Genetic problems of DNA portrait as part of DNA phenotyping: A review
Alexey V. Chemeris , Airat A. Khalikov , Ravil R. Garafutdinov , Dmitry A. Chemeris , Assol R. Sakhabutdinova , Aigul F. Khaliullina , Rushan R. Galyautdinov , Rafael H. Sagidullin , Farit G. Aminev
Russian Journal of Forensic Medicine ›› 2024, Vol. 10 ›› Issue (3) : 398 -410.
Genetic problems of DNA portrait as part of DNA phenotyping: A review
Forensic DNA databases are beneficial for investigating crimes and allow identifying a person using biological traces, provided that information about him/her is already available in the form of a short tandem repeat profile. The same is true for unidentified corpses. When such information is missing from the database, DNA phenotyping can be used. A person’s appearance can be reconstructed based on his DNA, which is already a finding application in forensic practice. Considerable progress is achieved when the hair and eye color, skin pigmentation, and some other features are established. However, the main interest is in the human face. However, developments in this area are limited. The main issue is that multiple genes are responsible for facial features, including a pleiotropic effect. The emergence of such a method such as genome-wide association study made it possible to analyze many gene loci at once for the presence of single-nucleotide substitutions associated with certain genes involved in the formation of a person’s face. However, sequencing of two genomes (or exomes) of each person inherited from the father and mother with phased haplotype assembly of their sequences can be more informative. With this approach, the accurate selection of objects in the form of a large number of twins and their closest relatives is critical, because twins may carry the same nucleotide substitutions, which largely determine their external similarity. Another cohort should be families in which children are very similar to their parents. In this case, it is crucial to conduct triosequencing with phased assembly of their diploid genomes (exomes). Genetic information obtained in this way, which is processed using machine learning and artificial intelligence, allow us to “reach” the necessary genes, increasing the reliability of such DNA portraits.
forensic DNA phenotyping / facial morphology / genome / exome / sequencing / forensic databases
| [1] |
Chemeris AV, Aminev FG, Garafutdinov RR, et al. DNA criminalistics. Moscow: Nauka; 2022. 466 р. (In Russ). EDN: FVXBBD |
| [2] |
Чемерис А.В., Аминев Ф.Г., Гарафутдинов Р.Р., и др. ДНК-криминалистика. Москва: Наука, 2022. 466 с. EDN: FVXBBD |
| [3] |
Chemeris AV, Aminev FG, Garafutdinov RR, et al. DNA criminalistics. Moscow: Nauka; 2022. 466 р. (In Russ). EDN: FVXBBD |
| [4] |
Dabas P, Jain S, Khajuria H, Nayak BP. Forensic DNA phenotyping: Inferring phenotypic traits from crime scene DNA. J Forensic Leg Med. 2022;88:102351. EDN: VQNDST doi: 10.1016/j.jflm.2022.102351 |
| [5] |
Dabas P., Jain S., Khajuria H., Nayak B.P. Forensic DNA phenotyping: Inferring phenotypic traits from crime scene DNA // J Forensic Leg Med. 2022. Vol. 88. P. 102351. EDN: VQNDST doi: 10.1016/j.jflm.2022.102351 |
| [6] |
Dabas P, Jain S, Khajuria H, Nayak BP. Forensic DNA phenotyping: Inferring phenotypic traits from crime scene DNA. J Forensic Leg Med. 2022;88:102351. EDN: VQNDST doi: 10.1016/j.jflm.2022.102351 |
| [7] |
Kayser M, Branicki W, Parson W, Phillips C. Recent advances in Forensic DNA Phenotyping of appearance, ancestry and age. Forensic Sci Int Genet. 2023;65:102870. EDN: FBGHRP doi: 10.1016/j.fsigen.2023.102870 |
| [8] |
Kayser M., Branicki W., Parson W., Phillips C. Recent advances in Forensic DNA Phenotyping of appearance, ancestry and age // Forensic Sci Int Genet. 2023. Vol. 65. P. 102870. EDN: FBGHRP doi: 10.1016/j.fsigen.2023.102870 |
| [9] |
Kayser M, Branicki W, Parson W, Phillips C. Recent advances in Forensic DNA Phenotyping of appearance, ancestry and age. Forensic Sci Int Genet. 2023;65:102870. EDN: FBGHRP doi: 10.1016/j.fsigen.2023.102870 |
| [10] |
Wang Z, Fu G, Ma G, et al. The association between DNA methylation and human height and a prospective model of DNA methylation-based height prediction. Hum Genet. 2024;143(3):401–421. EDN: GHIREU doi: 10.1007/s00439-024-02659-0 |
| [11] |
Wang Z., Fu G., Ma G., et al. The association between DNA methylation and human height and a prospective model of DNA methylation-based height prediction // Hum Genet. 2024. Vol. 143, N 3. P. 401–421. EDN: GHIREU doi: 10.1007/s00439-024-02659-0 |
| [12] |
Wang Z, Fu G, Ma G, et al. The association between DNA methylation and human height and a prospective model of DNA methylation-based height prediction. Hum Genet. 2024;143(3):401–421. EDN: GHIREU doi: 10.1007/s00439-024-02659-0 |
| [13] |
Wolinsky H. CSI on steroids: DNA-based phenotyping is helping police derive visual information from crime scene samples to aid in the hunt for suspects. EMBO Rep. 2015;16(7):782–786. doi: 10.15252/embr.201540714 |
| [14] |
Wolinsky H. CSI on steroids: DNA-based phenotyping is helping police derive visual information from crime scene samples to aid in the hunt for suspects // EMBO Rep. 2015. Vol. 16, N 7. P. 782–786. doi: 10.15252/embr.201540714 |
| [15] |
Wolinsky H. CSI on steroids: DNA-based phenotyping is helping police derive visual information from crime scene samples to aid in the hunt for suspects. EMBO Rep. 2015;16(7):782–786. doi: 10.15252/embr.201540714 |
| [16] |
Arnold C. The controversial company using DNA to sketch the faces of criminals. Nature. 2020;585(7824):178–181. doi: 10.1038/d41586-020-02545-5 |
| [17] |
Arnold C. The controversial company using DNA to sketch the faces of criminals // Nature. 2020. Vol. 585, N 7824. P. 178–181. doi: 10.1038/d41586-020-02545-5 |
| [18] |
Arnold C. The controversial company using DNA to sketch the faces of criminals. Nature. 2020;585(7824):178–181. doi: 10.1038/d41586-020-02545-5 |
| [19] |
Pulker H, Lareu MV, Phillips C, Carracedo A. Finding genes that underlie physical traits of forensic interest using genetic tools. Forensic Sci Int Genet. 2007;1(2):100–104. doi: 10.1016/j.fsigen.2007.02.009 |
| [20] |
Pulker H., Lareu M.V., Phillips C., Carracedo A. Finding genes that underlie physical traits of forensic interest using genetic tools // Forensic Sci Int Genet. 2007. Vol. 1, N 2. P. 100–104. doi: 10.1016/j.fsigen.2007.02.009 |
| [21] |
Pulker H, Lareu MV, Phillips C, Carracedo A. Finding genes that underlie physical traits of forensic interest using genetic tools. Forensic Sci Int Genet. 2007;1(2):100–104. doi: 10.1016/j.fsigen.2007.02.009 |
| [22] |
Frudakis T. Molecular photofitting: Predicting ancestry and phenotype using DNA. Chapter 1: Forensic DNA analysis from modest beginnings to molecular photofitting genics genetics genomics and the pertinent population genetics principles. Elsevier; 2010. P. 1–34. |
| [23] |
Frudakis T. Molecular photofitting: Predicting ancestry and phenotype using DNA. Chapter 1: Forensic DNA analysis from modest beginnings to molecular photofitting genics genetics genomics and the pertinent population genetics principles. Elsevier, 2010. P. 1–34. |
| [24] |
Frudakis T. Molecular photofitting: Predicting ancestry and phenotype using DNA. Chapter 1: Forensic DNA analysis from modest beginnings to molecular photofitting genics genetics genomics and the pertinent population genetics principles. Elsevier; 2010. P. 1–34. |
| [25] |
Stephan CN, Caple JM, Guyomarch P, Claes P. An Overview of the latest developments in facial imaging. Forensic Sci Res. 2019;4(1):10–28. EDN: WWXGOA doi: 10.1080/20961790.2018.1519892 |
| [26] |
Stephan C.N., Caple J.M., Guyomarc’h P., Claes P. An overview of the latest developments in facial imaging // Forensic Sci Res. 2019. Vol. 4, N 1. P. 10–28. EDN: WWXGOA doi: 10.1080/20961790.2018.1519892 |
| [27] |
Stephan CN, Caple JM, Guyomarch P, Claes P. An Overview of the latest developments in facial imaging. Forensic Sci Res. 2019;4(1):10–28. EDN: WWXGOA doi: 10.1080/20961790.2018.1519892 |
| [28] |
Walsh S, Liu F, Ballantyne KN, et al. IrisPlex: A sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information. Forensic Sci Int Genet. 2011;5(3):170–180. EDN: OLPRVB doi: 10.1016/j.fsigen.2010.02.004 |
| [29] |
Walsh S., Liu F., Ballantyne K.N., et al. IrisPlex: A sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information // Forensic Sci Int Genet. 2011. Vol. 5, N 3. P. 170–180. EDN: OLPRVB doi: 10.1016/j.fsigen.2010.02.004 |
| [30] |
Walsh S, Liu F, Ballantyne KN, et al. IrisPlex: A sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information. Forensic Sci Int Genet. 2011;5(3):170–180. EDN: OLPRVB doi: 10.1016/j.fsigen.2010.02.004 |
| [31] |
Walsh S, Wollstein A, Liu F, et al. DNA-based eye colour prediction across Europe with the IrisPlex system. Forensic Sci Int Genet. 2012;6(3):330–340. doi: 10.1016/j.fsigen.2011.07.009 |
| [32] |
Walsh S., Wollstein A., Liu F., et al. DNA-based eye colour prediction across Europe with the IrisPlex system // Forensic Sci Int Genet. 2012. Vol. 6, N 3. P. 330–340. doi: 10.1016/j.fsigen.2011.07.009 |
| [33] |
Walsh S, Wollstein A, Liu F, et al. DNA-based eye colour prediction across Europe with the IrisPlex system. Forensic Sci Int Genet. 2012;6(3):330–340. doi: 10.1016/j.fsigen.2011.07.009 |
| [34] |
Stacey G, Bolton B, Doyle A, Griffiths B. DNA fingerprinting: A valuable new technique for the characterisation of cell lines. Cytotechnology. 1992;9(1-3):211–216. EDN: NXPZFZ doi: 10.1007/BF02521748 |
| [35] |
Stacey G., Bolton B., Doyle A., Griffiths B. DNA fingerprinting: A valuable new technique for the characterisation of cell lines // Cytotechnology. 1992. Vol. 9, N 1-3. P. 211–216. EDN: NXPZFZ doi: 10.1007/BF02521748 |
| [36] |
Stacey G, Bolton B, Doyle A, Griffiths B. DNA fingerprinting: A valuable new technique for the characterisation of cell lines. Cytotechnology. 1992;9(1-3):211–216. EDN: NXPZFZ doi: 10.1007/BF02521748 |
| [37] |
Butler JM. Recent developments in Y-short tandem repeat and Y-single nucleotide polymorphism analysis. Forensic Sci Rev. 2003;15(2):91–111. |
| [38] |
Butler J.M. Recent developments in Y-short tandem repeat and Y-single nucleotide polymorphism analysis // Forensic Sci Rev. 2003. Vol. 15, N 2. P. 91–111. |
| [39] |
Butler JM. Recent developments in Y-short tandem repeat and Y-single nucleotide polymorphism analysis. Forensic Sci Rev. 2003;15(2):91–111. |
| [40] |
Yu W, Zhu M, Wang N, et al. An efficient transformer based on global and local self-attention for face photo-sketch synthesis. IEEE Trans Image Process. 2023;22:483–495. EDN: TQJGWL doi: 10.1109/TIP.2022.3229614 |
| [41] |
Yu W., Zhu M., Wang N., et al. An efficient transformer based on global and local self-attention for face photo-sketch synthesis // IEEE Trans Image Process. 2023. Vol. 22. P. 483–495. EDN: TQJGWL doi: 10.1109/TIP.2022.3229614 |
| [42] |
Yu W, Zhu M, Wang N, et al. An efficient transformer based on global and local self-attention for face photo-sketch synthesis. IEEE Trans Image Process. 2023;22:483–495. EDN: TQJGWL doi: 10.1109/TIP.2022.3229614 |
| [43] |
Soares C. Portrait in DNA. Sci Am. 2010;302(5):14–17. doi: 10.1038/scientificamerican0510-14 |
| [44] |
Soares C. Portrait in DNA // Sci Am. 2010. Vol. 302, N 5. P. 14–17. doi: 10.1038/scientificamerican0510-14 |
| [45] |
Soares C. Portrait in DNA. Sci Am. 2010;302(5):14–17. doi: 10.1038/scientificamerican0510-14 |
| [46] |
Pośpiech E, Teisseyre P, Mielniczuk J, Branicki W. Predicting physical appearance from DNA data-towards genomic solutions. Genes (Basel). 2022;13(1):121. EDN: FHZXGC doi: 10.3390/genes13010121 |
| [47] |
Pośpiech E., Teisseyre P., Mielniczuk J., Branicki W. Predicting physical appearance from DNA data-towards genomic solutions // Genes (Basel). 2022. Vol. 13, N 1. P. 121. EDN: FHZXGC doi: 10.3390/genes13010121 |
| [48] |
Pośpiech E, Teisseyre P, Mielniczuk J, Branicki W. Predicting physical appearance from DNA data-towards genomic solutions. Genes (Basel). 2022;13(1):121. EDN: FHZXGC doi: 10.3390/genes13010121 |
| [49] |
Butorina IV, Kosarev SYu. To the question of ‘genomic portrait’ as a method of exposing criminals. In: Materials of scientific conference with international participation: «Nedelya nauki Sankt-Peterburgskogo politekhnicheskogo universiteta Petra Velikogo», Nov, 13–19. Saint Peterburg; 2017. Р. 403–405. (In Russ). EDN: ORTLMB |
| [50] |
Буторина И.В., Косарев С.Ю. К вопросу о «геномном портрете» как методе изобличения преступников // Материалы научной конференции с международным участием: «Неделя науки СПБПУ», 13–19 ноября. Санкт-Петербург, 2017. С. 403–405. EDN: ORTLMB |
| [51] |
Butorina IV, Kosarev SYu. To the question of ‘genomic portrait’ as a method of exposing criminals. In: Materials of scientific conference with international participation: «Nedelya nauki Sankt-Peterburgskogo politekhnicheskogo universiteta Petra Velikogo», Nov, 13–19. Saint Peterburg; 2017. Р. 403–405. (In Russ). EDN: ORTLMB |
| [52] |
Takeuchi T, Suzuki Y, Watabe S, et al. A high-quality, haplotype-phased genome reconstruction reveals unexpected haplotype diversity in a pearl oyster. DNA Res. 2022;29(6):dsac035. EDN: YPMRLY doi: 10.1093/dnares/dsac035 |
| [53] |
Takeuchi T., Suzuki Y., Watabe S., et al. A high-quality, haplotype-phased genome reconstruction reveals unexpected haplotype diversity in a pearl oyster // DNA Res. 2022. Vol. 29, N 6. P. dsac035. EDN: YPMRLY doi: 10.1093/dnares/dsac035 |
| [54] |
Takeuchi T, Suzuki Y, Watabe S, et al. A high-quality, haplotype-phased genome reconstruction reveals unexpected haplotype diversity in a pearl oyster. DNA Res. 2022;29(6):dsac035. EDN: YPMRLY doi: 10.1093/dnares/dsac035 |
| [55] |
Christiansen L, Amini S, Zhang F, et al. Contiguity-preserving transposition sequencing (CPT-Seq) for genome-wide haplotyping, assembly, and single-cell ATAC-Seq. Methods Mol Biol. 2017;1551:207–221. doi: 10.1007/978-1-4939-6750-6_12 |
| [56] |
Christiansen L., Amini S., Zhang F., et al. Contiguity-preserving transposition sequencing (CPT-Seq) for genome-wide haplotyping, assembly, and single-cell ATAC-Seq // Methods Mol Biol. 2017. Vol. 1551. P. 207–221. doi: 10.1007/978-1-4939-6750-6_12 |
| [57] |
Christiansen L, Amini S, Zhang F, et al. Contiguity-preserving transposition sequencing (CPT-Seq) for genome-wide haplotyping, assembly, and single-cell ATAC-Seq. Methods Mol Biol. 2017;1551:207–221. doi: 10.1007/978-1-4939-6750-6_12 |
| [58] |
Chemeris DA, Kuluev BR, Patrushev MV, et al. Progress in sequencing of the complete haplotyperesolved diploid genomes of plants. Biomics. 2023;15(4):279–309. EDN: ZCPOMK doi: 10.31301/2221-6197.bmcs.2023-26 |
| [59] |
Chemeris D.A., Kuluev B.R., Patrushev M.V., et al. Progress in sequencing of the complete haplotyperesolved diploid genomes of plants // Biomics. 2023. Vol. 15, N 4. P. 279–309. EDN: ZCPOMK doi: 10.31301/2221-6197.bmcs.2023-26 |
| [60] |
Chemeris DA, Kuluev BR, Patrushev MV, et al. Progress in sequencing of the complete haplotyperesolved diploid genomes of plants. Biomics. 2023;15(4):279–309. EDN: ZCPOMK doi: 10.31301/2221-6197.bmcs.2023-26 |
| [61] |
Venter JC. Multiple personal genomes await. Nature. 2010;464(7289):676–677. doi: 10.1038/464676a |
| [62] |
Venter J.C. Multiple personal genomes await // Nature. 2010. Vol. 464, N 7289. P. 676–677. doi: 10.1038/464676a |
| [63] |
Venter JC. Multiple personal genomes await. Nature. 2010;464(7289):676–677. doi: 10.1038/464676a |
| [64] |
Jarvis ED, Formenti G, Rhie A, et al.; Human Pangenome Reference Consortium. Semi-automated assembly of high-quality diploid human reference genomes. Nature. 2022;611(7936):519–531. doi: 10.1038/s41586-022-05325-5 |
| [65] |
Jarvis E.D., Formenti G., Rhie A., et al.; Human Pangenome Reference Consortium. Semi-automated assembly of high-quality diploid human reference genomes // Nature. 2022. Vol. 611, N 7936. P. 519–531. doi: 10.1038/s41586-022-05325-5 |
| [66] |
Jarvis ED, Formenti G, Rhie A, et al.; Human Pangenome Reference Consortium. Semi-automated assembly of high-quality diploid human reference genomes. Nature. 2022;611(7936):519–531. doi: 10.1038/s41586-022-05325-5 |
| [67] |
Yang C, Zhou Y, Song Y, et al. The complete and fully-phased diploid genome of a male Han Chinese. Cell Res. 2023;33(10):745–761. EDN: OCELEC doi: 10.1038/s41422-023-00849-5 |
| [68] |
Yang C., Zhou Y., Song Y., et al. The complete and fully-phased diploid genome of a male Han Chinese // Cell Res. 2023. Vol. 33, N 10. P. 745–761. EDN: OCELEC doi: 10.1038/s41422-023-00849-5 |
| [69] |
Yang C, Zhou Y, Song Y, et al. The complete and fully-phased diploid genome of a male Han Chinese. Cell Res. 2023;33(10):745–761. EDN: OCELEC doi: 10.1038/s41422-023-00849-5 |
| [70] |
Porubsky D, Vollger MR, Harvey WT, et al.; Human Pangenome Reference Consortium. Gaps and complex structurally variant loci in phased genome assemblies. Genome Res. 2023;33(4):496–510. EDN: FFXMYI doi: 10.1101/gr.277334.122 |
| [71] |
Porubsky D., Vollger M.R., Harvey W.T., et al.; Human Pangenome Reference Consortium. Gaps and complex structurally variant loci in phased genome assemblies // Genome Res. 2023. Vol. 33, N 4. P. 496–510. EDN: FFXMYI doi: 10.1101/gr.277334.122 |
| [72] |
Porubsky D, Vollger MR, Harvey WT, et al.; Human Pangenome Reference Consortium. Gaps and complex structurally variant loci in phased genome assemblies. Genome Res. 2023;33(4):496–510. EDN: FFXMYI doi: 10.1101/gr.277334.122 |
| [73] |
Kuluev BR, Baymiev AnKh, Gerashchenkov GA, et al. One hundred years of haploid genomes. Now time comes for diploid genomes. Biomics. 2020;12(4):411–434. (In Russ). EDN: WOZCTG doi: 10.31301/2221-6197.bmcs.2020-33 |
| [74] |
Кулуев Б.Р., Баймиев Ан.Х., Геращенков Г.А., и др. Сто лет гаплоидным геномам. Сейчас наступает время диплоидных // Biomics. 2020. Т. 12, № 4. С. 411–434. EDN: WOZCTG doi: 10.31301/2221-6197.bmcs.2020-33 |
| [75] |
Kuluev BR, Baymiev AnKh, Gerashchenkov GA, et al. One hundred years of haploid genomes. Now time comes for diploid genomes. Biomics. 2020;12(4):411–434. (In Russ). EDN: WOZCTG doi: 10.31301/2221-6197.bmcs.2020-33 |
| [76] |
Richmond S, Howe LJ, Lewis S, et al. Facial genetics: A brief overview. Front Genet. 2018;9:462. EDN: UTHSTN doi: 10.3389/fgene.2018.00462 |
| [77] |
Richmond S., Howe L.J., Lewis S., et al. Facial genetics: A brief overview // Front Genet. 2018. Vol. 9. P. 462. EDN: UTHSTN doi: 10.3389/fgene.2018.00462 |
| [78] |
Richmond S, Howe LJ, Lewis S, et al. Facial genetics: A brief overview. Front Genet. 2018;9:462. EDN: UTHSTN doi: 10.3389/fgene.2018.00462 |
| [79] |
Liu F, van der Lijn F, Schurmann C, et al. A genome-wide association study identifies five loci influencing facial morphology in Europeans. PLoS Genet. 2012;8(9):e1002932. doi: 10.1371/journal.pgen.1002932 |
| [80] |
Liu F., van der Lijn F., Schurmann C., et al. A genome-wide association study identifies five loci influencing facial morphology in Europeans // PLoS Genet. 2012. Vol. 8, N 9. P. e1002932. doi: 10.1371/journal.pgen.1002932 |
| [81] |
Liu F, van der Lijn F, Schurmann C, et al. A genome-wide association study identifies five loci influencing facial morphology in Europeans. PLoS Genet. 2012;8(9):e1002932. doi: 10.1371/journal.pgen.1002932 |
| [82] |
Paternoster L, Zhurov AI, Toma AM, et al. Genome-wide association study of three-dimensional facial morphology identifies a variant in PAX3 associated with nasion position. Am J Hum Genet. 2012;90(3):478–485. doi: 10.1016/j.ajhg.2011.12.021 |
| [83] |
Paternoster L., Zhurov A.I., Toma A.M., et al. Genome-wide association study of three-dimensional facial morphology identifies a variant in PAX3 associated with nasion position // Am J Hum Genet. 2012. Vol. 90, N 3. P. 478–485. doi: 10.1016/j.ajhg.2011.12.021 |
| [84] |
Paternoster L, Zhurov AI, Toma AM, et al. Genome-wide association study of three-dimensional facial morphology identifies a variant in PAX3 associated with nasion position. Am J Hum Genet. 2012;90(3):478–485. doi: 10.1016/j.ajhg.2011.12.021 |
| [85] |
Claes P, Shriver MD. Establishing a multidisciplinary context for modeling 3D facial shape from DNA. PLoS Genet. 2014;10(11):e1004725. EDN: UUGMIX doi: 10.1371/journal.pgen.1004725 |
| [86] |
Claes P., Shriver M.D. Establishing a multidisciplinary context for modeling 3D facial shape from DNA // PLoS Genet. 2014. Vol. 10, N 11. P. e1004725. EDN: UUGMIX doi: 10.1371/journal.pgen.1004725 |
| [87] |
Claes P, Shriver MD. Establishing a multidisciplinary context for modeling 3D facial shape from DNA. PLoS Genet. 2014;10(11):e1004725. EDN: UUGMIX doi: 10.1371/journal.pgen.1004725 |
| [88] |
Fagertun J, Wolffhechel K, Pers TH, et al. Predicting facial characteristics from complex polygenic variations. Forensic Sci Int Genet. 2015;19:263–268. doi: 10.1016/j.fsigen.2015.08.004 |
| [89] |
Fagertun J., Wolffhechel K., Pers T.H., et al. Predicting facial characteristics from complex polygenic variations // Forensic Sci Int Genet. 2015. Vol. 19. P. 263–268. doi: 10.1016/j.fsigen.2015.08.004 |
| [90] |
Fagertun J, Wolffhechel K, Pers TH, et al. Predicting facial characteristics from complex polygenic variations. Forensic Sci Int Genet. 2015;19:263–268. doi: 10.1016/j.fsigen.2015.08.004 |
| [91] |
Claes P, Shriver MD. New entries in the lottery of facial GWAS discovery. PLoS Genet. 2016;12(8):e1006250. doi: 10.1371/journal.pgen.1006250 |
| [92] |
Claes P., Shriver M.D. New entries in the lottery of facial GWAS discovery // PLoS Genet. 2016. Vol. 12, N 8. P. e1006250. doi: 10.1371/journal.pgen.1006250 |
| [93] |
Claes P, Shriver MD. New entries in the lottery of facial GWAS discovery. PLoS Genet. 2016;12(8):e1006250. doi: 10.1371/journal.pgen.1006250 |
| [94] |
Qiao L, Yang Y, Fu P, et al. Genome-wide variants of Eurasian facial shape differentiation and a prospective model of DNA based face prediction. J Genet Genomics. 2018;45(8):419–432. doi: 10.1016/j.jgg.2018.07.009 |
| [95] |
Qiao L., Yang Y., Fu P., et al. Genome-wide variants of Eurasian facial shape differentiation and a prospective model of DNA based face prediction // J Genet Genomics. 2018. Vol. 45, N 8. P. 419–432. doi: 10.1016/j.jgg.2018.07.009 |
| [96] |
Qiao L, Yang Y, Fu P, et al. Genome-wide variants of Eurasian facial shape differentiation and a prospective model of DNA based face prediction. J Genet Genomics. 2018;45(8):419–432. doi: 10.1016/j.jgg.2018.07.009 |
| [97] |
Xiong Z, Dankova G, Howe LJ, et al.; International visible trait genetics (VisiGen) consortium. Novel genetic loci affecting facial shape variation in humans. Elife. 2019;8:e49898. doi: 10.7554/eLife.49898 |
| [98] |
Xiong Z., Dankova G., Howe L.J., et al.; International Visible Trait Genetics (VisiGen) Consortium. Novel genetic loci affecting facial shape variation in humans // Elife. 2019. Vol. 8. P. e49898. doi: 10.7554/eLife.49898 |
| [99] |
Xiong Z, Dankova G, Howe LJ, et al.; International visible trait genetics (VisiGen) consortium. Novel genetic loci affecting facial shape variation in humans. Elife. 2019;8:e49898. doi: 10.7554/eLife.49898 |
| [100] |
White JD, Indencleef K, Naqvi S, et al. Insights into the genetic architecture of the human face. Nat Genet. 2021;53(1):45–53. EDN: RZPCXH doi: 10.1038/s41588-020-00741-7 |
| [101] |
White J.D., Indencleef K., Naqvi S., et al. Insights into the genetic architecture of the human face // Nat Genet. 2021. Vol. 53, N 1. P. 45–53. EDN: RZPCXH doi: 10.1038/s41588-020-00741-7 |
| [102] |
White JD, Indencleef K, Naqvi S, et al. Insights into the genetic architecture of the human face. Nat Genet. 2021;53(1):45–53. EDN: RZPCXH doi: 10.1038/s41588-020-00741-7 |
| [103] |
Zhang M, Wu S, Du S, et al. Genetic variants underlying differences in facial morphology in East Asian and European populations. Nat Genet. 2022;54(4):403–411. EDN: LYJLSC doi: 10.1038/s41588-022-01038-7 |
| [104] |
Zhang M., Wu S., Du S., et al. Genetic variants underlying differences in facial morphology in East Asian and European populations // Nat Genet. 2022. Vol. 54, N 4. P. 403–411. EDN: LYJLSC doi: 10.1038/s41588-022-01038-7 |
| [105] |
Zhang M, Wu S, Du S, et al. Genetic variants underlying differences in facial morphology in East Asian and European populations. Nat Genet. 2022;54(4):403–411. EDN: LYJLSC doi: 10.1038/s41588-022-01038-7 |
| [106] |
Adhikari K, Reales G, Smith AJ, et al. A genome-wide association study identifies multiple loci for variation in human ear morphology. Nat Commun. 2015;6:7500. EDN: XQFDRF doi: 10.1038/ncomms8500 |
| [107] |
Adhikari K., Reales G., Smith A.J., et al. A genome-wide association study identifies multiple loci for variation in human ear morphology // Nat Commun. 2015. Vol. 6. P. 7500. EDN: XQFDRF doi: 10.1038/ncomms8500 |
| [108] |
Adhikari K, Reales G, Smith AJ, et al. A genome-wide association study identifies multiple loci for variation in human ear morphology. Nat Commun. 2015;6:7500. EDN: XQFDRF doi: 10.1038/ncomms8500 |
| [109] |
Noreen S, Ballard D, Mehmood T, et al. Evaluation of loci to predict ear morphology using two SNaPshot assays. Forensic Sci Med Pathol. 2023;19(3):335–356. EDN: MORVPQ doi: 10.1007/s12024-022-00545-7 |
| [110] |
Noreen S., Ballard D., Mehmood T., et al. Evaluation of loci to predict ear morphology using two SNaPshot assays // Forensic Sci Med Pathol. 2023. Vol. 19, N 3. P. 335–356. EDN: MORVPQ doi: 10.1007/s12024-022-00545-7 |
| [111] |
Noreen S, Ballard D, Mehmood T, et al. Evaluation of loci to predict ear morphology using two SNaPshot assays. Forensic Sci Med Pathol. 2023;19(3):335–356. EDN: MORVPQ doi: 10.1007/s12024-022-00545-7 |
| [112] |
Ueki M, Takeshita H, Fujihara J, et al. Simple screening method for copy number variations associated with physical features. Leg Med (Tokyo). 2017;25:71–74. doi: 10.1016/j.legalmed.2017.01.006 |
| [113] |
Ueki M., Takeshita H., Fujihara J., et al. Simple screening method for copy number variations associated with physical features // Leg Med (Tokyo). 2017. Vol. 25. P. 71–74. doi: 10.1016/j.legalmed.2017.01.006 |
| [114] |
Ueki M, Takeshita H, Fujihara J, et al. Simple screening method for copy number variations associated with physical features. Leg Med (Tokyo). 2017;25:71–74. doi: 10.1016/j.legalmed.2017.01.006 |
| [115] |
Weinberg SM, Roosenboom J, Shaffer JR, et al. Hunting for genes that shape human faces: Initial successes and challenges for the future. Orthod Craniofac Res. 2019;22(Suppl 1):207–212. doi: 10.1111/ocr.12268 |
| [116] |
Weinberg S.M., Roosenboom J., Shaffer J.R., et al. Hunting for genes that shape human faces: Initial successes and challenges for the future // Orthod Craniofac Res. 2019. Vol. 22, Suppl. 1. P. 207–212. doi: 10.1111/ocr.12268 |
| [117] |
Weinberg SM, Roosenboom J, Shaffer JR, et al. Hunting for genes that shape human faces: Initial successes and challenges for the future. Orthod Craniofac Res. 2019;22(Suppl 1):207–212. doi: 10.1111/ocr.12268 |
| [118] |
Naqvi S, Hoskens H, Wilke F, et al. Decoding the human face: Progress and challenges in understanding the genetics of craniofacial morphology. Annu Rev Genomics Hum Genet. 2022;23(1):383–412. EDN: ZUSQMT doi: 10.1146/annurev-genom-120121-102607 |
| [119] |
Naqvi S., Hoskens H., Wilke F., et al. Decoding the human face: Progress and challenges in understanding the genetics of craniofacial morphology // Annu Rev Genomics Hum Genet. 2022. Vol. 23, N 1. P. 383–412. EDN: ZUSQMT doi: 10.1146/annurev-genom-120121-102607 |
| [120] |
Naqvi S, Hoskens H, Wilke F, et al. Decoding the human face: Progress and challenges in understanding the genetics of craniofacial morphology. Annu Rev Genomics Hum Genet. 2022;23(1):383–412. EDN: ZUSQMT doi: 10.1146/annurev-genom-120121-102607 |
| [121] |
Alshehhi A, Almarzooqi A, Alhammadi K, et al. Advancement in human face prediction using DNA. Genes (Basel). 2023;14(1):136. EDN: IJGMFL doi: 10.3390/genes14010136 |
| [122] |
Alshehhi A., Almarzooqi A., Alhammadi K., et al. Advancement in human face prediction using DNA // Genes (Basel). 2023. Vol. 14, N 1. P. 136. EDN: IJGMFL doi: 10.3390/genes14010136 |
| [123] |
Alshehhi A, Almarzooqi A, Alhammadi K, et al. Advancement in human face prediction using DNA. Genes (Basel). 2023;14(1):136. EDN: IJGMFL doi: 10.3390/genes14010136 |
| [124] |
Hoskens H, Liu D, Naqvi S, et al. 3D facial phenotyping by biometric sibling matching used in contemporary genomic methodologies. PLoS Genet. 2021;17(5):e1009528. doi: 10.1371/journal.pgen.1009528 |
| [125] |
Hoskens H., Liu D., Naqvi S., et al. 3D facial phenotyping by biometric sibling matching used in contemporary genomic methodologies // PLoS Genet. 2021. Vol. 17, N 5. P. e1009528. doi: 10.1371/journal.pgen.1009528 |
| [126] |
Hoskens H, Liu D, Naqvi S, et al. 3D facial phenotyping by biometric sibling matching used in contemporary genomic methodologies. PLoS Genet. 2021;17(5):e1009528. doi: 10.1371/journal.pgen.1009528 |
| [127] |
Crouch DJ, Winney B, Koppen WP, et al. Genetics of the human face: Identification of large-effect single gene variants. Proc Natl Acad Sci USA. 2018;115(4):E676–E685. EDN: YEVKIX doi: 10.1073/pnas.1708207114 |
| [128] |
Crouch D.J., Winney B., Koppen W.P., et al. Genetics of the human face: Identification of large-effect single gene variants // Proc Natl Acad Sci USA. 2018. Vol. 115, N 4. P. E676–E685. EDN: YEVKIX doi: 10.1073/pnas.1708207114 |
| [129] |
Crouch DJ, Winney B, Koppen WP, et al. Genetics of the human face: Identification of large-effect single gene variants. Proc Natl Acad Sci USA. 2018;115(4):E676–E685. EDN: YEVKIX doi: 10.1073/pnas.1708207114 |
| [130] |
Joshi RS, Rigau M, García-Prieto CA, et al. Look-alike humans identified by facial recognition algorithms show genetic similarities. Cell Rep. 2022;40(8):111257. EDN: VXOVUG doi: 10.1016/j.celrep.2022.111257 |
| [131] |
Joshi R.S., Rigau M., García-Prieto C.A., et al. Look-alike humans identified by facial recognition algorithms show genetic similarities // Cell Rep. 2022. Vol. 40, N 8. P. 111257. EDN: VXOVUG doi: 10.1016/j.celrep.2022.111257 |
| [132] |
Joshi RS, Rigau M, García-Prieto CA, et al. Look-alike humans identified by facial recognition algorithms show genetic similarities. Cell Rep. 2022;40(8):111257. EDN: VXOVUG doi: 10.1016/j.celrep.2022.111257 |
| [133] |
Wu W, Zhai G, Xu Z, et al. Whole-exome sequencing identified four loci influencing craniofacial morphology in northern Han Chinese. Hum Genet. 2019;138(6):601–611. EDN: CNXYPC doi: 10.1007/s00439-019-02008-6 |
| [134] |
Wu W., Zhai G., Xu Z., et al. Whole-exome sequencing identified four loci influencing craniofacial morphology in northern Han Chinese // Hum Genet. 2019. Vol. 138, N 6. P. 601–611. EDN: CNXYPC doi: 10.1007/s00439-019-02008-6 |
| [135] |
Wu W, Zhai G, Xu Z, et al. Whole-exome sequencing identified four loci influencing craniofacial morphology in northern Han Chinese. Hum Genet. 2019;138(6):601–611. EDN: CNXYPC doi: 10.1007/s00439-019-02008-6 |
Eco-Vector
/
| 〈 |
|
〉 |