The potential of synthetic minority oversampling technique to enhance the precision of gender prediction: an investigation of artificial neural networks with cephalometry
Vitria Wuri Handayani , Ahmad Yudianto , MAR Mieke Sylvia , Rulaningtyas Riries , Muhammad Rasyad Caesarardhi , Ramadhan Putra
Russian Journal of Forensic Medicine ›› 2024, Vol. 10 ›› Issue (2) : 139 -151.
The potential of synthetic minority oversampling technique to enhance the precision of gender prediction: an investigation of artificial neural networks with cephalometry
BACKGROUND: When creating models utilizing artificial neural networks, the quantity of training data and the distribution of data need to be considered, particularly when making gender predictions.
AIM: This study seeks to determine the potential impact of using the synthetic minority oversampling technique (SMOTE) on gender prediction using the artificial neural networks model.
MATERIALS AND METHODS: The current study utilized a dataset consisting of 297 cephalometric measurements from Indonesian patients, comprising 229 samples from females and 68 samples from males. WebCeph is used to measure certain parameters, such as Sella-Nation-Point A (SNA) angle, mandibular length, mandibular angle, Sella-Glabella-Point A (SGA) angle, and diagnosis. Data processing and artificial neural networks model creation were conducted using Python.
RESULTS: The gender identification accuracy of the artificial neural networks model is 87% for females and 0% for males, resulting in an overall average accuracy of 78%. When using SMOTE, the accuracy is 22%, with 0% for females and 37% for males. However, when using SMOTE and normalization, the accuracy increases to 71%, with 82% for females and 30% for males. The accuracy of normalization without SMOTE is 76%, with 86% for females and 14% for males.
CONCLUSIONS: This research has proven the efficacy of SMOTE in improving the classification of male matrices. Nevertheless, this study reveals that the overall accuracy results of SMOTE are suboptimal in comparison to the absence of SMOTE and normalization. The application of data balancing strategies is necessary to achieve optimal accuracy in gender prediction when artificial neural networks, and other parameters must be applied.
artificial neural networks / cephalometry / gender determination / SMOTE
| [1] |
Tahir H. Book of abstracts: The 4th Indonesia International Symposium of Forensic Odontology "Incorporating recent advances and new technologies for delivering good evidence in forensic odontology". Amerta Media; 2023. P. 45. |
| [2] |
Tahir H. Book of abstracts: The 4th Indonesia International Symposium of Forensic Odontology "Incorporating recent advances and new technologies for delivering good evidence in forensic odontology". Amerta Media, 2023. P. 45. |
| [3] |
Tahir H. Book of abstracts: The 4th Indonesia International Symposium of Forensic Odontology "Incorporating recent advances and new technologies for delivering good evidence in forensic odontology". Amerta Media; 2023. P. 45. |
| [4] |
Subramanian AK, Chen Y, Almalki A, et al. Cephalometric analysis in orthodontics using artificial intelligence: A comprehensive review. Biomed Res Int. 2022;2022:1880113. EDN: VCAUJB doi: 10.1155/2022/1880113 |
| [5] |
Subramanian A.K., Chen Y., Almalki A., et al. Cephalometric analysis in orthodontics using artificial intelligence: A comprehensive review // Biomed Res Int. 2022. Vol. 2022. P. 1880113. EDN: VCAUJB doi: 10.1155/2022/1880113 |
| [6] |
Subramanian AK, Chen Y, Almalki A, et al. Cephalometric analysis in orthodontics using artificial intelligence: A comprehensive review. Biomed Res Int. 2022;2022:1880113. EDN: VCAUJB doi: 10.1155/2022/1880113 |
| [7] |
Ruth MS. Sefalometri radiografi dasar. Surabaya: Sagung Seto; 2013. |
| [8] |
Ruth M.S. Sefalometri radiografi dasar. Surabaya: Sagung Seto, 2013. |
| [9] |
Ruth MS. Sefalometri radiografi dasar. Surabaya: Sagung Seto; 2013. |
| [10] |
Indra Sukmana B, Rijaldi F. Buku Ajar Kedokteran Gigi Forensik [Internet]. Vol. VI. 2022. P. 1–79. Available from: https://idndentist.com/article/93 |
| [11] |
Indra Sukmana B, Rijaldi F. Buku ajar kedokteran gigi forensik [Internet]. 2022. Vol. VI. P. 1–79. Available from: https://idndentist.com/article/93 |
| [12] |
Indra Sukmana B, Rijaldi F. Buku Ajar Kedokteran Gigi Forensik [Internet]. Vol. VI. 2022. P. 1–79. Available from: https://idndentist.com/article/93 |
| [13] |
Taner L, Gursoy G, Uzuner F. Does gender have an effect on craniofacial measurements? Turkish J Orthod. 2019;32(2):59–64. doi: 10.5152/TurkJOrthod.2019.18031 |
| [14] |
Taner L., Gursoy G., Uzuner F. Does gender have an effect on craniofacial measurements? // Turkish J Orthod. 2019. Vol. 32, N 2. P. 59–64. doi: 10.5152/TurkJOrthod.2019.18031 |
| [15] |
Taner L, Gursoy G, Uzuner F. Does gender have an effect on craniofacial measurements? Turkish J Orthod. 2019;32(2):59–64. doi: 10.5152/TurkJOrthod.2019.18031 |
| [16] |
Patil V, Vineetha R, Vatsa S, et al. Artificial neural network for gender determination using mandibular morphometric parameters: A comparative retrospective study. Cogent Eng. 2020;7(1):1–12. doi: 10.1080/23311916.2020.1723783 |
| [17] |
Patil V., Vineetha R., Vatsa S., et al. Artificial neural network for gender determination using mandibular morphometric parameters: A comparative retrospective study // Cogent Eng. 2020. Vol. 7, N 1. P. 1–12. doi: 10.1080/23311916.2020.1723783 |
| [18] |
Patil V, Vineetha R, Vatsa S, et al. Artificial neural network for gender determination using mandibular morphometric parameters: A comparative retrospective study. Cogent Eng. 2020;7(1):1–12. doi: 10.1080/23311916.2020.1723783 |
| [19] |
Chen M, Chalita U, Saad W, et al. Artificial neural networks-based machine learning for wireless networks: A tutorial. IEEE Commun Surv Tutorials. 2019;21(4):3039–3071. doi: 10.1109/COMST.2019.2926625 |
| [20] |
Chen M., Chalita U., Saad W., et al. Artificial neural networks-based machine learning for wireless networks: A tutorial. // IEEE Commun Surv Tutorials. 2019. Vol. 21, N 4. P. 3039–3071. doi: 10.1109/COMST.2019.2926625 |
| [21] |
Chen M, Chalita U, Saad W, et al. Artificial neural networks-based machine learning for wireless networks: A tutorial. IEEE Commun Surv Tutorials. 2019;21(4):3039–3071. doi: 10.1109/COMST.2019.2926625 |
| [22] |
Dastres R, Soori M. Artificial neural network systems. Int J Imaging Robot. 2021;2021(2):13–25. |
| [23] |
Dastres R., Soori M. Artificial neural network systems // Int J Imaging Robot. 2021. Vol. 21, N 2. P. 13–25. |
| [24] |
Dastres R, Soori M. Artificial neural network systems. Int J Imaging Robot. 2021;2021(2):13–25. |
| [25] |
Da Silva IN, Hernane SD, Andrade FR, et al. Artificial neural networks: A practical course. Springer Nature: Switzerland; 2017. 252 р. |
| [26] |
Da Silva I.N., Hernane S.D., Andrade F.R., et al. Artificial neural networks: A practical course. Springer Nature: Switzerland, 2017. 252 р. |
| [27] |
Da Silva IN, Hernane SD, Andrade FR, et al. Artificial neural networks: A practical course. Springer Nature: Switzerland; 2017. 252 р. |
| [28] |
Wu Y, Feng J. Development and application of artificial neural network. Wirel Pers Commun. 2018;102(5):1645–1656. doi: 10.1007/s11277-017-5224-x |
| [29] |
Wu Y., Feng J. Development and application of artificial neural network // Wirel Pers Commun. 2018. Vol. 102, N 5. P. 1645–1656. doi: 10.1007/s11277-017-5224-x |
| [30] |
Wu Y, Feng J. Development and application of artificial neural network. Wirel Pers Commun. 2018;102(5):1645–1656. doi: 10.1007/s11277-017-5224-x |
| [31] |
Elreedy D, Atiya AF, Kamalov F. A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning. Mach Learn. 2023;113(7):4903–4923. EDN: KFIOLR doi: 10.1007/s10994-022-06296-4 |
| [32] |
Elreedy D., Atiya A.F., Kamalov F. A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning // Mach Learn. 2023. Vol. 113, N 7. P. 4903–4923. EDN: KFIOLR doi: 10.1007/s10994-022-06296-4 |
| [33] |
Elreedy D, Atiya AF, Kamalov F. A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning. Mach Learn. 2023;113(7):4903–4923. EDN: KFIOLR doi: 10.1007/s10994-022-06296-4 |
| [34] |
Handayani V, Yudianto A, Mieke Sylvia MAR, Rulaningtyas R. Classification of Indonesian adult forensic gender using cephalometric radiography with VGG16 and VGG19: A preliminary research. Acta Odontol Scand. 2024;(83):308–316. doi: 10.2340/aos.v83.40476 |
| [35] |
Handayani W.V., Yudianto A., Mieke Sylvia MAR., Rulaningtyas R. Classification of Indonesian adult forensic gender using cephalometric radiography with VGG16 and VGG19: A preliminary research // Acta Odontol Scand. 2024. N 83. P. 308–316. doi: 10.2340/aos.v83.40476 |
| [36] |
Handayani V, Yudianto A, Mieke Sylvia MAR, Rulaningtyas R. Classification of Indonesian adult forensic gender using cephalometric radiography with VGG16 and VGG19: A preliminary research. Acta Odontol Scand. 2024;(83):308–316. doi: 10.2340/aos.v83.40476 |
| [37] |
Handayani VW. Cephalometry radiology based on rrtificial intelligence model for predict gender determination in unidentified cranium. Universitas Airlangga; 2024. |
| [38] |
Handayani V.W. Cephalometry radiology based on rrtificial intelligence model for predict gender determination in unidentified cranium. Universitas Airlangga, 2024. |
| [39] |
Handayani VW. Cephalometry radiology based on rrtificial intelligence model for predict gender determination in unidentified cranium. Universitas Airlangga; 2024. |
| [40] |
Hapsari RK, Miswanto M, Rulaningtyas R, et al. Modified gray-level haralick texture features for early detection of diabetes mellitus and high cholesterol with iris image. Int J Biomed Imaging. 2022;2022:5336373. EDN: BVEODY doi: 10.1155/2022/5336373 |
| [41] |
Hapsari R.K., Miswanto M., Rulaningtyas R., et al. Modified gray-level haralick texture features for early detection of diabetes mellitus and high cholesterol with iris image // Int J Biomed Imaging. 2022. Vol. 2022. P. 5336373. EDN: BVEODY doi: 10.1155/2022/5336373 |
| [42] |
Hapsari RK, Miswanto M, Rulaningtyas R, et al. Modified gray-level haralick texture features for early detection of diabetes mellitus and high cholesterol with iris image. Int J Biomed Imaging. 2022;2022:5336373. EDN: BVEODY doi: 10.1155/2022/5336373 |
| [43] |
Satish BN, Moolrajani C, Basnaker M, Kumar P. Dental sex dimorphism: Using odontometrics and digital jaw radiography. J Forensic Dent Sci. 2017;9(1):43. doi: 10.4103/jfo.jfds_78_15 |
| [44] |
Satish B.N., Moolrajani C., Basnaker M., Kumar P. Dental sex dimorphism: Using odontometrics and digital jaw radiography // J Forensic Dent Sci. 2017. Vol. 9, N 1. P. 43. doi: 10.4103/jfo.jfds_78_15 |
| [45] |
Satish BN, Moolrajani C, Basnaker M, Kumar P. Dental sex dimorphism: Using odontometrics and digital jaw radiography. J Forensic Dent Sci. 2017;9(1):43. doi: 10.4103/jfo.jfds_78_15 |
| [46] |
Arab MA, Khankeh HR, Mosadeghrad AM, Farrokhi M. Developing a hospital disaster risk management evaluation model. Risk Manag Healthc Policy. 2019;(12):287–296. doi: 10.2147/RMHP.S215444 |
| [47] |
Arab M.A., Khankeh H.R., Mosadeghrad A.M., Farrokhi M. Developing a hospital disaster risk management evaluation model // Risk Manag Healthc Policy. 2019. N 12. P. 287–296. doi: 10.2147/RMHP.S215444 |
| [48] |
Arab MA, Khankeh HR, Mosadeghrad AM, Farrokhi M. Developing a hospital disaster risk management evaluation model. Risk Manag Healthc Policy. 2019;(12):287–296. doi: 10.2147/RMHP.S215444 |
| [49] |
Vahanwala S. Assessment of the effect of dimensions of the mandibular ramus and mental foramen on age and gender using digital panoramic radiographs: A retrospective study. Contemp Clin Dent. 2019;9(3):343–348. doi: 10.4103/ccd.ccd_26_18 |
| [50] |
Vahanwala S. Assessment of the effect of dimensions of the mandibular ramus and mental foramen on age and gender using digital panoramic radiographs: A retrospective study // Contemp Clin Dent. 2019. Vol. 9, N 3. P. 343–348. doi: 10.4103/ccd.ccd_26_18 |
| [51] |
Vahanwala S. Assessment of the effect of dimensions of the mandibular ramus and mental foramen on age and gender using digital panoramic radiographs: A retrospective study. Contemp Clin Dent. 2019;9(3):343–348. doi: 10.4103/ccd.ccd_26_18 |
| [52] |
Tahir H. Book of abstracts: The 4th Indonesia International Symposium of Forensic Odontology "Incorporating recent advances and new technologies for delivering good evidence in forensic odontology". Amerta Media; 2023. P. 36–37. |
| [53] |
Tahir H. Book of abstracts: The 4th Indonesia International Symposium of Forensic Odontology "Incorporating recent advances and new technologies for delivering good evidence in forensic odontology". Amerta Media, 2023. P. 36–37. |
| [54] |
Tahir H. Book of abstracts: The 4th Indonesia International Symposium of Forensic Odontology "Incorporating recent advances and new technologies for delivering good evidence in forensic odontology". Amerta Media; 2023. P. 36–37. |
| [55] |
Bao H, Zhang K, Yu C, et al. Evaluating the accuracy of automated cephalometric analysis based on artificial intelligence. BMC Oral Health. 2023;23(1):191. doi: 10.1186/s12903-023-02881-8 |
| [56] |
Bao H., Zhang K., Yu C., et al. Evaluating the accuracy of automated cephalometric analysis based on artificial intelligence // BMC Oral Health. 2023. Vol. 23, N 1. P. 191. doi: 10.1186/s12903-023-02881-8 |
| [57] |
Bao H, Zhang K, Yu C, et al. Evaluating the accuracy of automated cephalometric analysis based on artificial intelligence. BMC Oral Health. 2023;23(1):191. doi: 10.1186/s12903-023-02881-8 |
| [58] |
Ramezanzade S, Laurentiu T, Bakhshandah A, et al. The efficiency of artificial intelligence methods for finding radiographic features in different endodontic treatments: A systematic review. Acta Odontol Scand. 2022;81(6):422–435. doi: 10.1080/00016357.2022.2158929 |
| [59] |
Ramezanzade S., Laurentiu T., Bakhshandah A., et al. The efficiency of artificial intelligence methods for finding radiographic features in different endodontic treatments: A systematic review // Acta Odontol Scand. 2022. Vol. 81, N 6. P. 422–435. doi: 10.1080/00016357.2022.2158929 |
| [60] |
Ramezanzade S, Laurentiu T, Bakhshandah A, et al. The efficiency of artificial intelligence methods for finding radiographic features in different endodontic treatments: A systematic review. Acta Odontol Scand. 2022;81(6):422–435. doi: 10.1080/00016357.2022.2158929 |
| [61] |
Shung KP. Accuracy, precision, recall or F1? [Internet]. Towards Data Science. 2018 [cited 2023 Sep 2]. Available from: https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9. Accessed: 15.04.2024. |
| [62] |
Shung K.P. Accuracy, precision, recall or F1? [Internet]. Towards Data Science. 2018 [2023 Sep 2]. Режим доступа: https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9. Дата обращения: 15.04.2024. |
| [63] |
Shung KP. Accuracy, precision, recall or F1? [Internet]. Towards Data Science. 2018 [cited 2023 Sep 2]. Available from: https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9. Accessed: 15.04.2024. |
| [64] |
Jeong SH, Yun JP, Yeom HG, et al. Deep learning based discrimination of soft tissue profiles requiring orthognathic surgery by facial photographs. Sci Rep. 2020;10(1):16235. doi: 10.1038/s41598-020-73287-7 |
| [65] |
Jeong S.H., Yun J.P., Yeom H.G., et al. Deep learning based discrimination of soft tissue profiles requiring orthognathic surgery by facial photographs // Sci Rep. 2020. Vol. 10, N 1. P. 16235. doi: 10.1038/s41598-020-73287-7 |
| [66] |
Jeong SH, Yun JP, Yeom HG, et al. Deep learning based discrimination of soft tissue profiles requiring orthognathic surgery by facial photographs. Sci Rep. 2020;10(1):16235. doi: 10.1038/s41598-020-73287-7 |
| [67] |
Elreedy D, Atiya AF. A comprehensive analysis of Synthetic Minority Oversampling Technique (SMOTE) for handling class imbalance. Inf Sci (Ny). 2019;(505):32–64. doi: 10.1016/j.ins.2019.07.070 |
| [68] |
Elreedy D., Atiya A.F. A comprehensive analysis of Synthetic Minority Oversampling Technique (SMOTE) for handling class imbalance // Inf Sci (Ny). 2019. N 505. P. 32–64. doi: 10.1016/j.ins.2019.07.070 |
| [69] |
Elreedy D, Atiya AF. A comprehensive analysis of Synthetic Minority Oversampling Technique (SMOTE) for handling class imbalance. Inf Sci (Ny). 2019;(505):32–64. doi: 10.1016/j.ins.2019.07.070 |
| [70] |
Duan F, Zhang S, Yan Y, Cai Z. An oversampling method of unbalanced data for mechanical fault diagnosis based on meanradius-SMOTE. Sensors. 2022;22(14):5166. EDN: PURYZO doi: 10.3390/s22145166 |
| [71] |
Duan F., Zhang S., Yan Y., Cai Z. An oversampling method of unbalanced data for mechanical fault diagnosis based on meanradius-SMOTE // Sensors. 2022. Vol. 22, N 14. P. 5166. EDN: PURYZO doi: 10.3390/s22145166 |
| [72] |
Duan F, Zhang S, Yan Y, Cai Z. An oversampling method of unbalanced data for mechanical fault diagnosis based on meanradius-SMOTE. Sensors. 2022;22(14):5166. EDN: PURYZO doi: 10.3390/s22145166 |
| [73] |
Zhang K, Zhang Y, Wang M. A unified approach to interpreting model predictions scott. Nips. 2012;16(3):426–430. doi: 10.48550/arXiv.1705.07874 |
| [74] |
Zhang K., Zhang Y., Wang M. A unified approach to interpreting model predictions scott // Nips. 2012. Vol. 16, N 3. P. 426–430. doi: 10.48550/arXiv.1705.07874 |
| [75] |
Zhang K, Zhang Y, Wang M. A unified approach to interpreting model predictions scott. Nips. 2012;16(3):426–430. doi: 10.48550/arXiv.1705.07874 |
| [76] |
Sikka A, Jain A. Sex determination of mandible: A morphological and morphometric analysis. Int J Contemp Med Res. 2016;3(7):1869–1872. |
| [77] |
Sikka A., Jain A. Sex determination of mandible: A morphological and morphometric analysis // Int J Contemp Med Res. 2016. Vol. 3, N 7. P. 1869–1872. |
| [78] |
Sikka A, Jain A. Sex determination of mandible: A morphological and morphometric analysis. Int J Contemp Med Res. 2016;3(7):1869–1872. |
| [79] |
Smart Energy and Electric Power Systems [Internet]. Pavithra V, Jayalakshmi V. Smart energy and electric power system: Current trends and new intelligent perspectives and introduction to ai and power system. Elsevier; 2023. Р. 19–36. doi: 10.1016/B978-0-323-91664-6.00001-2 |
| [80] |
Smart Energy and Electric Power Systems [Internet]. Pavithra V., Jayalakshmi V. Smart energy and electric power system: Current trends and new intelligent perspectives and introduction to ai and power system. Elsevier, 2023. P. 19–36. doi: 10.1016/B978-0-323-91664-6.00001-2 |
| [81] |
Smart Energy and Electric Power Systems [Internet]. Pavithra V, Jayalakshmi V. Smart energy and electric power system: Current trends and new intelligent perspectives and introduction to ai and power system. Elsevier; 2023. Р. 19–36. doi: 10.1016/B978-0-323-91664-6.00001-2 |
| [82] |
Fan DP, Zhang J, Xu G, et al. Salient objects in clutter. IEEE Trans Pattern Anal Mach Intell. 2023;45(2):2344–2366. doi: 10.1109/TPAMI.2022.3166451 |
| [83] |
Fan D.P., Zhang J., Xu G., et al. Salient objects in clutter // IEEE trans pattern anal mach intell. 2023. Vol. 45, N 2. P. 2344–2366. doi: 10.1109/TPAMI.2022.3166451 |
| [84] |
Fan DP, Zhang J, Xu G, et al. Salient objects in clutter. IEEE Trans Pattern Anal Mach Intell. 2023;45(2):2344–2366. doi: 10.1109/TPAMI.2022.3166451 |
Eco-Vector
/
| 〈 |
|
〉 |