopsy. The first COVID-19 autopsy in Spain performed during the early stages of the pandemic // Rev Esp Patol. 2020. Vol. 53, N 3. P. 182–187. doi: 10.1016/j.patol.2020.05.004 |
| [27] |
Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 2020;220:1–13. doi: 10.1016/j.trsl.2020.04.007 |
| [28] |
Magro C., Mulvey J.J., Berlin D., et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases // Transl Res. 2020. Vol. 220. P. 1–13. doi: 10.1016/j.trsl.2020.04.007 |
| [29] |
Su H, Yang M, Wan C, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020;98(1):219–227. doi: 10.1016/j.kint.2020.04.003 |
| [30] |
Su H., Yang M., Wan C., et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China // Kidney Int. 2020. Vol. 98, N 1. P. 219–227. doi: 10.1016/j.kint.2020.04.003 |
| [31] |
Barton LM, Duval EJ, Stroberg E, et al. COVID-19 Autopsies, Oklahoma, USA. Am J Clin Pathol. 2020;153(6):725–733. doi: 10.1093/ajcp/aqaa062 |
| [32] |
Barton L.M., Duval E.J., Stroberg E., et al. COVID-19 Autopsies, Oklahoma, USA // Am J Clin Pathol. 2020. Vol. 153, N 6. P. 725–733. doi: 10.1093/ajcp/aqaa062 |
| [33] |
Rybakova MG, Karev VE, Kuznetsova IA. Anatomical pathology of novel coronavirus (COVID-19) infection. First impressions. Arch Pathol. 2020;82(5):5–15. (In Russ). doi: 10.17116/patol2020820515 |
| [34] |
Рыбакова М.Г., Карев В.Е., Кузнецова И.А. Патологическая анатомия новой коронавирусной инфекции COVID-19. Первые впечатления // Архив патологии. 2020. Т. 82, № 5. С. 5–15. doi:10.17116/patol2020820515 |
| [35] |
Grimes Z, Bryce C, Sordillo EM, et al. Fatal pulmonary thromboembolism in SARS-CoV-2-infection. Cardiovasc Pathol. 2020;48:107227. doi: 10.1016/j.carpath.2020.107227 |
| [36] |
Grimes Z., Bryce C., Sordillo E.M., et al. Fatal pulmonary thromboembolism in SARS-CoV-2-infection // Cardiovasc Pathol. 2020. Vol. 48. P. 107227. doi: 10.1016/j.carpath.2020.107227 |
| [37] |
Zayratyants OV, Samsonova MV, Cherniaev AL, et al. COVID-19 pathology: experience of 2000 autopsies. Russian Journal of Forensic Medicine. 2020;6(4):10–23. (In Russ). doi: 10.19048/fm340 |
| [38] |
Зайратьянц О.В., Самсонова М.В., Черняев А.Л., и др. Патологическая анатомия COVID-19: опыт 2000 аутопсий // Судебная медицина. 2020. Т. 6, № 4. С. 10–23. doi: 10.19048/fm340 |
| [39] |
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–1418. doi: 10.1016/S0140-6736(20)30937-5 |
| [40] |
Varga Z., Flammer A.J., Steiger P., et al. Endothelial cell infection and endotheliitis in COVID-19 // Lancet. 2020. Vol. 395, N 10234. P. 1417–1418. doi: 10.1016/S0140-6736(20)30937-5 |
| [41] |
Bradley BT, Maioli H, Johnston R, et al. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. Lancet. 2020;396(10247):320–332. doi: 10.1016/S0140-6736(20)31305-2 |
| [42] |
Bradley B.T., Maioli H., Johnston R., et al. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series // Lancet. 2020. Vol. 396, N 10247. P. 320–332. doi: 10.1016/S0140-6736(20)31305-2 |
| [43] |
Paniz-Mondolfi A, Bryce C, Grimes Z, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol. 2020;92(7):699–702. doi: 10.1002/jmv.25915 |
| [44] |
Paniz-Mondolfi A., Bryce C., Grimes Z., et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) // J Med Virol. 2020. Vol. 92, N 7. P. 699–702. doi: 10.1002/jmv.25915 |
| [45] |
Lacy JM, Brooks EG, Akers J, et al. COVID-19: postmortem diagnostic and biosafety considerations. Am J Forensic Med Pathol. 2020;41(3):143–151. doi: 10.1097/PAF.0000000000000567 |
| [46] |
Lacy J.M., Brooks E.G., Akers J., et al. COVID-19: Postmortem diagnostic and biosafety considerations // Am J Forensic Med Pathol. 2020. Vol. 41, N 3. P. 143–151. doi: 10.1097/PAF.0000000000000567 |
| [47] |
Konopka KE, Wilson A, Myers JL. Postmortem lung findings in a patient with asthma and coronavirus disease 2019. Chest. 2020;158(3):e99–e101. doi: 10.1016/j.chest.2020.04.032 |
| [48] |
Konopka K.E., Wilson A., Myers J.L. Postmortem lung findings in a patient with asthma and coronavirus disease 2019 // Chest. 2020. Vol. 158, N 3. e99–e101. doi: 10.1016/j.chest.2020.04.032 |
| [49] |
Yan L, Mir M, Sanchez P, et al. COVID-19 in a Hispanic woman. Arch Pathol Lab Med. 2020;144(9):1041–1047. doi: 10.5858/arpa.2020-0217-SA |
| [50] |
Yan L., Mir M., Sanchez P., et al. COVID-19 in a Hispanic woman // Arch Pathol Lab Med. 2020. Vol. 144, N 9. P. 1041–1047. doi: 10.5858/arpa.2020-0217-SA |
| [51] |
Edler C, Schröder AS, Aepfelbacher M, et al. Dying with SARS- CoV-2 infection-an autopsy study of the first consecutive 80 cases in Hamburg, Germany. Int J Legal Med. 2020;134(4):1275–1284. doi: 10.1007/s00414-020-02317-w |
| [52] |
Edler C., Schröder A.S., Aepfelbacher M., et al. Correction to: dying with SARS-CoV-2 infection-an autopsy study of the first consecutive 80 cases in Hamburg, Germany // Int J Legal Med. 2020. Vol. 134, N 5. P. 1977. doi: 10.1007/s00414-020-02336-7 |
| [53] |
Bryce C, Grimes Z, Pujadas E, et al. Pathophysiology of SARS-CoV-2: targeting of endothelial cells renders a complex disease with thrombotic microangiopathy and aberrant immune response. The Mount Sinai COVID-19 autopsy experience. medRxiv. 2020. doi: 10.1101/2020.05.18.20099960 |
| [54] |
Bryce C., Grimes Z., Pujadas E., et al. Pathophysiology of SARS- CoV-2: targeting of endothelial cells renders a complex disease with thrombotic microangiopathy and aberrant immune response. The Mount Sinai COVID-19 autopsy experience // medRxiv. 2020. doi: 10.1101/2020.05.18.20099960 |
| [55] |
Fox SE, Akmatbekov A, Harbert JL, et al. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med. 2020;8(7):681–686. doi: 10.1016/S2213-2600(20)30243-5 |
| [56] |
Fox S.E., Akmatbekov A., Harbert J.L., et al. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans // Lancet Respir Med. 2020. Vol. 8, N 7. P. 681–686. doi: 10.1016/S2213-2600(20)30243-5 |
| [57] |
Carsana L, Sonzogni A, Nasr A, et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect Dis. 2020;20(10):1135–1140. doi: 10.1016/S1473-3099(20)30434-5 |
| [58] |
Carsana L., Sonzogni A., Nasr A., et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study // Lancet Infect Dis. 2020. Vol. 20, N 10. P. 1135–1140. doi: 10.1016/S1473-3099(20)30434-5 |
| [59] |
Aguiar D, Lobrinus JA, Schibler M. Inside the lungs of COVID-19 disease. Int J Legal Med. 2020;134(4):1271–1274. doi: 10.1007/s00414-020-02318-9 |
| [60] |
Aguiar D., Lobrinus J.A., Schibler M., et al. Inside the lungs of COVID-19 disease // Int J Legal Med. 2020. Vol. 134, N 4. P. 1271–1274. doi: 10.1007/s00414-020-02318-9 |
| [61] |
Matthay MA, Zemans RL, Zimmerman GA, et al. Acute respiratory distress syndrome. Nat Rev Dis Primers. 2019;5(1):18. doi: 10.1038/s41572-019-0069-0 |
| [62] |
Matthay M.A., Zemans R.L., Zimmerman G.A., et al. Acute respiratory distress syndrome // Nat Rev Dis Primers. 2019. Vol. 5, N 1. P. 18. doi: 10.1038/s41572-019-0069-0 |
| [63] |
Fuchs TA, Brill A, Wagner DD. Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arterioscler Thromb Vasc Biol. 2012;32(8):1777–1783. doi: 10.1161/ATVBAHA.111.242859 |
| [64] |
Fuchs T.A., Brill A., Wagner D.D. Neutrophil extracellular trap (NET) impact on deep vein thrombosis // Arterioscler Thromb Vasc Biol. 2012. Vol. 32, N 8. P. 1777–1783. doi: 10.1161/ATVBAHA.111.242859 |
| [65] |
Robert Koch Institute. Empfehlungen zum Umgang mit SARS-Cov-2-infizierten Verstorbenen. 2020. Available from: https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Verstorbene.html. Accessed: 11.08.2021. |
| [66] |
Robert Koch Institute. Empfehlungen zum Umgang mit SARS-Cov-2-infizierten Verstorbenen. 2020. Режим доступа: https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Verstorbene.html. Дата обращения: 11.08.2021. |
| [67] |
Maiese A, Manetti, AC, La Russa R, et al. Autopsy findings in COVID- 19-related deaths: a literature review. Forensic science, medicine, and pathology. 2021;17(2):279–296. doi: 10.1007/s12024-020-00310-8 |
| [68] |
Maiese A., Manetti A.C., La Russa R., et al. Autopsy findings in COVID-19-related deaths: a literature review // Forensic science, medicine, and pathology. 2021. Vol. 17, N 2. P. 279–296. doi: 10.1007/s12024-020-00310-8 |
| [69] |
Hanley B, Lucas SB, Youd E, et al. Autopsy in suspected COVID-19 cases. J Clin Pathol. 2020;73(5):239–242. doi: 10.1136/jclinpath-2020-206522 |
| [70] |
Hanley B., Lucas S.B., Youd E., et al. Autopsy in suspected COVID-19 cases // J Clin Pathol. 2020. Vol. 73, N 5. P. 239–242. doi: 10.1136/jclinpath-2020-206522 |
| [71] |
Sheng ZM, Chertow DS, Ambroggio X, et al. Autopsy series of 68 cases dying before and during the 1918 influenza pandemic peak. Proc Natl Acad Sci USA. 2011;108(39):16416–16421. doi:10.1073/pnas.1111179108 |
| [72] |
Sheng Z.M., Chertow D.S., Ambroggio X., et al. Autopsy series of 68 cases dying before and during the 1918 influenza pandemic peak // Proc Natl Acad Sci USA. 2011. Vol. 108, N 39. P. 16416–16421. doi: 10.1073/pnas.1111179108 |
| [73] |
Monteil V, Kwon H, Prado P, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020;181(4):905–913. doi: 10.1016/j.cell.2020.04.004 |
| [74] |
Monteil V., Kwon H., Prado P., et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2 // Cell. 2020. Vol. 181, N 4. P. 905–913. doi: 10.1016/j.cell.2020.04.004 |
| [75] |
Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215–220. doi: 10.1038/s41586-020-2180-5 |
| [76] |
Lan J., Ge J., Yu J., et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor // Nature. 2020. Vol. 581, N 7807. Р. 215–220. doi: 10.1038/s41586-020-2180-5 |
| [77] |
Ferrario CM, Jessup J, Chappell MC, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005;111(20):2605–2610. doi: 10.1161/CIRCULATIONAHA.104.510461 |
| [78] |
Ferrario C.M., Jessup J., Chappell M.C., et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2 // Circulation. 2005. Vol. 111, N 20. P. 2605–2610. doi: 10.1161/CIRCULATIONAHA.104.510461 |
| [79] |
Hamming I, Timens W, Bulthuis ML, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–637. doi: 10.1002/path.1570 |
| [80] |
Hamming I., Timens W., Bulthuis M.L., et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis // J Pathol. 2004. Vol. 203, N 2. P. 631–637. doi: 10.1002/path.1570 |
| [81] |
Puelles VG, Lütgehetmann M, Lindenmeyer MT, et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med. 2020;383(6):590–592. doi: 10.1056/NEJMc2011400 |
| [82] |
Puelles V.G., Lütgehetmann M., Lindenmeyer M.T., et al. Multiorgan and renal tropism of SARS-CoV-2 // N Engl J Med. 2020. Vol. 383, N 6. P. 590–592. doi: 10.1056/NEJMc2011400 |
Sagidullin R.H., Khalikov A.A., Nazmieva A.R., Kuznetsov K.O., Kartoeva H.V.
/
| 〈 |
|
〉 |