Forensic age estimation based on magnetic resonance imaging of the knee joint: a systematic review
Dmitry D. Zolotenkov , Natalia S. Serova , Galina V. Zolotenkova , Maria P. Poletaeva , Yuri I. Pigolkin
Russian Journal of Forensic Medicine ›› 2024, Vol. 10 ›› Issue (4) : 539 -554.
Forensic age estimation based on magnetic resonance imaging of the knee joint: a systematic review
Background: The issue of age assessment is not only relevant in modern society but also socially significant. According to official statistics, 2021 saw a record number of migrants and refugees — over 89 million and 27.1 million, respectively. A significant proportion of them are children and adolescents under the age of 18, many of whom lack proper legal documents confirming their date of birth. In such cases, forensic age determination is necessary. From the perspective of safety and effectiveness, magnetic resonance imaging is considered the method of choice for age assessment. This highlights the need to explore its potential as a method for documenting and assessing the developmental status of the studied anatomical structure.
Aim: To analyze published data on the feasibility of using knee magnetic resonance imaging findings to determine the stage of epiphyseal ossification for forensic age estimation in children, adolescents, and young adults.
Materials and methods: A study protocol was developed and registered in PROSPERO (registration number CRD42022344779, 2022). Several search engines were used, including PubMed, Web of Science, and the Scopus database, to ensure a comprehensive review of current knowledge. Articles published in English from 1985 to 2021 were considered. Literature searches were conducted using the following keywords and term combinations: “age estimation”, “age determination”, “knee”, and “magnetic resonance imaging of the knee”.
Results: A total of 13 publications were selected and thoroughly analyzed. Differences among the studies were identified regarding magnetic resonance imaging research protocols, classifications used for determining the stage of epiphyseal ossification by age, and the specialization and experience level of the researchers. Significant heterogeneity in population samples was noted, including variations in the number of study subjects, the age range, and the uneven distribution within age groups.
Conclusion: The amount and heterogeneity of data in the studies included in this systematic review did not allow for a meta-analysis of the results or for predicting the risk of misclassification in the target age group. Therefore, at present, MRI-based knee age assessment cannot be considered an objective and legally substantiated forensic method.
forensic age estimation / skeletal age / knee joint / magnetic resonance imaging / systematic review
| [1] |
References |
| [2] |
Data and statistics: global trends; [около 3 страниц]. В: The Office of the United Nations High Commissioner for Refugees (UNHCR) [Internet]. Geneva: The Agency, 2001–2024. Режим доступа: https://unhcr.org/globaltrends Дата обращения: 16.12.2024. |
| [3] |
Data and statistics: global trends; [about 3 screens]. In: The Office of the United Nations High Commissioner for Refugees (UNHCR) [Internet]. Geneva: The Agency; 2001–2024 [cited 2024 Dec 16]. Available from: https://unhcr.org/globaltrends |
| [4] |
Doklad UVKB OON o global'nyh tendenciyah (2021). https://unhcr.org/globaltrends (in Russian) |
| [5] |
European Asylum Support Office. Practical guide on age assessment, second edition: EASO Practical Guides Series. Malta, 2018. 112 p. doi: 10.2847/23618732 |
| [6] |
European Asylum Support Office. Practical guide on age assessment, second edition: EASO Practical Guides Series. Malta, 2018. 112 p. doi: 10.2847/23618732 |
| [7] |
EASO (2018). Practical guide on age assessment, second edition. Technical report EASO. https://doi.org/10.2847/29226 |
| [8] |
Nowotny T., Eisenberg W., Mohnike K. Unbegleitete minderjährige Flüchtlinge: Strittiges Alter – strittige Altersdiagnostik // Dtsch Arztebl. 2014. Vol. 111, N 18. P. A786–A788. |
| [9] |
NowotnyT, Eisenberg W, Mohnike K. Unbegleitete minderjährige Flüchtlinge: Strittiges Alter – strittige Altersdiagnostik. Dtsch Arztebl. 2014;111(18):A786–A788. |
| [10] |
EASO (2018). EASO Practical Guide on age assessment. 2nd edition. https://doi.org/10.2847/23618732 |
| [11] |
Глыбочко П.В., Пиголкин Ю.И., Николенко В.Н., и др. Судебно-медицинская диагностика возраста. Москва: Издательство ПМГМУ им. И.М. Сеченова, 2016. EDN: VNOIML |
| [12] |
Glybochko PV, Pigolkin YuI, Nikolenko VN, et al. Sudebno-meditsinskaya diagnostika vozrasta. Moscow: Izdatel’stvo PMGMU im. I.M. Sechenova, 2016. (In Russ.) EDN: VNOIML |
| [13] |
AGFAD (2018). Stellungnahme: Forensische Altersdiagnostik bei unbegleiteten minderjährigen Flüchtlingen. Arbeitsgemeinschaft für Forensische Altersdiagnostik. https://www.dgrm.de/institute/deutschland/institut-essen/news-essen/stel.... Accessed 15.5.2020 |
| [14] |
Schmeling A., Grundmann C., Fuhrmann A., et al Criteria for age estimation in living individuals // Int J Legal Med. 2008. Vol. 122, N 6. P. 457–460. EDN: CXUSSD doi: 10.1007/s00414-008-0254-2 |
| [15] |
Schmeling A, Grundmann C, Fuhrmann A, et al Criteria for age estimation in living individuals. Int J Legal Med. 2008;122(6):457–460. EDN: CXUSSD doi: 10.1007/s00414-008-0254-2 |
| [16] |
Glybochko P.V., Pigolkin Yu.I., Nikolenko V.N, Zolotenkova G.V., Efimova A.A., Alekseev Yu.D.. Sudebno-medicinskaja diagnostika vozrasta. Moskva: 2016. Izdatel'stvo PMGMU im. I.M. Sechenova, 2016. (in Russian) |
| [17] |
Schmeling A., Dettmeyer R., Rudolf E., et al. Forensic age estimation: methods, certainty, and the law // Deutsches. Arzteblatt International. 2016. Vol. 113, N 4. P. 44–50. doi: 10.3238/arztebl.2016.0044 |
| [18] |
Schmeling A, Dettmeyer R, Rudolf E, et al. Forensic age estimation: methods, certainty, and the law. Deutsches. Arzteblatt International. 2016;113(4):44–50. doi: 10.3238/arztebl.2016.0044 |
| [19] |
Schmeling A., Grundmann C., Fuhrmann A., Kaatsch H.-J., Knell B., Ramsthaler F. et al Criteria for age estimation in living individuals. Int J Legal Med. 2008;122(6):457 |
| [20] |
Ritz-Timme S., Kaatsch H.J., Marré B., et al. Empfehlungen für die Altersdiagnostik bei Lebenden im Rentenverfahren // Rechtsmedizin. 2002. Vol. 12, N 4. P. 193–194. EDN: BDXRVJ doi: 10.1007/s00194-002-0159-1 |
| [21] |
Ritz-Timme S, Kaatsch HJ, Marré B, et al. Empfehlungen für die Altersdiagnostik bei Lebenden im Rentenverfahren. Rechtsmedizin. 2002;12(4):193–194. EDN: BDXRVJ doi: 10.1007/s00194-002-0159-1 |
| [22] |
Schmeling A., Dettmeyer R., Rudolf E., Vieth V., Geserick G. Forensic age estimation: methods, certainty, and the law. Deutsches. Arzteblatt International 2016; 113(4):44 |
| [23] |
Scendoni R., Zolotenkova G.V., Vanin S., et al. Forensic validity of the third molar maturity index (I3M) for age estimation in Russian population // BioMed research international. 2020. Vol. 2020, N 1. P. 1–6. EDN: PABEZP doi: 10.1155/2020/6670590 |
| [24] |
Scendoni R, Zolotenkova GV, Vanin S, et al. Forensic validity of the third molar maturity index (I3M) for age estimation in Russian population. BioMed research international. 2020;2020(1):1–6. EDN: PABEZP doi: 10.1155/2020/6670590 |
| [25] |
Ritz-Timme S., Kaatsch H.J., Marré B., Reisinger W., Riepert T., Rösing F.W. et.al. Empfehlungen für die Altersdiagnostik bei Lebenden im Rentenverfahren. Rechtsmedizin.2002; 12(4):193–194. https://doi.org/10.1007/s00194-002-0159-1 |
| [26] |
Angelakopoulos N., De Luca S., Oliveira-Santos I., et al. Third molar maturity index (I3M) assessment according to different geographical zones: a large multi-ethnic study sample // Int J Legal Med. 2023. Vol. 137, N 2. P 403–425. EDN: AIKIRQ doi: 10.1007/s00414-022-02930-x |
| [27] |
Angelakopoulos N, De Luca S, Oliveira-Santos I, et al. Third molar maturity index (I3M) assessment according to different geographical zones: a large multi-ethnic study sample. Int J Legal Med. 2023;137(2):403–425. EDN: AIKIRQ doi: 10.1007/s00414-022-02930-x |
| [28] |
Scendoni R., Zolotenkova G.V., Vanin S., Pigolkin Y.I., Cameriere R. Forensic Validity of the Third Molar Maturity Index (I3M) for Age Estimation in a Russian Population. BioMed research international.2020; 6670590. https://doi.org/10.1155/2020/6670590. |
| [29] |
Wittschieber D., Schulz R., Vieth V., et al. Influence of the examiner’s qualification and sources of error during stage determination of the medial clavicular epiphysis by means of computed tomography // Int J Legal Med. 2014. Vol. 128, N 1. P. 183–191. EDN: RIWXGQ doi: 10.1007/s00414-013-0932-6 |
| [30] |
Wittschieber D, Schulz R, Vieth V, et al. Influence of the examiner’s qualification and sources of error during stage determination of the medial clavicular epiphysis by means of computed tomography. Int J Legal Med. 2014;128(1):183–191. EDN: RIWXGQ doi: 10.1007/s00414-013-0932-6 |
| [31] |
Angelakopoulos N., De Luca S., Oliveira-Santos I. et al. Third molar maturity index (I3M) assessment according to different geographical zones: a large multi-ethnic study sample. Int J Legal Med. 2023; 137:403–425. https://doi.org/10.1007/s00414-022-02930-x |
| [32] |
Cameriere R., De Luca S., De Angelis D., et.al. Reliability of Schmeling's stages of ossification of medial clavicular epiphyses and its validity to assess 18 years of age in living subjects // Int J Legal Med. 2012. Vol. 126, N 6. P. 923–932. EDN: FJQDTY doi: 10.1007/s00414-012-0769-4 |
| [33] |
Cameriere R, De Luca S, De Angelis D, et.al. Reliability of Schmeling's stages of ossification of medial clavicular epiphyses and its validity to assess 18 years of age in living subjects. Int J Legal Med. 2012;126(6):923–932. EDN: FJQDTY doi: 10.1007/s00414-012-0769-4 |
| [34] |
Wittschieber et al. Influence of the examiner’s qualification and sources of error during stage determination of the medial clavicular epiphysis by means of computed tomography. Int J Legal Med .2014; 128:183-191 |
| [35] |
Lopatin O., Barszcz M., Bolechala F., Wozniak K.J. The fusion of ossification centers – a comparative review of radiographic and other imaging modalities of age assessment in living groups of children, adolescents, and young adults // Legal Medicine (Tokyo). 2013. Vol. 61. P. 102185. EDN: CDBDCZ doi: 10.1016/j.legalmed.2022.102185 |
| [36] |
Lopatin O, Barszcz M, Bolechala F, Wozniak KJ. The fusion of ossification centers – a comparative review of radiographic and other imaging modalities of age assessment in living groups of children, adolescents, and young adults. Legal Medicine (Tokyo). 2013;61:102185. EDN: CDBDCZ doi: 10.1016/j.legalmed.2022.102185 |
| [37] |
Cameriere R., De Luca S., De Angelis D., Merelli V., Giuliodori A., Cingolani M. et.al. Reliability of Schmeling's stages of ossification of medial clavicular epiphyses and its validity to assess 18 years of age in living subjects. Int J Legal Med. 2012; 126 (6):923-32. doi: 10.1007/s00414-012-0769-4 |
| [38] |
Dhamo B., Kragt L., Grgic O., et al. Ancestry and dental development: a geographic and genetic perspective // Am J. Phys Anthropol. 2018. Vol. 165, N 2. P. 299–308. doi: 10.1002/ajpa.23351 |
| [39] |
Dhamo B, Kragt L, Grgic O, et al. Ancestry and dental development: a geographic and genetic perspective. Am J. Phys Anthropol. 2018;165(2):299–308. doi: 10.1002/ajpa.23351 |
| [40] |
Lopatin O., Barszcz M., Bolechala F., Wozniak K. J. All rights reserved. The fusion of ossification centers – A comparative review of radiographic and other imaging modalities of age assessment in living groups of children, adolescents, and young adults. Legal Medicine.2013; 61:102185 |
| [41] |
Cameriere R., Ferrante L., De Angelis D., et al. The comparison between measurement of open apices of third molars and Demirjian stages to test chronological age of over 18-year-olds in living subjects // Int J Legal Med. 2008. Vol. 122, N 6. P. 493–497. EDN: WYRTSS doi: 10.1007/s00414-008-0279-6 |
| [42] |
Cameriere R, Ferrante L, De Angelis D, et al. The comparison between measurement of open apices of third molars and Demirjian stages to test chronological age of over 18-year-olds in living subjects. Int J Legal Med. 2008;122(6):493–497. EDN: WYRTSS doi: 10.1007/s00414-008-0279-6 |
| [43] |
Dhamo B., Kragt L., Grgic O., Vucic S., Medina-Gomez C., Rivadeneira F. et al. Ancestry and dental development: a geographic and genetic perspective. Am J. Phys Anthropol. 2018; 165(2):299–308. https://doi.org/10.1002/ajpa.23351 |
| [44] |
Cameriere R., Bestetti F., Velandia Palacio L.A., et al. Carpals and epiphyses of radius and ulna as age indicators using longitudinal data: a Bayesian approach // Int J Legal Med. 2019. Vol. 133, N 1. P. 197–204. EDN: MMNRJC doi: 10.1007/s00414-018-1807-7 |
| [45] |
Cameriere R, Bestetti F, Velandia Palacio LA, et al. Carpals and epiphyses of radius and ulna as age indicators using longitudinal data: a Bayesian approach. Int J Legal Med. 2019;133(1):197–204. EDN: MMNRJC doi: 10.1007/s00414-018-1807-7 |
| [46] |
Cameriere R., Ferrante L., De Angelis D., Scarpino F., Galli F. The comparison between measurement of open apices of third molars and Demirjian stages to test chronological age of over 18-year-olds in living subjects. Int J Legal Med. 2008; 122:493–497. https://doi.org/10.1007/s00414-008-0279-6 |
| [47] |
Quispe Lizarbe R.J., Solís Adrianzén C., Quezada-Márquez M.M., et al. Demirjian’s stages and Cameriere’s third molar maturity index to estimate legal adult age in Peruvian population // Leg Med (Tokyo). 2017. Vol. 25. P. 59–65. doi: 10.1016/j.legalmed.2017.01.003 |
| [48] |
Quispe Lizarbe RJ, Solís Adrianzén C, Quezada-Márquez MM, et al. Demirjian’s stages and Cameriere’s third molar maturity index to estimate legal adult age in Peruvian population. Leg Med (Tokyo). 2017;25:59–65. doi: 10.1016/j.legalmed.2017.01.003 |
| [49] |
Cameriere R., Bestetti F., Velandia Palacio L.A., Riccomi G., Skrami E., Parente V.et al. Carpals and epiphyses of radius and ulna as age indicators using longitudinal data: a Bayesian approach. Int J Legal Med. 2019;133(1):197-204. doi: 10.1007/s00414-018-1807-7. |
| [50] |
Angelakopoulos N., Galić I., Balla S.B., et.al. Comparison of the third molar maturity index (I3M) between left and right lower third molars to assess the age of majority: a multi-ethnic study sample // Int J Legal Med. 2020. Vol. 135, N 6. P. 2423–2436. EDN: WOKKPG doi: 10.1007/s00414-021-02656-2 |
| [51] |
Angelakopoulos N, Galić I, Balla SB, et.al. Comparison of the third molar maturity index (I3M) between left and right lower third molars to assess the age of majority: a multi-ethnic study sample. Int J Legal Med. 2020;135(6):2423–2436. EDN: WOKKPG doi: 10.1007/s00414-021-02656-2 |
| [52] |
Quispe Lizarbe R.J., Solís Adrianzén C., Quezada-Márquez M.M., Galić I., Cameriere R. Demirjian’s stages and Cameriere’s third molar maturity index to estimate legal adult age in Peruvian population. Leg Med (Tokyo). 2017; 25:59–65. https://doi.org/10.1016/j.legalmed.2017.01.003 |
| [53] |
Scharte P., Vieth V., Schulz R., et.al. Comparison of imaging planes during CT-based evaluation of clavicular ossification: a multi-center study // Int J Legal Med. 2017. Vol. 131, N 5. P. 1391–1397. EDN: YBAXCI doi: 10.1007/s00414-017-1615-5 |
| [54] |
Scharte P, Vieth V, Schulz R, et.al. Comparison of imaging planes during CT-based evaluation of clavicular ossification: a multi-center study. Int J Legal Med. 2017;131(5):1391–1397. EDN: YBAXCI doi: 10.1007/s00414-017-1615-5 |
| [55] |
Angelakopoulos N., Galić I., Balla S.B., Kiş H.C., Gómez Jiménez L., Zolotenkova G. et.al. Comparison of the third molar maturity index (I3M) between left and right lower third molars to assess the age of majority: a multi-ethnic study sample. Int J Legal Med.2020; 135(6):2423–2436. https://doi.org/10.1007/s00414-021-02656-2 |
| [56] |
Tozakidou M., Apine I., Petersen K.U., et.al. Comparison of different iterative CT reconstruction techniques and filtered back projection for assessment of the medial clavicular epiphysis in forensic age estimation // Int J Legal Med. 2020. Vol. 134, N 1. P. 355–361. doi: 10.1007/s00414-019-02214-x |
| [57] |
Tozakidou M, Apine I, Petersen KU, et.al. Comparison of different iterative CT reconstruction techniques and filtered back projection for assessment of the medial clavicular epiphysis in forensic age estimation. Int J Legal Med. 2020;134(1):355–361. doi: 10.1007/s00414-019-02214-x |
| [58] |
Scharte P., Vieth V., Schulz R., Ramsthaler F., Püschel K., Bajanowski T. et.al. Comparison of imaging planes during CT-based evaluation of clavicular ossification: a multi-center study. Int J Legal Med. 2017; 131(5):1391-1397. doi: 10.1007/s00414-017-1615-5. |
| [59] |
Tozakidou M., Meister R.L., Well L., et.al. CT of the medial clavicular epiphysis for forensic age estimation: hands up? // Int J Legal Med. 2021. Vol. 135, N 4. P. 1581–1587. EDN: CBRWZW doi: 10.1007/s00414-021-02516-z |
| [60] |
Tozakidou M, Meister RL, Well L, et.al. CT of the medial clavicular epiphysis for forensic age estimation: hands up? Int J Legal Med. 2021;135(4):1581–1587. EDN: CBRWZW doi: 10.1007/s00414-021-02516-z |
| [61] |
Tozakidou M., Apine I., Petersen K.U., Weinrich J.M., Schindera S., Jopp-van Well E. et.al. Comparison of different iterative CT reconstruction techniques and filtered back projection for assessment of the medial clavicular epiphysis in forensic age estimation. Int J Legal Med. 2020; 134(1):355-361. doi: 10.1007/s00414-019-02214-x. |
| [62] |
Schmeling A. Forensische altersdiagnostik bei lebenden im strafverfahren: dissertation. Berlin: Universitätsmedizin Berlin, 2004. |
| [63] |
Schmeling A. Forensic age diagnostics of living persons in criminal proceedings [dissertation]. Berlin: Universitätsmedizin Berlin; 2004. |
| [64] |
Tozakidou M., Meister R.L., Well L., Petersen K.U., Schindera S., Jopp-van Well E. et.al. CT of the medial clavicular epiphysis for forensic age estimation: hands up? Int J Legal Med. 2021; 135(4):1581-1587. doi: 10.1007/s00414-021-02516-z. |
| [65] |
Baumann U., Schulz R., Reisinger W., et al. Reference study on the time frame for ossification of the distal radius and ulnar epiphyses on the hand radiograph // Forensic Sci Int. 2009. Vol. 191, N 1–3. P. 15–18. doi: 10.1016/j.forsciint.2009.05.023 |
| [66] |
Baumann U, Schulz R, Reisinger W, et al. Reference study on the time frame for ossification of the distal radius and ulnar epiphyses on the hand radiograph. Forensic Sci Int. 2009;191(1–3):15–18. doi: 10.1016/j.forsciint.2009.05.023 |
| [67] |
Schmeling A., Püschel K., Krause D. Forensische Altersdiagnostik bei Lebenden im Strafverfahren. 2004. |
| [68] |
Schmidt S., Baumann U., Schulz R., et al. Study of age dependence of epiphyseal ossification of the hand skeleton // Int J Legal Med. 2008. Vol. 122, N 1. P. 51–54. EDN: KCODLI doi: 10.1007/s00414-007-0209-z |
| [69] |
Schmidt S, Baumann U, Schulz R, et al. Study of age dependence of epiphyseal ossification of the hand skeleton. Int J Legal Med. 2008;122(1):51–54. EDN: KCODLI doi: 10.1007/s00414-007-0209-z |
| [70] |
Baumann U., Schulz R., Reisinger W., Heinecke A., Schmeling A., Schmidt S., Reference study on the time frame for ossification of the distal radius and ulnar epiphyses on the hand radiograph, Forensic. Sci. Int.2009; 191 (1–3): 15–18, https://doi.org/10.1016/j.forsciint.2009.05.023. |
| [71] |
Hisham S., Flavel A., Abdullah N., et al. Quantification of sphenooccipital synchondrosis fusion in a contemporary Malaysian population // Forensic Sci Int. 2018. Vol. 284. P. 78–84. doi: 10.1016/j.forsciint.2017.12.046 |
| [72] |
Hisham S, Flavel A, Abdullah N, et al. Quantification of sphenooccipital synchondrosis fusion in a contemporary Malaysian population. Forensic Sci Int. 2018;284:78–84. doi: 10.1016/j.forsciint.2017.12.046 |
| [73] |
Schmidt S., Baumann U., Schulz R., Reisinger W., Schmeling A. Study of age dependence of epiphyseal ossification of the hand skeleton, Int. J. Legal. Med. 2008; 122 (1): 51–54, https://doi.org/10.1007/s00414-007-0209-z. |
| [74] |
Demirturk Kocasarac H., Sinanoglu A., Noujeim M., et al. Radiologic assessment of third molar tooth and spheno-occipital synchondrosis for age estimation: a multiple regression analysis study // Int J Legal Med. 2016. Vol. 130, N 3. P. 799–808. EDN: LCNODR doi: 10.1007/s00414-015-1298-8 |
| [75] |
Demirturk Kocasarac H, Sinanoglu A, Noujeim M, et al. Radiologic assessment of third molar tooth and spheno-occipital synchondrosis for age estimation: a multiple regression analysis study. Int J Legal Med. 2016;130(3):799–808. EDN: LCNODR doi: 10.1007/s00414-015-1298-8 |
| [76] |
Hisham S., Flavel A., Abdullah N., Noor M.H.M., Franklin D. Quantification of sphenooccipital synchondrosis fusion in a contemporary Malaysian population, Forensic. Sci. Int. 2018; 284:78–84, https://doi.org/10.1016/j. forsciint.2017.12.046. |
| [77] |
Sinanoglu A., Kocasarac H.D., Noujeim M. Age estimation by an analysis of spheno-occipital synchondrosis using cone-beam computed tomography // Leg Med (Tokyo). 2016. Vol. 18. P. 13–19. doi: 10.1016/j.legalmed.2015.11.004 |
| [78] |
Sinanoglu A, Kocasarac HD, Noujeim M. Age estimation by an analysis of spheno-occipital synchondrosis using cone-beam computed tomography. Leg Med (Tokyo). 2016;18:13–19. doi: 10.1016/j.legalmed.2015.11.004 |
| [79] |
Demirturk Kocasarac H., Sinanoglu A., Noujeim M., Helvacioglu Yigit D., Baydemir C., Radiologic assessment of third molar tooth and spheno-occipital synchondrosis for age estimation: a multiple regression analysis study, Int. J. Legal. Med. 2016; 130 (3): 799–808 https://doi.org/10.1007/s00414-015-1298-8. |
| [80] |
Soliman K.E.A., Al Shehri F., AlThaqufi O.J. Age estimation of epiphyseal union around wrist joint and its correlation with chronological age: A radiological study in Qassim population, Saudi Arabia // Australian Journal of Forensic Sciences. 2022. Vol. 55, N 1. P. 605–620. EDN: IFHEAU doi: 10.1080/00450618.2022.2043437 |
| [81] |
Soliman KEA, Al Shehri F, AlThaqufi OJ. Age estimation of epiphyseal union around wrist joint and its correlation with chronological age: a radiological study in Qassim population, Saudi Arabia. Australian Journal of Forensic Sciences. 2022;55(1):605–620. EDN: IFHEAU doi: 10.1080/00450618.2022.2043437 |
| [82] |
Sinanoglu A., Kocasarac H.D., Noujeim M. Age estimation by an analysis of spheno-occipital synchondrosis using cone-beam computed tomography. Leg Med (Tokyo). 2016 ;18:13-9. doi: 10.1016/j.legalmed.2015.11.004. |
| [83] |
Sobh Z.K., Mohamed A.S. A Computed Tomographic Analysis of Spheno-Occipital Synchondrosis Ossification for Age Estimation in a Sample of Egyptians // Am J Forensic Med Pathol. 2021. Vol. 42, N 3. P. 235–242. EDN: UTNJLD doi: 10.1097/PAF.0000000000000645 |
| [84] |
Sobh ZK, Mohamed AS. A computed tomographic analysis of spheno-occipital synchondrosis ossification for age estimation in a sample of Egyptians. Am J Forensic Med Pathol. 2021;42(3):235–242. EDN: UTNJLD doi: 10.1097/PAF.0000000000000645 |
| [85] |
Soliman K. E. A., Shehri F.Al, AlThaqufi O. J. Age estimation of epiphyseal union around wrist joint and its correlation with chronological age: A radiological study in Qassim population, Saudi Arabia, Australian Journal of Forensic Sciences. 2022 |
| [86] |
Candan B., Akın S.D., Dilek E.G., Didem K. Analysis of fusion of sphenooccipital synchondrosis using computed tomography in Turkish population // Australian Journal of Forensic Sciences. 2022. Vol. 54, N 6. P 65–74. doi: 10.1080/00450618.2022.2123112 |
| [87] |
Candan B, Akın SD, Dilek EG, Didem K. Analysis of fusion of sphenooccipital synchondrosis using computed tomography in Turkish population. Australian Journal of Forensic Sciences. 2022;54(6):65–74. doi: 10.1080/00450618.2022.2123112 |
| [88] |
https://doi.org/10.1080/00450618.2022.2043437 |
| [89] |
Bayrak S., Göller Bulut D. Relationship between condyle cortication, sphenooccipital synchondrosis, and chronological age // Oral Radiol. 2020. Vol. 36, N 2. P. 190–196. EDN: BHEEXY doi: 10.1007/s11282-019-00398-x |
| [90] |
Bayrak S, Göller Bulut D. Relationship between condyle cortication, sphenooccipital synchondrosis, and chronological age. Oral Radiol. 2020;36(2):190–196. EDN: BHEEXY doi: 10.1007/s11282-019-00398-x |
| [91] |
Sobh Z.K., Mohamed A.S. A Computed Tomographic Analysis of Spheno-Occipital Synchondrosis Ossification for Age Estimation in a Sample of Egyptians, Am. J. Forensic. Med. Pathol. 2021; 42 (3): 235–242, https://doi.org/10.1097/ PAF.0000000000000645. |
| [92] |
Fan F., Dong X., Wu X., et al. An evaluation of statistical models for age estimation and the assessment of the 18-year threshold using conventional pelvic radiographs // Forensic Sci Int. 2020. Vol. 314. P. 110350. EDN: BBEAVX doi: 10.1016/j.forsciint.2020.110350 |
| [93] |
Fan F, Dong X, Wu X, et al. An evaluation of statistical models for age estimation and the assessment of the 18-year threshold using conventional pelvic radiographs. Forensic Sci Int. 2020;314:110350. EDN: BBEAVX doi: 10.1016/j.forsciint.2020.110350 |
| [94] |
Candan B., Akın S. D., Dilek E. G., Didem K. Analysis of fusion of sphenooccipital synchondrosis using computed tomography in Turkish population. Australian Journal of Forensic Sciences.2022 DOI: 10.1080/00450618.2022.2123112 |
| [95] |
Ekizoglu O., Inci E., Erdil I., et al. Computed tomography evaluation of the iliac crest apophysis: age estimation in living individuals // Int J Legal Med. 2016. Vol. 130, N 4. P. 1101–1107. EDN: SIXHOQ doi: 10.1007/s00414-016-1345-0 |
| [96] |
Ekizoglu O, Inci E, Erdil I, et al. Computed tomography evaluation of the iliac crest apophysis: age estimation in living individuals. Int J Legal Med. 2016;130(4):1101–1107. EDN: SIXHOQ doi: 10.1007/s00414-016-1345-0 |
| [97] |
Bayrak S., G¨oller Bulut D., Relationship between condyle cortication, sphenooccipital synchondrosis, and chronological age, Oral. Radiol. 36 (2) (2020) 190–196, https://doi.org/10.1007/s11282-019-00398-x. |
| [98] |
Tang X., Lu Y., Pang M., et al. An abbreviated scale for the assessment of skeletal bone age using radiographs of the knee // Orthopedics. 2018. Vol. 41, N 5. P. e676-e680. doi: 10.3928/01477447-20180724-03 |
| [99] |
Tang X, Lu Y, Pang M, et al. An abbreviated scale for the assessment of skeletal bone age using radiographs of the knee. Orthopedics. 2018;41(5):e676-e680. doi: 10.3928/01477447-20180724-03 |
| [100] |
Fan F., Dong X., Wu X., Li R., Dai X., Zhang K., Huang F., Deng Z., An evaluation of statistical models for age estimation and the assessment of the 18-year threshold using conventional pelvic radiographs, Forensic. Sci. Int. 2020; 314: 110350, https://doi.org/10.1016/j.forsciint.2020.110350. |
| [101] |
Welson N.N., Abd El Basset A.S. Age and sex estimation by knee roentgenographic assessment: An Egyptian population study // Journal of Forensic Radiology and Imaging. 2019. Vol. 18. P. 4–10. doi: 10.1016/j.jofri.2019.07.002 |
| [102] |
Welson NN, Abd El Basset AS. Age and sex estimation by knee roentgenographic assessment: An Egyptian population study. Journal of Forensic Radiology and Imaging. 2019;18:4–10. doi: 10.1016/j.jofri.2019.07.002 |
| [103] |
Ekizoglu O., Inci E., Erdil I., Hocaoglu E., Bilgili M.G., Kazimoglu C., Reisoglu A., Can I.O. Computed tomography evaluation of the iliac crest apophysis: age estimation in living individuals. Int J Legal Med. 2016 ;130(4):1101-1107. doi: 10.1007/s00414-016-1345-0 |
| [104] |
Pröve P.L., Jopp-van Well E., Stanczus B., et al. Automated segmentation of the knee for age assessment in 3D MR images using convolutional neural networks // Int J Legal Med. 2019. Vol. 133, N 4. P. 1191–1205. EDN: PXCYFD doi: 10.1007/s00414-018-1953-y |
| [105] |
Pröve PL, Jopp-van Well E, Stanczus B, et al. Automated segmentation of the knee for age assessment in 3D MR images using convolutional neural networks. Int J Legal Med. 2019;133(4):1191–1205. EDN: PXCYFD doi: 10.1007/s00414-018-1953-y |
| [106] |
Tang X., Lu Y., Pang M. et al. An Abbreviated Scale for the Assessment of Skeletal Bone Age Using Radiographs of the Knee. Orthopedics. 2018;41(5):e676-e680. doi:10.3928/01477447-20180724-03 |
| [107] |
Ottow C., Schulz R., Pfeiffer H., et al. Forensic age estimation by magnetic resonance imaging of the knee: the definite relevance in bony fusion of the distal femoral- and the proximal tibial epiphyses using closest-to-bone T1 TSE sequence // Eur Radiol. 2017. Vol. 27, N 12. P. 5041–5048. EDN: CZSWJZ doi: 10.1007/s00330-017-4880-2 |
| [108] |
Ottow C, Schulz R, Pfeiffer H, et al. Forensic age estimation by magnetic resonance imaging of the knee: the definite relevance in bony fusion of the distal femoral- and the proximal tibial epiphyses using closest-to-bone T1 TSE sequence. Eur Radiol. 2017;27(12):5041–5048. EDN: CZSWJZ doi: 10.1007/s00330-017-4880-2 |
| [109] |
Welson N.N., Basset ASAE. Age and sex estimation by knee roentgenographic assessment: An Egyptian population study. Journal of Forensic Radiology and Imaging. 2019; 18:4-10. doi:10.1016/j.jofri.2019.07.002 |
| [110] |
O’Connor J.E., Coyle J., Bogue C., et al. Age prediction formulae from radiographic assessment of skeletal maturation at the knee in an Irish population // Forensic Sci Int. 2014. Vol. 234. P. 188.e1–188.e8. doi: 10.1016/j.forsciint.2013.10.032 |
| [111] |
O’Connor JE, Coyle J, Bogue C, et al. Age prediction formulae from radiographic assessment of skeletal maturation at the knee in an Irish population. Forensic Sci Int. 2014;234:188.e1–188.e8. doi: 10.1016/j.forsciint.2013.10.032 |
| [112] |
Pröve P-L., Jopp-van Well E., Stanczus B. et al. Automated segmentation of the knee for age assessment in 3D MR images using convolutional neural networks. Int J Legal Med. 2019; 133(4):1191-1205. doi:10.1007/s00414-018-1953-y |
| [113] |
O’Connor J.E., Bogue C., Spence L.D., Last J. A method to establish the relationship between chronological age and stage of union from radiographic assessment of epiphyseal fusion at the knee: an Irish population study // J Anatomy. 2008. Vol. 212, N 2. P. 198–209. doi: 10.1111/j.1469-7580.2007.00847.x |
| [114] |
O’Connor JE, Bogue C, Spence LD, Last J. A method to establish the relationship between chronological age and stage of union from radiographic assessment of epiphyseal fusion at the knee: an Irish population study. J Anatomy. 2008;212(2):198–209. doi: 10.1111/j.1469-7580.2007.00847.x |
| [115] |
Ottow C., Schulz R., Pfeiffer H., Heindel W., Schmeling A., Vieth V. Forensic age estimation by magnetic resonance imaging of the knee: the definite relevance in bony fusion of the distal femoral- and the proximal tibial epiphyses using closest-to-bone T1 TSE sequence. Eur Radiol. 2017; 27(12):5041-5048. doi:10.1007/s00330-017-4880-2 |
| [116] |
O’Connor J.E., Coyle J., Spence L.D., Last J. Epiphyseal maturity indicators at the knee and their relationship to chronological age: results of an Irish population study // Clin Anat. 2013. Vol. 26, N 6. P. 755–767. doi: 10.1002/ca.22122 |
| [117] |
O’Connor JE, Coyle J, Spence LD, Last J. Epiphyseal maturity indicators at the knee and their relationship to chronological age: results of an Irish population study. Clin Anat. 2013;26(6):755–767. doi: 10.1002/ca.22122 |
| [118] |
O’Connor J.E., Coyle J., Bogue C., Spence L.D., Last J. Age prediction formulae from radiographic assessment of skeletal maturation at the knee in an Irish population. Forensic Science International. 2014; 234:188.e1-188.e8. doi:10.1016/j.forsciint.2013.10.032 |
| [119] |
Mauer M.A., Well E.J., Herrmann J., et al. Automated age estimation of young individuals based on 3D knee MRI using deep learning // Int J Legal Med. 2021. Vol. 135, N 2. P. 649–663. EDN: XWYSLD doi: 10.1007/s00414-020-02465-z |
| [120] |
Mauer MA, Well EJ, Herrmann J, et al. Automated age estimation of young individuals based on 3D knee MRI using deep learning. Int J Legal Med. 2021;135(2):649–663. EDN: XWYSLD doi: 10.1007/s00414-020-02465-z |
| [121] |
O’Connor J.E., Bogue C., Spence L.D., Last J. A method to establish the relationship between chronological age and stage of union from radiographic assessment of epiphyseal fusion at the knee: an Irish population study. J Anatomy. 2008; 212(2):198-209. doi:10.1111/j.1469-7580.2007.00847.x |
| [122] |
Maggio A. The skeletal age estimation potential of the knee: current scholarship and future directions for research // Journal of Forensic Radiology and Imaging. 2017. Vol. 9. P. 13–15. doi: 10.1016/j.jofri.2017.05.002 |
| [123] |
Maggio A. The skeletal age estimation potential of the knee: current scholarship and future directions for research. Journal of Forensic Radiology and Imaging. 2017;9:13–15. doi: 10.1016/j.jofri.2017.05.002 |
| [124] |
O’Connor J.E., Coyle J., Spence L.D., Last J. Epiphyseal maturity indicators at the knee and their relationship to chronological age: Results of an Irish population study: Epiphyseal Maturity Indicators at the Knee. Clin Anat. 2013; 26(6):755-767. doi:10.1002/ca.22122 |
| [125] |
Kvist O.F., Dallora A.L., Nilsson O., et al. Comparison of reliability of magnetic resonance imaging using cartilage and T1-weighted sequences in the assessment of the closure of the growth plates at the knee // Acta Radiologica Open. 2020. Vol. 9, N 9. P. 205846012096273. doi: 10.1177/2058460120962732 |
| [126] |
Kvist OF, Dallora AL, Nilsson O, et al. Comparison of reliability of magnetic resonance imaging using cartilage and T1-weighted sequences in the assessment of the closure of the growth plates at the knee. Acta Radiologica Open. 2020;9(9):205846012096273. doi: 10.1177/2058460120962732 |
| [127] |
Mauer M.A. der, Well E.J., Herrmann J. et al. Automated age estimation of young individuals based on 3D knee MRI using deep learning. Int J Legal Med. 2021; 135(2):649-663. doi:10.1007/s00414-020-02465-z |
| [128] |
Krämer J.A., Schmidt S., Jürgens K.U., et al. The use of magnetic resonance imaging to examine ossification of the proximal tibial epiphysis for forensic age estimation in living individuals // Forensic Sci Med Pathol. 2014. Vol. 10, N 3. P. 306–313. EDN: MNZHSJ doi: 10.1007/s12024-014-9559-2 |
| [129] |
Krämer JA, Schmidt S, Jürgens KU, et al. The use of magnetic resonance imaging to examine ossification of the proximal tibial epiphysis for forensic age estimation in living individuals. Forensic Sci Med Pathol. 2014;10(3):306–313. EDN: MNZHSJ doi: 10.1007/s12024-014-9559-2 |
| [130] |
Maggio A. The skeletal age estimation potential of the knee: Current scholarship and future directions for research. Journal of Forensic Radiology and Imaging. 2017; 9:13-15. doi:10.1016/j.jofri.2017.05.002 |
| [131] |
Herrmann J., Säring D., Auf der Mauer M., et al. Forensic age assessment of the knee: proposal of a new classification system using two-dimensional ultrasound volumes and comparison to MRI // Eur Radiol. 2021. Vol. 31, N 5. P. 3237–3247. EDN: SMLIFB doi: 10.1007/s00330-020-07343-1 |
| [132] |
Herrmann J, Säring D, Auf der Mauer M, et al. Forensic age assessment of the knee: proposal of a new classification system using two-dimensional ultrasound volumes and comparison to MRI. Eur Radiol. 2021;31(5):3237–3247. EDN: SMLIFB doi: 10.1007/s00330-020-07343-1 |
| [133] |
Kvist O.F., Dallora A.L., Nilsson O, et al. Comparison of reliability of magnetic resonance imaging using cartilage and T1-weighted sequences in the assessment of the closure of the growth plates at the knee. Acta Radiologica Open. 2020; 9(9):205846012096273. doi:10.1177/2058460120962732 |
| [134] |
Hackman L., Black S. Age estimation from radiographic images of the knee // J Forensic Sci. 2013. Vol. 58, N 3. P. 732–737. doi: 10.1111/1556-4029.12077 |
| [135] |
Hackman L, Black S. Age estimation from radiographic images of the knee. J Forensic Sci. 2013;58(3):732–737. doi: 10.1111/1556-4029.12077 |
| [136] |
Krämer J.A., Schmidt S., Jürgens K.-U., Lentschig M., Schmeling A., Vieth V. The use of magnetic resonance imaging to examine ossification of the proximal tibial epiphysis for forensic age estimation in living individuals. Forensic Sci Med Pathol. 2014; 10(3):306-313. doi:10.1007/s12024-014-9559-2 |
| [137] |
Gurses M.S., Altinsoy H.B. Evaluation of distal femoral epiphysis and proximal tibial epiphysis ossification using the Vieth method in living individuals: applicability in the estimation of forensic age // Australian Journal of Forensic Sciences. 2020. Vol. 53, N 4. P. 431–447. doi: 10.1080/00450618.2020.1743357 |
| [138] |
Gurses MS., Altinsoy HB. Evaluation of distal femoral epiphysis and proximal tibial epiphysis ossification using the Vieth method in living individuals: applicability in the estimation of forensic age. Australian Journal of Forensic Sciences. 2020;53(4):431–447. doi: 10.1080/00450618.2020.1743357 |
| [139] |
Herrmann J., Säring D., Auf der Mauer M., Groth M., Jopp-van Well E. Forensic age assessment of the knee: proposal of a new classification system using two-dimensional ultrasound volumes and comparison to MRI. Eur Radiol. 2020. doi:10.1007/s00330-020-07343-1 |
| [140] |
Galić I., Mihanović F., Giuliodori A., et al. Accuracy of scoring of the epiphyses at the knee joint (SKJ) for assessing legal adult age of 18 years // Int J Legal Med. 2016. Vol. 130, N 4. P. 1129–1142. EDN: ILSUNB doi: 10.1007/s00414-016-1348-x |
| [141] |
Galić I, Mihanović F, Giuliodori A, et al. Accuracy of scoring of the epiphyses at the knee joint (SKJ) for assessing legal adult age of 18 years. Int J Legal Med. 2016;130(4):1129–1142. EDN: ILSUNB doi: 10.1007/s00414-016-1348-x |
| [142] |
Hackman L., Black S. Age Estimation from Radiographic Images of the Knee. J Forensic Sci. 2013;58(3):732-737. doi:10.1111/1556-4029.12077 |
| [143] |
Fan F., Zhang K., Peng Z., et al. Forensic age estimation of living persons from the knee: comparison of MRI with radiographs // Forensic Science International. 2016. Vol. 268. P. 145–150. doi: 10.1016/j.forsciint.2016.10.002 |
| [144] |
Fan F, Zhang K, Peng Z, et al. Forensic age estimation of living persons from the knee: comparison of MRI with radiographs. Forensic Science International. 2016;268:145–150. doi: 10.1016/j.forsciint.2016.10.002 |
| [145] |
Gurses M.S., Altinsoy H.B. Evaluation of distal femoral epiphysis and proximal tibial epiphysis ossification using the Vieth method in living individuals: applicability in the estimation of forensic age. Australian Journal of Forensic Sciences. 2020:1-17. doi:10.1080/00450618.2020.1743357 |
| [146] |
Faisant M., Rerolle C., Faber C., et al. Is the persistence of an epiphyseal scar of the knee a reliable marker of biological age? // Int J Legal Med. 2015. Vol. 129, N 3. P. 603–608. doi: 10.1007/s00414-014-1130-x |
| [147] |
Faisant M, Rerolle C, Faber C, et al. Is the persistence of an epiphyseal scar of the knee a reliable marker of biological age? Int J Legal Med. 2015;129(3):603–608. doi: 10.1007/s00414-014-1130-x |
| [148] |
Galić I., Mihanović F., Giuliodori A., Conforti F., Cingolani M,. Cameriere R. Accuracy of scoring of the epiphyses at the knee joint (SKJ) for assessing legal adult age of 18 years. Int J Legal Med. 2016;130(4):1129-1142. doi:10.1007/s00414-016-1348-x |
| [149] |
El-Din E.A.A., Mostafa H.E.S., Tantawy E.F., El-Shafei D.A. Magnetic resonance imaging of the proximal tibial epiphysis: could it be helpful in forensic age estimation? // Forensic Sci Med Pathol. 2019. Vol. 15, N 3. P. 352–361. EDN: YMZWYF doi: 10.1007/s12024-019-00116-3 |
| [150] |
El-Din EAA, Mostafa HES, Tantawy EF, El-Shafei DA. Magnetic resonance imaging of the proximal tibial epiphysis: could it be helpful in forensic age estimation? Forensic Sci Med Pathol. 2019;15(3):352–361. EDN: YMZWYF doi: 10.1007/s12024-019-00116-3 |
| [151] |
Fan F., Zhang K., Peng Z., Cui J., Hu N., Deng Z. Forensic age estimation of living persons from the knee: Comparison of MRI with radiographs. Forensic Science International. 2016; 268:145-150. doi:10.1016/j.forsciint.2016.10.002 |
| [152] |
Ekizoglu O., Er A., Bozdag M., et al. Forensic age estimation via magnetic resonance imaging of knee in the Turkish population: use of T1-TSE sequence // Int J Legal Med. 2020. Vol. 135, N 6. P. 1–7. EDN: DURUZB doi: 10.1007/s00414-020-02402-0 |
| [153] |
Ekizoglu O, Er A, Bozdag M, et al. Forensic age estimation via magnetic resonance imaging of knee in the Turkish population: use of T1-TSE sequence. Int J Legal Med. 2020;135(6):1–7. EDN: DURUZB doi: 10.1007/s00414-020-02402-0 |
| [154] |
Faisant M., Rerolle C., Faber C., Dedouit F., Telmon N., Saint-Martin P. Is the persistence of an epiphyseal scar of the knee a reliable marker of biological age? Int J Legal Med. 2015;129(3):603-608. doi:10.1007/s00414-014-1130-x |
| [155] |
Dedouit F., Auriol J., Rousseau H., et al. Age assessment by magnetic resonance imaging of the knee: a preliminary study // Forensic Science International. 2012. Vol. 217, N 1-3. P. 232.e1–232.e7. doi: 10.1016/j.forsciint.2011.11.013 |
| [156] |
Dedouit F, Auriol J, Rousseau H, et al. Age assessment by magnetic resonance imaging of the knee: a preliminary study. Forensic Science International. 2012;217(1-3):232.e1–232.e7. doi: 10.1016/j.forsciint.2011.11.013 |
| [157] |
El-Din E.A.A,. Mostafa H.E.S., Tantawy E.F., El-Shafei D.A. Magnetic resonance imaging of the proximal tibial epiphysis: could it be helpful in forensic age estimation? Forensic Sci Med Pathol. 2019; 15(3):352-361. doi:10.1007/s12024-019-00116-3 |
| [158] |
Dallora A.L., Berglund J.S., Brogren M. et al. Age assessment of youth and young adults using magnetic resonance imaging of the knee: a deep learning approach // JMIR Med Inform. 2019. Vol. 7, N 4. P. e16291. doi: 10.2196/16291 |
| [159] |
Dallora AL, Berglund JS, Brogren M. et al. Age assessment of youth and young adults using magnetic resonance imaging of the knee: a deep learning approach. JMIR Med Inform. 2019;7(4):e16291. doi: 10.2196/16291 |
| [160] |
Ekizoglu O., Er A., Bozdag M. et al. Forensic age estimation via magnetic resonance imaging of knee in the Turkish population: use of T1-TSE sequence. Int J Legal Med, 2020. doi:10.1007/s00414-020-02402-0 |
| [161] |
Dallora A.L., Anderberg P., Kvist O., et al. Bone age assessment with various machine learning techniques: a systematic literature review and meta-analysis // PLoS One. 2019. Vol. 14, N 7. P. e0220242. doi: 10.1371/journal.pone.0220242 |
| [162] |
Dallora AL, Anderberg P, Kvist O, et al. Bone age assessment with various machine learning techniques: a systematic literature review and meta-analysis. PLoS One. 2019;14(7):e0220242. doi: 10.1371/journal.pone.0220242 |
| [163] |
Dedouit F., Auriol J., Rousseau H., Rougé D., Crubézy E., Telmon N.. Age assessment by magnetic resonance imaging of the knee: A preliminary study. Forensic Science International. 2012; 217(1-3):232.e1-232.e7. doi:10.1016/j.forsciint.2011.11.013 |
| [164] |
Daghighi M.H., Pourisa M., Javanpour-Heravi H., et al. Application of knee MRI in forensic age estimation: a retrospective cohort // Radiography (Lond). 2021. Vol. 27, N 1. P. 108–114. EDN: KZPOHH doi: 10.1016/j.radi.2020.06.019 |
| [165] |
Daghighi MH, Pourisa M, Javanpour-Heravi H, et al. Application of knee MRI in forensic age estimation: a retrospective cohort. Radiography (Lond). 2021;27(1):108–114. EDN: KZPOHH doi: 10.1016/j.radi.2020.06.019 |
| [166] |
Dallora A.L., Berglund J.S., Brogren M. et al. Age assessment of youth and young adults using magnetic resonance imaging of the knee: a deep learning approach. JMIR Med Inform. 2019; 7(4):e16291. doi:10.2196/16291 |
| [167] |
Chowdhuri S., Das S., Ghosh R. Estimation of Forensic Age from Bony Fusion of Distal Femoral and Proximal Tibial Epiphyses by MRI of the Knee // Brazilian Journal of Forensic Sciences, Medical Law and Bioethics. 2020. Vol. 9. N 2. P. 185–194. EDN: UOJWYL doi: 10.17063/bjfs9(2)y2020185 |
| [168] |
Chowdhuri S, Das S, Ghosh R. Estimation of Forensic Age from Bony Fusion of Distal Femoral and Proximal Tibial Epiphyses by MRI of the Knee. Brazilian Journal of Forensic Sciences, Medical Law and Bioethics. 2020;9(2):185–194. EDN: UOJWYL doi: 10.17063/bjfs9(2)y2020185 |
| [169] |
Dallora A.L., Anderberg P., Kvist O., Mendes E., Diaz Ruiz S., Sanmartin Berglund J. Bone age assessment with various machine learning techniques: A systematic literature review and meta-analysis. Stoean R, ed. PLoS ONE. 2019; 14(7):e0220242. doi:10.1371/journal.pone.0220242 |
| [170] |
Cameriere R., Cingolani M., Giuliodori A., et al. Radiographic analysis of epiphyseal fusion at knee joint to assess likelihood of having attained 18 years of age // Int J Legal Med. 2012. Vol. 126, N 6. P. 889–899. EDN: LGHBBQ doi: 10.1007/s00414-012-0754-y |
| [171] |
Cameriere R, Cingolani M, Giuliodori A, et al. Radiographic analysis of epiphyseal fusion at knee joint to assess likelihood of having attained 18 years of age. Int J Legal Med. 2012;126(6):889–899. EDN: LGHBBQ doi: 10.1007/s00414-012-0754-y |
| [172] |
Daghighi M.H., Pourisa M., Javanpour-Heravi H. et al. Application of knee MRI in forensic age estimation: A retrospective cohort. Radiography. Published online July 2020:S1078817420301231. doi:10.1016/j.radi.2020.06.019 |
| [173] |
Boeyer M.E., Ousley S.D. Skeletal assessment and secular changes in knee development: a radiographic approach // Am J Phys Anthropol. 2017. Vol. 162, N 2. P 229–240. doi: 10.1002/ajpa.23110 |
| [174] |
Boeyer ME, Ousley SD. Skeletal assessment and secular changes in knee development: a radiographic approach. Am J Phys Anthropol. 2017;162(2):229–240. doi: 10.1002/ajpa.23110 |
| [175] |
Chowdhuri S., Das S., Ghosh R. Estimation of Forensic Age from Bony Fusion of Distal Femoral and Proximal Tibial Epiphyses by MRI of the Knee. BJFS. 2020; 9(2):185-194. doi:10.17063/bjfs9(2)y2020185 |
| [176] |
Mauer M., Säring D., Stanczus B., et al. A 2-year follow-up MRI study for the evaluation of an age estimation method based on knee bone development // Int J Legal Med. 2019. Vol. 133, N 1. P. 205–215. EDN: PKZYZS doi: 10.1007/s00414-018-1826-4 |
| [177] |
Mauer M, Säring D, Stanczus B, et al. A 2-year follow-up MRI study for the evaluation of an age estimation method based on knee bone development. Int J Legal Med. 2019;133(1):205–215. EDN: PKZYZS doi: 10.1007/s00414-018-1826-4 |
| [178] |
Cameriere R., Cingolani M., Giuliodori A., De Luca S., Ferrante L. Radiographic analysis of epiphyseal fusion at knee joint to assess likelihood of having attained 18 years of age. Int J Legal Med. 2012; 126(6):889-899. doi:10.1007/s00414-012-0754-y |
| [179] |
Altinsoy H.B., Alatas O., Gurses M.S., Turkmen Inanir N. Forensic age estimation in living individuals by 1.5T magnetic resonance imaging of the knee: a retrospective MRI study // Australian Journal of Forensic Sciences. 2020. Vol. 52, N 4. P. 439–453. doi: 10.1080/00450618.2018.1545868 |
| [180] |
Altinsoy HB, Alatas O, Gurses MS, Turkmen Inanir N. Forensic age estimation in living individuals by 1.5T magnetic resonance imaging of the knee: a retrospective MRI study. Australian Journal of Forensic Sciences. 2020;52(4):439–453. doi: 10.1080/00450618.2018.1545868 |
| [181] |
Boeyer M.E., Ousley S.D. Skeletal assessment and secular changes in knee development: a radiographic approach: Boeyer and Ousley. Am J Phys Anthropol. 2017;162(2):229-240. doi:10.1002/ajpa.23110 |
| [182] |
Alatas O., Altınsoy H.B., Gurses M.S., Balci A. Evaluation of knee ossification on 1.5 T magnetic resonance images using the method of Vieth et al.: a retrospective magnetic resonance imaging study // Rechtsmedizin. 2021. Vol. 31, N 1. P. 50–58. EDN: LGFDPO doi: 10.1007/s00194-020-00432-x |
| [183] |
Alatas O, Altınsoy HB, Gurses MS, Balci A. Evaluation of knee ossification on 1.5 T magnetic resonance images using the method of Vieth et al.: a retrospective magnetic resonance imaging study. Rechtsmedizin. 2021;31(1):50–58. EDN: LGFDPO doi: 10.1007/s00194-020-00432-x |
| [184] |
Mauer M., Säring D., Stanczus B., Herrmann J., Groth M., Jopp-van Well E. A 2-year follow-up MRI study for the evaluation of an age estimation method based on knee bone development. Int J Legal Med. 2019;133(1):205-215. doi:10.1007/s00414-018-1826-4 |
| [185] |
Uygun B., Kaya K., Köse S., et al. Applicability of magnetic resonance imaging of the knee in forensic age estimation // Am J Forensic Med Pathol. 2021. Vol. 42, N 2. P. 147–154. doi: 10.1097/PAF.0000000000000634 |
| [186] |
Uygun B, Kaya K, Köse S, et al. Applicability of magnetic resonance imaging of the knee in forensic age estimation. Am J Forensic Med Pathol. 2021;42(2):147–154. doi: 10.1097/PAF.0000000000000634 |
| [187] |
Altinsoy H.B., Alatas O., Gurses M.S., Turkmen Inanir N. Forensic age estimation in living individuals by 1.5T magnetic resonance imaging of the knee: a retrospective MRI study. Australian Journal of Forensic Sciences. 2020; 52(4):439-453. doi:10.1080/00450618.2018.1545868 |
| [188] |
Vieth V., Schulz R., Heindel W. et al. Forensic age assessment by 3.0T MRI of the knee: proposal of a new MRI classification of ossification stages // Eur Radiol. 2018. Vol. 28, N 8. P. 3255–3262. EDN: DGCWBR doi: 10.1007/s00330-017-5281-2 |
| [189] |
Vieth V, Schulz R, Heindel W. et al. Forensic age assessment by 3.0T MRI of the knee: proposal of a new MRI classification of ossification stages. Eur Radiol. 2018;28(8):3255–3262. EDN: DGCWBR doi: 10.1007/s00330-017-5281-2 |
| [190] |
Alatas O., Altınsoy H.B., Gurses M.S., Balci A. Evaluation of knee ossification on 1.5 T magnetic resonance images using the method of Vieth et al.: A retrospective magnetic resonance imaging study. Rechtsmedizin. 2021; 31(1):50-58. doi:10.1007/s00194-020-00432-x |
| [191] |
Ekizoglu O., Hocaoglu E., Inci E., et al. Forensic age estimation via 3-T magnetic resonance imaging of ossification of the proximal tibial and distal femoral epiphyses: use of a T2-weighted fast spin-echo technique // Forensic Science International. 2016. Vol. 260. P. 102.e1–102.e7. doi: 10.1016/j.forsciint.2015.12.006 |
| [192] |
Ekizoglu O, Hocaoglu E, Inci E, et al. Forensic age estimation via 3-T magnetic resonance imaging of ossification of the proximal tibial and distal femoral epiphyses: use of a T2-weighted fast spin-echo technique. Forensic Science International. 2016;260:102.e1–102.e7. doi: 10.1016/j.forsciint.2015.12.006 |
| [193] |
Uygun B., Kaya K., Köse S., Ekizoğlu O., Hilal A. Applicability of Magnetic Resonance Imaging of the Knee in Forensic Age Estimation. Am J Forensic Med Pathol. 2021; 42(2):147-154. doi:10.1097/PAF.0000000000000634 |
| [194] |
Dogaroiu C., Avramoiu M. Correlation between chronological age and the stage of union of the distal femur and proximal tibia epiphyses in a Romanian sample population // Rom J Leg Med. 2015. Vol. 23. P. 171–176. doi: 10.4323/rjlm.2015.171 |
| [195] |
Dogaroiu C, Avramoiu M. Correlation between chronological age and the stage of union of the distal femur and proximal tibia epiphyses in a Romanian sample population. Rom J Leg Med. 2015;23:171–176. doi: 10.4323/rjlm.2015.171 |
| [196] |
Vieth V., Schulz R., Heindel W. et al. Forensic age assessment by 3.0T MRI of the knee: proposal of a new MRI classification of ossification stages. Eur Radiol. 2018;28(8):3255-3262. doi:10.1007/s00330-017-5281-2 |
| [197] |
Aly S.M., Shrestha B., Hong D.J., et al. Identification of age and sex based on knee radiography // Forensic Science International. 2016. Vol. 267. P. 231.e1–231.e7. doi: 10.1016/j.forsciint.2016.08.001 |
| [198] |
Aly SM, Shrestha B, Hong DJ, et al. Identification of age and sex based on knee radiography. Forensic Science International. 2016;267:231.e1–231.e7. doi: 10.1016/j.forsciint.2016.08.001 |
| [199] |
Ekizoglu O., Hocaoglu E., Inci E., Can I.O., Aksoy S., Kazimoglu C. Forensic age estimation via 3-T magnetic resonance imaging of ossification of the proximal tibial and distal femoral epiphyses: Use of a T2-weighted fast spin-echo technique. Forensic Science International. 2016; 260:102.e1-102.e7. doi:10.1016/j.forsciint.2015.12.006 |
| [200] |
Margalit A., Cottrill E., Nhan D., et al. The spatial order of physeal maturation in the normal human knee using magnetic resonance imaging // J Pediatr Orthop. 2019. Vol. 39, N 4. P. e318–e322. doi: 10.1097/BPO.0000000000001298 |
| [201] |
Margalit A, Cottrill E, Nhan D, et al. The spatial order of physeal maturation in the normal human knee using magnetic resonance imaging. J Pediatr Orthop. 2019;39(4):e318–e322. doi: 10.1097/BPO.0000000000001298 |
| [202] |
Dogaroiu C., Avramoiu M. Correlation between chronological age and the stage of union of the distal femur and proximal tibia epiphyses in a Romanian sample population. RJLM. 2015; 23(3):171-176. doi:10.4323/rjlm.2015.171 |
| [203] |
Krämer J.A., Schmidt S., Jürgens K.U., et al. Forensic age estimation in living individuals using 3.0 T MRI of the distal femur // Int J Legal Med. 2014. Vol. 128, N 3. P. 509–514. EDN: FCBINB doi: 10.1007/s00414-014-0967-3 |
| [204] |
Krämer JA, Schmidt S, Jürgens KU, et al. Forensic age estimation in living individuals using 3.0 T MRI of the distal femur. Int J Legal Med. 2014;128(3):509–514. EDN: FCBINB doi: 10.1007/s00414-014-0967-3 |
| [205] |
Aly S.M., Shrestha B., Hong D.J., Omran A., Wang W. Identification of age and sex based on knee radiography. Forensic Science International. 2016; 267:231.e1-231.e7. doi:10.1016/j.forsciint.2016.08.001 |
| [206] |
Kellinghaus M., Schulz R., Vieth V., et al. Enhanced possibilities to make statements on the ossification status of the medial clavicular epiphysis using an amplified staging scheme in evaluating thin-slice CT scans // Int J Legal Med. 2010. Vol. 124, N 4.P. 321–325. EDN: DHXACF doi: 10.1007/s00414-010-0448-2 |
| [207] |
Kellinghaus M, Schulz R, Vieth V, et al. Enhanced possibilities to make statements on the ossification status of the medial clavicular epiphysis using an amplified staging scheme in evaluating thin-slice CT scans. Int J Legal Med. 2010;124(4):321–325. EDN: DHXACF doi: 10.1007/s00414-010-0448-2 |
| [208] |
Margalit A., Cottrill E., Nhan D., Yu L., Tang X., Fritz J., Lee R.J. The Spatial Order of Physeal Maturation in the Normal Human Knee Using Magnetic Resonance Imaging. J Pediatr Orthop. 2019;39(4):e318-e322. doi: 10.1097/BPO.0000000000001298. |
| [209] |
Schmeling A., Schulz R., Reisinger W., et al. Studies on the time frame for ossification of the medial clavicular epiphyseal cartilage in conventional radiography // Int J Legal Med. 2004. Vol. 118, N 1. P. 5–8. doi: 10.1007/s00414-003-0404-5 |
| [210] |
Schmeling A, Schulz R, Reisinger W, et al. Studies on the time frame for ossification of the medial clavicular epiphyseal cartilage in conventional radiography. Int J Legal Med. 2004;118(1):5–8. doi: 10.1007/s00414-003-0404-5 |
| [211] |
Krämer J.A., Schmidt S., Jürgens K.U., Lentschig M., Schmeling A., Vieth V. Forensic age estimation in living individuals using 3.0 T MRI of the distal femur. Int J Legal Med. 2014; 128(3):509-14. doi: 10.1007/s00414-014-0967-3. |
| [212] |
De Tobel J., Bauwens J., Parmentier G.I.L., et al. Magnetic resonance imaging for forensic age estimation in living children and young adults: a systematic review // Pediatr Radiol. 2020. Vol. 50, N 12. P. 1691–1708. EDN: LQFRDT doi: 10.1007/s00247-020-04709-x |
| [213] |
De Tobel J, Bauwens J, Parmentier GIL, et al. Magnetic resonance imaging for forensic age estimation in living children and young adults: a systematic review. Pediatr Radiol. 2020;50(12):1691–1708. EDN: LQFRDT doi: 10.1007/s00247-020-04709-x |
| [214] |
Kellinghaus M., Schulz R., Vieth V., Schmidt S., Pfeiffer H., Schmeling A. Enhanced possibilities to make statements on the ossificationstatusofthemedialclavicularepiphysisusinganamplifiedstaging scheme in evaluating thin-slice CT scans. Int J Legal Med.2010; 124: 321–325 |
| [215] |
Boldsen J.L., Milner G.R., Konigsberg L.W., Wood J.W. Transition analysis: a new method for estimating age from skeletons. В: Hoppa R.D., Vaupel J.W., (eds). Paleodemography: age distributions from skeletal samples. Cambridge University Press: Cambridge, 2002. P. 73–106. |
| [216] |
Boldsen JL, Milner GR, Konigsberg LW, Wood JW. Transition analysis: a new method for estimating age from skeletons. In: Hoppa R.D., Vaupel J.W., (eds). Paleodemography: age distributions from skeletal samples. Cambridge University Press: Cambridge, 2002:73–106. |
| [217] |
Schmeling A., Schulz R., Reisinger W., Muhler M., Wernecke K.D., Geserick G. Studies on the time frame for ossification of the medial clavicular epiphyseal cartilage in conventional radiography. Int J Legal Med.2004; 118:5 –8 |
| [218] |
Золотенкова Г.В., Рогачев А.И., Пиголкин Ю.И., и др. Классификация возраста в судебной медицине с использованием методов машинного обучения // Современные технологии в медицине. 2022. Т. 14, № 1. С. 15–24. EDN: WRMKYT doi: 10.17691/stm2022.14.1.02 |
| [219] |
Zolotenkova GV, Rogachev AI, Pigolkin YuI, et al. Age сlassification in forensic medicine using machine learning techniques. Sovremennye tehnologii v medicine. 2022;14(1):15–24. EDN: WRMKYT doi: 10.17691/stm2022.14.1.02 |
| [220] |
De Tobel J., Bauwens J., Parmentier G.I.L., Franco A., Pauwels N.S., Verstraete K.L., Thevissen P.W. Magnetic resonance imaging for forensic age estimation in living children and young adults: a systematic review. Pediatr Radiol. 2020;50(12):1691-1708. doi: 10.1007/s00247-020-04709-x. |
| [221] |
Boldsen J.L., Milner G.R., Konigsberg L.W., Wood J.W. Transition analysis: a new method for estimating age from skeletons. In: Hoppa RD, Vaupel JW (eds) Paleodemography: age distributions from skeletal samples. Cambridge University Press, Cambridge; 2002 :73–106 |
| [222] |
Zolotenkova G.V., Rogachev A.I., Pigolkin Y.I., Edelev I.S., Borshchevskaya V.N., Cameriere R. Age сlassification in forensic medicine using machine learning techniques. Sovremennye tehnologii v medicine 2022; 14(1): 15. https://doi.org/10.17691/stm2022.14.1.02 |
| [223] |
Zolotenkov DD, Trufanov MI, Solodovnikov VI. Individual age determination based on computed tomography knee analysis using artificial neural networks and computer vision: Preliminary results. Russian Journal of Forensic Medicine. 2023;9(4):403–412. DOI: https://doi.org/10.17816/fm11915 |
Eco-Vector
/
| 〈 |
|
〉 |