Determining the dependence of step periods on the speed of an individual over 15 years old

Oksana I. Kosukhina , Elena E. Fomina , Sergei V. Leonov

Russian Journal of Forensic Medicine ›› 2023, Vol. 9 ›› Issue (3) : 279 -286.

PDF
Russian Journal of Forensic Medicine ›› 2023, Vol. 9 ›› Issue (3) :279 -286. DOI: 10.17816/fm12646
Original study articles
research-article

Determining the dependence of step periods on the speed of an individual over 15 years old

Author information +
History +
PDF

Abstract

BACKGROUND: Issues of identity identification are relevant among the tasks solved when using these video surveillance and recording cameras. If it is impossible to carry out the identification by face, the identification by gait becomes relevant.

AIM: To define the step cycle as one of the gait personality identification parameters

MATERIALS AND METHODS: Study design: a single- and single-point (per population) observational study, with results registered in the Database of Step Cycle Characteristics (certificate of state registration no. 2022623085). The primary end-point of the study was the determination of the dependence of step periods on the movement speed of individuals, the assessment was carried out by a nonparametric criterion for Spearman correlation.

RESULTS: Comparative analysis of the obtained data revealed a decreasing pattern in all step periods separately (period of the first and second double supports and period of the first and second transfers) with an increase in the movement speed of the individual.

CONCLUSION: The obtained data make it possible to identify the possibility of using the step-cycle characteristics to identify individuals by gait when walking at different speeds. This stage can serve to further develop an algorithm for identifying a person by gait, as one of the parameters.

Keywords

personal identification / forensic Medicine / step cycle / gait / CCTV cameras

Cite this article

Download citation ▾
Oksana I. Kosukhina, Elena E. Fomina, Sergei V. Leonov. Determining the dependence of step periods on the speed of an individual over 15 years old. Russian Journal of Forensic Medicine, 2023, 9(3): 279-286 DOI:10.17816/fm12646

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zinin AM. Actual problems of forensic portrait examination. Bulletin Economic Security. 2018;(1):64–66. (In Russ).

[2]

Зинин А.М. Актуальные проблемы судебной портретной экспертизы // Вестник экономической безопасности. 2018. № 1. С. 64–66.

[3]

Zinin AM. Actual problems of forensic portrait examination. Bulletin Economic Security. 2018;(1):64–66. (In Russ).

[4]

Mikhailova MS. Individual issues of portrait examination within the framework of forensic research. Int J Humanities Natural Sci. 2019;(11-3):74–76. (In Russ). doi: 10.24411/2500-1000-2019-11818

[5]

Михайлова М.С. Отдельные вопросы проведения портретной экспертизы в рамках криминалистического исследования // Международный журнал гуманитарных и естественных наук. 2019. № 11-3. С. 74–76. doi: 10.24411/2500-1000-2019-11818

[6]

Mikhailova MS. Individual issues of portrait examination within the framework of forensic research. Int J Humanities Natural Sci. 2019;(11-3):74–76. (In Russ). doi: 10.24411/2500-1000-2019-11818

[7]

Shakiryanova YP. The value of general anatomical elements of appearance when identifying a person by digital video recording. Bulletin Med Institute “REAVIZ”: rehabilitation doctor health. 2018;(1):89–93. (In Russ).

[8]

Шакирьянова Ю.П. Значение общих анатомических элементов внешности при идентификации личности человека по цифровой видеозаписи // Вестник медицинского института «РЕАВИЗ»: реабилитация, врач и здоровье. 2018. № 1. С. 89–93.

[9]

Shakiryanova YP. The value of general anatomical elements of appearance when identifying a person by digital video recording. Bulletin Med Institute “REAVIZ”: rehabilitation doctor health. 2018;(1):89–93. (In Russ).

[10]

Urusova IE. Study of the possibility of using methods of personal identification by gait characteristics based on the analysis of video flow in UIS institutions. In: Actual issues of informatization of the Federal Penitentiary Service at the current stage of the development of the penal system: A collection of round table materials; 2018 Oct 19. Tver, 2018. (In Russ).

[11]

Урусова Т.Е. Исследование возможности применения методов идентификации личности по особенностям походки на основе анализа видеопотока в учреждениях УИС // Актуальные вопросы информатизации Федеральной службы исполнения наказаний на современном этапе развития уголовно-исполнительной системы: сборник материалов круглого стола; 19 октября 2018 года. Тверь, 2018. С. 86–91.

[12]

Urusova IE. Study of the possibility of using methods of personal identification by gait characteristics based on the analysis of video flow in UIS institutions. In: Actual issues of informatization of the Federal Penitentiary Service at the current stage of the development of the penal system: A collection of round table materials; 2018 Oct 19. Tver, 2018. (In Russ).

[13]

Bulgakov VG, Bulgakova EV. Features of the method of forensic examination of dynamic signs of human gait. Forensic Examination. 2013;(4):23–31. (In Russ).

[14]

Булгаков В.Г., Булгакова Е.В. Особенности методики судебно-экспертного исследования динамических признаков походки человека // Судебная экспертиза. 2013. № 4. С. 23–31.

[15]

Bulgakov VG, Bulgakova EV. Features of the method of forensic examination of dynamic signs of human gait. Forensic Examination. 2013;(4):23–31. (In Russ).

[16]

Bashir Kh, Xiang Т, Gong G. Gait Recognition using Gait Entropy Image. School Electronic Engineering Computer Science. Queen Mary University London United Kingdom. 2010;76(2):21–23. doi: 10.1049/IC.2009.0230

[17]

Bashir Kh., Xiang Т., Gong G. Gait recognition using gait entropy image // School of Electronic Engineering and Computer Science. Queen Mary University of London United Kingdom. 2010. Vol. 76, N 2. P. 21–23. doi: 10.1049/IC.2009.0230

[18]

Bashir Kh, Xiang Т, Gong G. Gait Recognition using Gait Entropy Image. School Electronic Engineering Computer Science. Queen Mary University London United Kingdom. 2010;76(2):21–23. doi: 10.1049/IC.2009.0230

[19]

Marsico MM, Proença NH. Human recognition in unconstrained environments. Using Computer Vision, Pattern Recognition and Machine Learning Methods for Biometrics; 2017.

[20]

Marsico M.M., Proença N.H. Human recognition in unconstrained environments. Using Computer Vision, Pattern Recognition and Machine Learning Methods for Biometrics, 2017.

[21]

Marsico MM, Proença NH. Human recognition in unconstrained environments. Using Computer Vision, Pattern Recognition and Machine Learning Methods for Biometrics; 2017.

[22]

Wan Ch, Wang L, Phoha V. A survey on gait recognition. Southeast University Chine. 2018;70(3):34–35. doi: 10.1145/3230633

[23]

Wan Ch., Wang L., Phoha V. A Survey on gait recognition // Southeast University Chine. 2018. Vol. 70, N 3. P. 34–35. doi: 10.1145/3230633

[24]

Wan Ch, Wang L, Phoha V. A survey on gait recognition. Southeast University Chine. 2018;70(3):34–35. doi: 10.1145/3230633

[25]

Saydamarova VV. Theoretical study of foreign experience in personal identification by video. In: Problems and prospects for improving legislation and law enforcement practice of internal affairs bodies: Materials of an international remote scientific and practical conference; 2020 Oct 30. Karaganda; 2020. Р. 163–167. (In Russ).

[26]

Сайдамарова В.В. Теоретическое исследование зарубежного опыта идентификации личности по видеоизображению // Проблемы и перспективы совершенствования законодательства и правоприменительной практики органов внутренних дел: материалы международной дистанционной научно-практической конференции; 30 октября 2020 года. Караганда, 2020. С. 163–167.

[27]

Saydamarova VV. Theoretical study of foreign experience in personal identification by video. In: Problems and prospects for improving legislation and law enforcement practice of internal affairs bodies: Materials of an international remote scientific and practical conference; 2020 Oct 30. Karaganda; 2020. Р. 163–167. (In Russ).

[28]

Shenderov VA. Biomechanical examination: identification of individual features of gait and posture during personality identification. Russ J Biomechan. 2007;11(2):75–78. (In Russ).

[29]

Шендеров В.А. Биомеханическая экспертиза: выявление индивидуальных особенностей походки и осанки при идентификации личности // Российский журнал биомеханики. 2007. Т. 11. № 2. С. 75–78.

[30]

Shenderov VA. Biomechanical examination: identification of individual features of gait and posture during personality identification. Russ J Biomechan. 2007;11(2):75–78. (In Russ).

[31]

Skvortsov DV. Clinical and biomechanical analysis of the pathological gait through the hardware and software complex [dissertation abstract]. Moscow; 1997. 23 р. (In Russ).

[32]

Скворцов Д.В. Клинико-биомеханический анализ патологической походки посредством аппаратно-программного комплекса: Автореф. дис. … канд. мед. наук. Москва, 1997. 23 с.

[33]

Skvortsov DV. Clinical and biomechanical analysis of the pathological gait through the hardware and software complex [dissertation abstract]. Moscow; 1997. 23 р. (In Russ).

[34]

Skvortsov DV. Clinical analysis of movements. Gait analysis. Ivanovo: Stimul; 1996. 344 р. (In Russ).

[35]

Скворцов Д.В. Клинический анализ движений. Анализ походки. Иваново: Стимул, 1996. 344 с.

[36]

Skvortsov DV. Clinical analysis of movements. Gait analysis. Ivanovo: Stimul; 1996. 344 р. (In Russ).

[37]

Patent RUS No. RU 2022623085. Kosukhina OI, Fomina EE, Leonov SV. Database of characteristics of the step cycle. (In Russ). Available from: https://elibrary.ru/bilebd. Accessed: 15.08.2023.

[38]

Патент РФ на изобретение № RU 2022623085. Косухина О.И., Фомина Е.Е., Леонов С.В. База данных характеристик цикла шага. Режим доступа: https://elibrary.ru/bilebd. Дата обращения: 15.08.2023.

[39]

Patent RUS No. RU 2022623085. Kosukhina OI, Fomina EE, Leonov SV. Database of characteristics of the step cycle. (In Russ). Available from: https://elibrary.ru/bilebd. Accessed: 15.08.2023.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/