Mathematical modeling of the corpse cooling under conditions of varying ambient temperature

German V. Nedugov

Russian Journal of Forensic Medicine ›› 2021, Vol. 7 ›› Issue (1) : 29 -35.

PDF
Russian Journal of Forensic Medicine ›› 2021, Vol. 7 ›› Issue (1) :29 -35. DOI: 10.17816/fm360
Original study articles
research-article

Mathematical modeling of the corpse cooling under conditions of varying ambient temperature

Author information +
History +
PDF

Abstract

Background: The constancy of the ambient temperature is the main condition to correctly determine the time of death by thermometric method. However, in practice, this requirement is met only in cases of death in closed rooms. In this study, an exponential mathematical model was proposed for corpse cooling under any changes in ambient temperature. Aim: This study aimed to develop a mathematical model to determine the time of death based on the Newton–Richman cooling law in changing ambient temperature conditions. Materials and methods: Mathematical modeling of corpse cooling under changing ambient temperature is performed, focusing on problem solving of thermometric determination of the time of death. The axillary hollow was used as the diagnostic zone of the corpse, and the temperature of which at the time of death is taken is 36.6°С. Results: A method of reverse reproduction of the cadaver temperature in conditions of changing ambient temperature has been developed. Results allow a relatively simple analytical determination of the time of death in the early postmortem period. Conclusions: The proposed method is advisable to be used in forensic medical practice to determine the time of death in early postmortem period. The developed mathematical model is implemented in the format of the application program Warm Bodies NRN. Use of tympanic and intraocular thermometry was recommended within the proposed model.

Keywords

Newton–Richman law of cooling / time of death / mathematical modeling / and ambient temperature

Cite this article

Download citation ▾
German V. Nedugov. Mathematical modeling of the corpse cooling under conditions of varying ambient temperature. Russian Journal of Forensic Medicine, 2021, 7(1): 29-35 DOI:10.17816/fm360

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wilk LS, Hoveling RJ, Edelman GJ, et al. Reconstructing the time since death using noninvasive thermometry and numerical analysis. Sci Adv. 2020;6(22):eaba4243. doi: 10.1126/sciadv.aba4243

[2]

Wilk L.S., Hoveling R.J., Edelman G.J., et al. Reconstructing the time since death using noninvasive thermometry and numerical analysis // Sci Adv. 2020. Vol. 6, N 22. Р. eaba4243. doi: 10.1126/sciadv.aba4243

[3]

Hubig M, Muggenthaler H, Mall G. Confidence intervals in temperature-based death time determination. Leg Med (Tokyo). 2015;17(1):48–51. doi: 10.1016/j.legalmed.2014.08.002

[4]

Hubig M., Muggenthaler H., Mall G. Confidence intervals in temperature-based death time determination // Leg Med (Tokyo). 2015. Vol. 17, N 1. Р. 48-51. doi: 10.1016/j.legalmed.2014.08.002

[5]

Shved AF, Vavilov AJu. Technique of the automated search the moment of the beginning of process of postmortal coolings (time of death) with use the standard tabulared processor Microsoft® Office Excel. Problemy ekspertizy v meditsine. 2005;5(3):36–39. (In Russ).

[6]

Швед Е.Ф., Вавилов А.Ю. Методика автоматизированного поиска момента начала процесса постмортального охлаждения (времени смерти) с использованием стандартного табличного процессора Microsoft Office Excel // Проблемы экспертизы в медицине. 2005. Т. 5, № 3. С. 36–39.

[7]

Davidzon MI. O zakone okhlazhdeniya N’yutona-Rikhmana. Vestnik Ivanovskogo gosudarstvennogo universiteta. Estestvennye, obshchestvennye nauki. 2010;(2):70–75. (In Russ).

[8]

Давидзон М.И. О законе охлаждения Ньютона-Рихмана // Вестник Ивановского государственного университета. Естественные, общественные науки. 2010. № 2. С. 70–75.

[9]

Kaliszan M, Hauser R, Kernbach-Wighton G. Estimation of the time of death based on the assessment of post mortem processes with emphasis on body cooling. Leg Med (Tokyo). 2009;11(3):111–117. doi: 10.1016/j.legalmed.2008.12.002

[10]

Kaliszan M., Hauser R., Kernbach-Wighton G. Estimation of the time of death based on the assessment of post mortem processes with emphasis on body cooling // Leg Med (Tokyo). 2009. Vol. 11, N 3. Р. 111–117. doi: 10.1016/j.legalmed.2008.12.002

[11]

Rainy H. On the cooling of dead bodies as indicating the length of time that has elapsed since death. Glasgow Med J. 1869;1(3):323–330.

[12]

Rainy H. On the cooling of dead bodies as indicating the length of time that has elapsed since death // Glasgow Med J. 1869.

[13]

Kuzovkov AV, Vavilov AYu. Diagnostics of prescription of death of the person in the early posthumous period in the noninvasive thermometric way. Problemy ekspertizy v meditsine. 2014;14 (4):24–27. (In Russ).

[14]

Vol. 1, N 3. Р. 323–330.

[15]

Kaliszan M, Hauser R, Kaliszan R, et al. Verification of the exponential model of body temperature decrease after death in pigs. Exp Physiol. 2005;90(5):727–738. doi: 10.1113/expphysiol.2005.030551

[16]

Кузовков А.В., Вавилов А.Ю. Диагностика давности смерти человека в раннем посмертном периоде неинвазивным термометрическим способом // Проблемы экспертизы в медицине. 2014. Т. 14, № 4. С. 24–27.

[17]

Kaliszan M., Hauser R., Kaliszan R., et al. Verification of the exponential model of body temperature decrease after death in pigs // Exp Physiol. 2005. Vol. 90, N 5. Р. 727–738. doi: 10.1113/expphysiol.2005.030551

RIGHTS & PERMISSIONS

Nedugov G.V.

AI Summary AI Mindmap
PDF

62

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/