Trinitroaromatic explosives: Modern application, toxicological characterization, and methods of determination
Norayr G. Pogosyan , Vladimir K. Shormanov , Lekso L. Kvachakhiya , Vladimir A. Omelchenko
Russian Journal of Forensic Medicine ›› 2023, Vol. 9 ›› Issue (3) : 309 -318.
Trinitroaromatic explosives: Modern application, toxicological characterization, and methods of determination
Explosives such as tetryl and picric acid, which were common in the past, now have lost their combat relevance. However, they are often used for peaceful purposes individually and in combination with other trinitroaromatic compounds (e.g., trinitrotoluene). As a result of their use, environmental pollution occurs, followed by intoxication of plants, animals, and people. Cases of explosive poisoning during their production are also described.
The symptoms of poisoning include both of general disorders and specific phenomena such as skin staining, impaired physiological efficiency of NADPh-dependent enzymes, genotoxicity, and immunotoxicity.
Previous scientific studies established a trend toward the development of chemical-analytical probes. Various options for the sensor surface of the device and methods for detecting compounds are considered. To determine the explosives, ion mobility spectrometry is widely used, which is very rare for the chemical–toxicological analysis of other groups of compounds.
Simultaneously, methods commonly used in the analysis of narcotic and psychotropic substances (gas chromatography/ combination of high-performance liquid chromatography and mass spectrometry methods) are also applicable to determine trinitroaromatic explosives. However, the presence of nitro groups in their structure complicates such an analysis. This problem can be resolved by injecting cold samples directly to the column.
Despite the availability of various developed techniques and methods, the possibility of their application to study biological matrices remains insufficient.
Therefore, further studies of the chemical–toxicological nature should be conducted to establish the optimal conditions for extracting the substances in question, the parameters of instrumental analysis, and the possibility of storing samples and for solving other problems of forensic medical examination.
tetryl / trinitrotoluene / picric acid / analysis
| [1] |
Snetkov EA, Zhabbarova MV. The history of explosives. Innovative Sci Res: Online edition. 2021;(2-1):6–22. (In Russ). doi: 10.5281/zenodo.4567917 |
| [2] |
Снеткова Е.А., Жаббарова М.В. История развития взрывчатых веществ // Инновационные научные исследования: сетевой журнал. 2021. № 2-1. С. 6–22. doi: 10.5281/zenodo.4567917 |
| [3] |
Snetkov EA, Zhabbarova MV. The history of explosives. Innovative Sci Res: Online edition. 2021;(2-1):6–22. (In Russ). doi: 10.5281/zenodo.4567917 |
| [4] |
Khrapkovskiy GM, Nikolayeva EV, Shamov AG, Mikhaylov OV. 2,4,6-Trinitrotoluene and the mechanism of its gas-phase thermal destruction. Herald Technolog University. 2018;21(1):10–15. (In Russ). |
| [5] |
Храпковский Г.М., Николаева Е.В., Шамов А.Г., Михайлов О.В. 2,4,6-Тринитротолуол и механизм его газофазной термодеструкции // Вестник технологического университета. 2018. Т. 21, № 1. С. 10–15. |
| [6] |
Khrapkovskiy GM, Nikolayeva EV, Shamov AG, Mikhaylov OV. 2,4,6-Trinitrotoluene and the mechanism of its gas-phase thermal destruction. Herald Technolog University. 2018;21(1):10–15. (In Russ). |
| [7] |
Mohan JM, Amreen K, Kulkarni MB. Optimized ink jetted paper device for electroanalytical detection of picric acid. Colloids Surf B Biointerfaces. 2021;(208):112056. doi: 10.1016/j.colsurfb.2021.112056 |
| [8] |
Mohan J.M., Amreen K., Kulkarni M.B. Optimized ink jetted paper device for electroanalytical detection of picric acid // Colloids Surf B Biointerfaces. 2021. N 208. P. 112056. doi: 10.1016/j.colsurfb.2021.112056 |
| [9] |
Mohan JM, Amreen K, Kulkarni MB. Optimized ink jetted paper device for electroanalytical detection of picric acid. Colloids Surf B Biointerfaces. 2021;(208):112056. doi: 10.1016/j.colsurfb.2021.112056 |
| [10] |
Naryzhnyi SY, Kozlov AS, Dolmatov, VY, et al. Effect of modification of tetryl detonation nanodiamonds on combustion of model paste-like propellants. Combustion Explosion Shock Waves. 2021;57(6):678–684. doi: 10.1134/S001050822106006X |
| [11] |
Naryzhnyi S.Y., Kozlov A.S., Dolmatov V.Y., et al. Effect of modification of tetryl detonation nanodiamonds on combustion of model paste-like propellants // Combustion Explosion Shock Waves. 2021. Vol. 57, N 6. P. 678–684. doi: 10.1134/S001050822106006X |
| [12] |
Naryzhnyi SY, Kozlov AS, Dolmatov, VY, et al. Effect of modification of tetryl detonation nanodiamonds on combustion of model paste-like propellants. Combustion Explosion Shock Waves. 2021;57(6):678–684. doi: 10.1134/S001050822106006X |
| [13] |
Panich AM, Shames AI, Mogilyansky D, et al. Detonation nanodiamonds fabricated from tetryl: Synthesis, NMR, EPR and XRD study. Diamond Related Materials. 2020;(108):107918. doi: 10.1016/j.diamond.2020.107918 |
| [14] |
Panich A.M., Shames A.I., Mogilyansky D., et al. Detonation nanodiamonds fabricated from tetryl: Synthesis, NMR, EPR and XRD study // Diamond Related Materials. 2020. N 108. P. 107918. doi: 10.1016/j.diamond.2020.107918 |
| [15] |
Panich AM, Shames AI, Mogilyansky D, et al. Detonation nanodiamonds fabricated from tetryl: Synthesis, NMR, EPR and XRD study. Diamond Related Materials. 2020;(108):107918. doi: 10.1016/j.diamond.2020.107918 |
| [16] |
Dolmatov VY, Dorokhov AO, Burkat GK, et al. Electrochemical anodic oxidation of aluminum in the presence of a diamond blend obtained by detonation of tetryl. J Superhard Materials. 2022;44(1):29–36. doi: 10.3103/S1063457622010026 |
| [17] |
Dolmatov V.Y., Dorokhov A.O., Burkat G.K., et al. Electrochemical anodic oxidation of aluminum in the presence of a diamond blend obtained by detonation of tetryl // J Superhard Materials. 2022. Vol. 44, N 1. P. 29–36. doi: 10.3103/S1063457622010026 |
| [18] |
Dolmatov VY, Dorokhov AO, Burkat GK, et al. Electrochemical anodic oxidation of aluminum in the presence of a diamond blend obtained by detonation of tetryl. J Superhard Materials. 2022;44(1):29–36. doi: 10.3103/S1063457622010026 |
| [19] |
Rudomazin VV, Telegina EA, Tsvetkova EA. Control of the turnover of industrial explosive materials and their need for the mining industry. Uspekhi v khimii i khimicheskoy tekhnologii. 2021;XXXV(12):134–138. (In Russ). |
| [20] |
Рудомазин В.В., Телегина Е.А., Цветкова Е.А. Контроль оборота промышленных взрывчатых материалов и их потребность в горнодобывающей отрасли // Успехи в химии и химической технологии. 2021. Т. XXXV, № 12. С. 134–138. |
| [21] |
Rudomazin VV, Telegina EA, Tsvetkova EA. Control of the turnover of industrial explosive materials and their need for the mining industry. Uspekhi v khimii i khimicheskoy tekhnologii. 2021;XXXV(12):134–138. (In Russ). |
| [22] |
Ilyushchenko AF, Petyushik EE, Rak AL, et al. Application of high-energy explosive materials in industry: A reference manual. Ed. by A.F. Ilyushenko. Minsk: Belorusskaya navuka; 2017. 283 p. (In Russ). |
| [23] |
Ильющенко А.Ф., Петюшик Е.Е., Рак А.Л., и др. Применение в промышленности высокоэнергетических взрывчатых материалов: справочное пособие / под ред. А.Ф. Ильющенко. Минск: Беларуская навука, 2017. 283 с. |
| [24] |
Ilyushchenko AF, Petyushik EE, Rak AL, et al. Application of high-energy explosive materials in industry: A reference manual. Ed. by A.F. Ilyushenko. Minsk: Belorusskaya navuka; 2017. 283 p. (In Russ). |
| [25] |
Ostapenko YN, Fedorenko VV, Evtyukov AN, et al. Сase of successful therapy of the patient with acute trotyl poisoning by hyperbaric oxygenation as a method of choice. Med Extreme Situations. 2011;(4):91–95. (In Russ). |
| [26] |
Остапенко Ю.Н., Федоренко В.В., Евтюков А.Н., и др. ГБО как метод выбора при успешном лечении больного с острым пероральным отравлением тротилом. Клинический случай // Медицина экстремальных ситуаций. 2011. № 4. С. 91–95. |
| [27] |
Ostapenko YN, Fedorenko VV, Evtyukov AN, et al. Сase of successful therapy of the patient with acute trotyl poisoning by hyperbaric oxygenation as a method of choice. Med Extreme Situations. 2011;(4):91–95. (In Russ). |
| [28] |
Penning TM, Su AL, El-Bayoumy K. Nitroreduction: A critical metabolic pathway for drugs, environmental pollutants, and explosives. Chemical Res Toxicol. 2022;35(10):1747–1765. doi: 10.1021/acs.chemrestox.2c00175 |
| [29] |
Penning T.M., Su A.L., El-Bayoumy K. Nitroreduction: A critical metabolic pathway for drugs, environmental pollutants, and explosives // Chemical Res Toxicol. 2022. Vol. 35, N 10. P. 1747–1765. doi: 10.1021/acs.chemrestox.2c00175 |
| [30] |
Penning TM, Su AL, El-Bayoumy K. Nitroreduction: A critical metabolic pathway for drugs, environmental pollutants, and explosives. Chemical Res Toxicol. 2022;35(10):1747–1765. doi: 10.1021/acs.chemrestox.2c00175 |
| [31] |
Myers SR, Spinnato JA. Tissue distribution and elimination of N-methyl-N-2,4,6-tetranitroaniline (tetryl) in rats. Arch Toxicol. 2007;81(12):841–848. doi: 10.1007/s00204-007-0220-7 |
| [32] |
Myers S.R., Spinnato J.A. Tissue distribution and elimination of N-methyl-N-2,4,6-tetranitroaniline (tetryl) in rats // Arch Toxicol. 2007. Vol. 81, N 12. P. 841–848. doi: 10.1007/s00204-007-0220-7 |
| [33] |
Myers SR, Spinnato JA. Tissue distribution and elimination of N-methyl-N-2,4,6-tetranitroaniline (tetryl) in rats. Arch Toxicol. 2007;81(12):841–848. doi: 10.1007/s00204-007-0220-7 |
| [34] |
Miliukiene V, Čėnas N. Cytotoxicity of nitroaromatic explosives and their biodegradation products in mice splenocytes: Implications for their immunotoxicity. Zeitschrift Naturforschung C J Biosci. 2008;63(7-8):519–525. doi: 10.1515/znc-2008-7-809 |
| [35] |
Miliukiene V., Čėnas N. Cytotoxicity of nitroaromatic explosives and their biodegradation products in mice splenocytes: Implications for their immunotoxicity // Zeitschrift Naturforschung C J Biosci. 2008. Vol. 63, N 7-8. P. 519–525. doi: 10.1515/znc-2008-7-809 |
| [36] |
Miliukiene V, Čėnas N. Cytotoxicity of nitroaromatic explosives and their biodegradation products in mice splenocytes: Implications for their immunotoxicity. Zeitschrift Naturforschung C J Biosci. 2008;63(7-8):519–525. doi: 10.1515/znc-2008-7-809 |
| [37] |
Troup HB. Clinical effects of tetryl (CE powder). Br J Indust Med. 1946;3(1):20–23. doi: 10.1136/oem.3.1.20 |
| [38] |
Troup H.B. Clinical effects of tetryl (CE powder) // Br J Indust Med. 1946. Vol. 3, N 1. P. 20–23. doi: 10.1136/oem.3.1.20 |
| [39] |
Troup HB. Clinical effects of tetryl (CE powder). Br J Indust Med. 1946;3(1):20–23. doi: 10.1136/oem.3.1.20 |
| [40] |
Williams H. Contact dermatitis within the explosives industry: A case report. Allergies in the workplace. Curr Allergy Clin Immunol. 2007;20(3):151–154. |
| [41] |
Williams H. Contact dermatitis within the explosives industry: A case report. Allergies in the workplace // Curr Allergy Clin Immunol. 2007. Vol. 20, N 3. P. 151–154. |
| [42] |
Williams H. Contact dermatitis within the explosives industry: A case report. Allergies in the workplace. Curr Allergy Clin Immunol. 2007;20(3):151–154. |
| [43] |
Yang H, Li H, Liu L, et al. Molecular simulation studies on the interactions of 2,4,6-trinitrotoluene and its metabolites with lipid membranes. J Physical Chemistry. 2019;123(30):6481–6491. doi: 10.1021/acs.jpcb.9b03033 |
| [44] |
Yang H., Li H., Liu L., et al. Molecular simulation studies on the interactions of 2,4,6-trinitrotoluene and its metabolites with lipid membranes // J Physical Chemistry. 2019. Vol. 123, N 30. P. 6481–6491. doi: 10.1021/acs.jpcb.9b03033 |
| [45] |
Yang H, Li H, Liu L, et al. Molecular simulation studies on the interactions of 2,4,6-trinitrotoluene and its metabolites with lipid membranes. J Physical Chemistry. 2019;123(30):6481–6491. doi: 10.1021/acs.jpcb.9b03033 |
| [46] |
Alfaraj WA, McMillan B, Ducatman AM, Werntz CL. Tetryl exposure: Forgotten hazards of antique munitions. Ann Occup Environ Med. 2016;(28):20. doi: 10.1186/s40557-016-0102-7 |
| [47] |
Alfaraj W.A., McMillan B., Ducatman A.M., Werntz C.L. Tetryl exposure: Forgotten hazards of antique munitions // Ann Occup Environ Med. 2016. N 28. P. 20. doi: 10.1186/s40557-016-0102-7 |
| [48] |
Alfaraj WA, McMillan B, Ducatman AM, Werntz CL. Tetryl exposure: Forgotten hazards of antique munitions. Ann Occup Environ Med. 2016;(28):20. doi: 10.1186/s40557-016-0102-7 |
| [49] |
Stanley JK, Perkins EJ, Habib T, et al. The good, the bad, and the toxic: Approaching hormesis in Daphnia magna exposed to an energetic compound. Environ Sci Technol. 2013;47(16):9424–9433. doi: 10.1021/es401115q |
| [50] |
Stanley J.K., Perkins E.J., Habib T., et al. The good, the bad, and the toxic: Approaching hormesis in Daphnia magna exposed to an energetic compound // Environ Sci Technol. 2013. Vol. 47, N 16. P. 9424–9433. doi: 10.1021/es401115q |
| [51] |
Stanley JK, Perkins EJ, Habib T, et al. The good, the bad, and the toxic: Approaching hormesis in Daphnia magna exposed to an energetic compound. Environ Sci Technol. 2013;47(16):9424–9433. doi: 10.1021/es401115q |
| [52] |
Gong P, Guan X, Inouye LS, et al. Toxicogenomic analysis provides new insights into molecular mechanisms of the sublethal toxicity of 2,4,6-trinitrotoluene in Eisenia fetida. Environ Sci Technol. 2007;41(23):8195–8202. doi: 10.1021/es0716352 |
| [53] |
Gong P., Guan X., Inouye L.S., et al. Toxicogenomic analysis provides new insights into molecular mechanisms of the sublethal toxicity of 2,4,6-trinitrotoluene in Eisenia fetida // Environ Sci Technol. 2007. Vol. 41, N 23. P. 8195–8202. doi: 10.1021/es0716352 |
| [54] |
Gong P, Guan X, Inouye LS, et al. Toxicogenomic analysis provides new insights into molecular mechanisms of the sublethal toxicity of 2,4,6-trinitrotoluene in Eisenia fetida. Environ Sci Technol. 2007;41(23):8195–8202. doi: 10.1021/es0716352 |
| [55] |
Marshall M, Oxley JC, editors. Aspects of explosives detection. 1 ed. Amsterdam: Elsevier; 2008. 302 p. |
| [56] |
Marshall M., Oxley J.C., ed. Aspects of explosives detection. 1 ed. Amsterdam: Elsevier, 2008. 302 p. |
| [57] |
Marshall M, Oxley JC, editors. Aspects of explosives detection. 1 ed. Amsterdam: Elsevier; 2008. 302 p. |
| [58] |
Patent RUS № 2736785/20.11.2020. Byul. № 32. Fedorkov AN, Fedorkova EA, Kozlov AS, Vinogradova TA. Odorological additive of the smell simulator of cyclic and heterocyclic nitro compounds. (In Russ). Available from: https://patenton.ru/patent/RU2736785C1. Accessed: 13.03.2023. |
| [59] |
Патент РФ на изобретение № 2736785/20.11.2020. Бюл. № 32. Федорков А.Н., Федоркова Е.А., Козлов А.С., Виноградова Т.А. Одорологическая добавка имитатора запаха циклических и гетероциклических нитросоединений. Режим доступа: https://patenton.ru/patent/RU2736785C1. Дата обращения: 13.03.2023. |
| [60] |
Patent RUS № 2736785/20.11.2020. Byul. № 32. Fedorkov AN, Fedorkova EA, Kozlov AS, Vinogradova TA. Odorological additive of the smell simulator of cyclic and heterocyclic nitro compounds. (In Russ). Available from: https://patenton.ru/patent/RU2736785C1. Accessed: 13.03.2023. |
| [61] |
Modafferi D. The interaction of tetryl, a nitroaromatic explosive, with bacterial reaction centres [Master’s thesis]. Quebec (Canada): Concordia University; 2018. |
| [62] |
Modafferi D. The interaction of tetryl, a nitroaromatic explosive, with bacterial reaction centres: Master’s thesis. Quebec (Canada): Concordia University, 2018. |
| [63] |
Modafferi D. The interaction of tetryl, a nitroaromatic explosive, with bacterial reaction centres [Master’s thesis]. Quebec (Canada): Concordia University; 2018. |
| [64] |
Kikhtenko AV, Yeliseyev KV. Detection of explosive objects: Hardware support of anti-terrorist services. Rossiiskii khimicheskii zhurnal. 2005;XLIX(4):132–137. (In Russ). |
| [65] |
Кихтенко А.В., Елисеев К.В. Обнаружение взрывоопасных объектов: аппаратурное обеспечение антитеррористических служб // Российский химический журнал. 2005. Т. XLIX, № 4. С. 132–137. |
| [66] |
Kikhtenko AV, Yeliseyev KV. Detection of explosive objects: Hardware support of anti-terrorist services. Rossiiskii khimicheskii zhurnal. 2005;XLIX(4):132–137. (In Russ). |
| [67] |
Prabu HG, Talawar MB, Mukundan T, Asthana SN. Studies on the utilization of stripping voltammetry technique in the detection of high-energy materials. Combust Explos Shock Waves. 2011;47(1):87–95. doi: 10.1134/S0010508211010126 |
| [68] |
Prabu H.G., Talawar M.B., Mukundan T., Asthana S.N. Studies on the utilization of stripping voltammetry technique in the detection of high-energy materials // Combust Explos Shock Waves. 2011. Vol. 47, N 1. P. 87–95. doi: 10.1134/S0010508211010126 |
| [69] |
Prabu HG, Talawar MB, Mukundan T, Asthana SN. Studies on the utilization of stripping voltammetry technique in the detection of high-energy materials. Combust Explos Shock Waves. 2011;47(1):87–95. doi: 10.1134/S0010508211010126 |
| [70] |
Patent RUS № 141655/10.06.2014. Byul. № 16. Tretyakov VI, Lobacheva GK, Pavlichenko NV, et al. Device for remote detection of explosives using indicator solutions. (In Russ). Available from: https://www.fips.ru/cdfi/fips.dll/ru?ty=29&docid=141655&ki=PM. Accessed: 15.03.2023. |
| [71] |
Патент РФ на полезную модель № 141655/10.06.2014. Бюл. № 16. Третьяков В.И., Лобачева Г.К., Павличенко Н.В., и др. Устройство дистанционного обнаружения взрывчатых веществ с использованием индикаторных растворов. Режим доступа: https://www.fips.ru/cdfi/fips.dll/ru?ty=29&docid=141655&ki=PM. Дата обращения: 15.03.2023. |
| [72] |
Patent RUS № 141655/10.06.2014. Byul. № 16. Tretyakov VI, Lobacheva GK, Pavlichenko NV, et al. Device for remote detection of explosives using indicator solutions. (In Russ). Available from: https://www.fips.ru/cdfi/fips.dll/ru?ty=29&docid=141655&ki=PM. Accessed: 15.03.2023. |
| [73] |
Demircioğlu T, Kaplan M, Tezgin E. A sensitive colorimetric nanoprobe based on gold nanoparticles functionalized with thiram fungicide for determination of TNT and tetryl. Microchemical J. 2022;176(6):107251. doi: 10.1016/j.microc.2022.107251 |
| [74] |
Demircioğlu T., Kaplan M., Tezgin E. A sensitive colorimetric nanoprobe based on gold nanoparticles functionalized with thiram fungicide for determination of TNT and tetryl // Microchemical J. 2022. Vol. 176, N 6. P. 107251. doi: 10.1016/j.microc.2022.107251 |
| [75] |
Demircioğlu T, Kaplan M, Tezgin E. A sensitive colorimetric nanoprobe based on gold nanoparticles functionalized with thiram fungicide for determination of TNT and tetryl. Microchemical J. 2022;176(6):107251. doi: 10.1016/j.microc.2022.107251 |
| [76] |
Dasary SS, Senapati D, Singh AK, et al. Highly sensitive and selective dynamic light-scattering assay for TNT detection using p-ATP attached gold nanoparticle. ACS Appl Mater Interfaces. 2010;2(12):3455–3460. doi: 10.1021/am1005139 |
| [77] |
Dasary S.S., Senapati D., Singh A.K., et al. Highly sensitive and selective dynamic light-scattering assay for TNT detection using p-ATP attached gold nanoparticle // ACS Appl Mater Interfaces. 2010. Vol. 2, N 12. P. 3455–3460. doi: 10.1021/am1005139 |
| [78] |
Dasary SS, Senapati D, Singh AK, et al. Highly sensitive and selective dynamic light-scattering assay for TNT detection using p-ATP attached gold nanoparticle. ACS Appl Mater Interfaces. 2010;2(12):3455–3460. doi: 10.1021/am1005139 |
| [79] |
Peveler WJ, Roldan A, Hollingsworth N, et al. Multichannel detection and differentiation of explosives with a quantum dot array. ACS Nano. 2016;10(1):1139–1146. doi: 10.1021/acsnano.5b06433 |
| [80] |
Peveler W.J., Roldan A., Hollingsworth N., et al. Multichannel detection and differentiation of explosives with a quantum dot array // ACS Nano. 2016. Vol. 10, N 1. P. 1139–1146. doi: 10.1021/acsnano.5b06433 |
| [81] |
Peveler WJ, Roldan A, Hollingsworth N, et al. Multichannel detection and differentiation of explosives with a quantum dot array. ACS Nano. 2016;10(1):1139–1146. doi: 10.1021/acsnano.5b06433 |
| [82] |
Koç ÖK, Üzer A, Apak R. High quantum yield nitrogen-doped carbon quantum dot-based fluorescent probes for selective sensing of 2,4,6-trinitrotoluene. ACS Applied Nano Materials. 2022;5(4):5868–5881. doi: 10.1021/acsanm.2c00717 |
| [83] |
Koç Ö.K., Üzer A., Apak R. High quantum yield nitrogen-doped carbon quantum dot-based fluorescent probes for selective sensing of 2,4,6-trinitrotoluene // ACS Applied Nano Materials. 2022. Vol. 5, N 4. P. 5868–5881. doi: 10.1021/acsanm.2c00717 |
| [84] |
Koç ÖK, Üzer A, Apak R. High quantum yield nitrogen-doped carbon quantum dot-based fluorescent probes for selective sensing of 2,4,6-trinitrotoluene. ACS Applied Nano Materials. 2022;5(4):5868–5881. doi: 10.1021/acsanm.2c00717 |
| [85] |
Salinas Y, Climent E, Martínez-Máñez R, et al. Highly selective and sensitive chromo-fluorogenic detection of the Tetryl explosive using functional silica nanoparticles. Chem Commun (Camb). 2011;47(43):11885–11887. doi: 10.1039/C1CC14877J |
| [86] |
Salinas Y., Climent E., Martínez-Máñez R., et al. Highly selective and sensitive chromo-fluorogenic detection of the Tetryl explosive using functional silica nanoparticles // Chem Commun (Camb). 2011. Vol. 47, N 43. P. 11885–11887. doi: 10.1039/C1CC14877J |
| [87] |
Salinas Y, Climent E, Martínez-Máñez R, et al. Highly selective and sensitive chromo-fluorogenic detection of the Tetryl explosive using functional silica nanoparticles. Chem Commun (Camb). 2011;47(43):11885–11887. doi: 10.1039/C1CC14877J |
| [88] |
Ma Y, Wang S, Wang L. Nanomaterials for luminescence detection of nitroaromatic explosives. TrAC Trends Analytical Chemistry. 2015;(65):13–21. doi: 10.1016/j.trac.2014.09.007 |
| [89] |
Ma Y., Wang S., Wang L. Nanomaterials for luminescence detection of nitroaromatic explosives // TrAC Trends Analytical Chemistry. 2015. N 65. P. 13–21. doi: 10.1016/j.trac.2014.09.007 |
| [90] |
Ma Y, Wang S, Wang L. Nanomaterials for luminescence detection of nitroaromatic explosives. TrAC Trends Analytical Chemistry. 2015;(65):13–21. doi: 10.1016/j.trac.2014.09.007 |
| [91] |
Venkatramaiah N, Pereira CF, Mendes RF, et al. Phosphonate appended porphyrins as versatile chemosensors for selective detection of trinitrotoluene. Anal Chem. 2015;87(8):4515–4522. doi: 10.1021/acs.analchem.5b00772 |
| [92] |
Venkatramaiah N., Pereira C.F., Mendes R.F., et al. Phosphonate appended porphyrins as versatile chemosensors for selective detection of trinitrotoluene // Anal Chem. 2015. Vol. 87, N 8. P. 4515–4522. doi: 10.1021/acs.analchem.5b00772 |
| [93] |
Venkatramaiah N, Pereira CF, Mendes RF, et al. Phosphonate appended porphyrins as versatile chemosensors for selective detection of trinitrotoluene. Anal Chem. 2015;87(8):4515–4522. doi: 10.1021/acs.analchem.5b00772 |
| [94] |
Kim TH, Lee BY, Jaworski J, et al. Selective and sensitive TNT sensors using biomimetic polydiacetylene-coated CNT-FETs. ACS Nano. 2011;5(4):2824–2830. doi: 10.1021/nn103324p |
| [95] |
Kim T.H., Lee B.Y., Jaworski J., et al. Selective and sensitive TNT sensors using biomimetic polydiacetylene-coated CNT-FETs // ACS Nano. 2011. Vol. 5, N 4. P. 2824–2830. doi: 10.1021/nn103324p |
| [96] |
Kim TH, Lee BY, Jaworski J, et al. Selective and sensitive TNT sensors using biomimetic polydiacetylene-coated CNT-FETs. ACS Nano. 2011;5(4):2824–2830. doi: 10.1021/nn103324p |
| [97] |
Mohasseb A. Adsorption of tetryl on the surface of carbon nanocone: A theoretical investigation. Int J New Chem. 2019;6(4):215–223. doi: 10.22034/ijnc.2019.35796 |
| [98] |
Mohasseb A. Adsorption of tetryl on the surface of carbon nanocone: A theoretical investigation // Int J New Chem. 2019. Vol. 6, N 4. P. 215–223. doi: 10.22034/ijnc.2019.35796 |
| [99] |
Mohasseb A. Adsorption of tetryl on the surface of carbon nanocone: A theoretical investigation. Int J New Chem. 2019;6(4):215–223. doi: 10.22034/ijnc.2019.35796 |
| [100] |
Xie C, Liu B, Wang Z, et al. Molecular imprinting at walls of silica nanotubes for TNT recognition. Anal Chem. 2008;80(2):437–443. doi: 10.1021/ac701767h |
| [101] |
Xie C., Liu B., Wang Z., et al. Molecular imprinting at walls of silica nanotubes for TNT recognition // Anal Chem. 2008. Vol. 80, N 2. P. 437–443. doi: 10.1021/ac701767h |
| [102] |
Xie C, Liu B, Wang Z, et al. Molecular imprinting at walls of silica nanotubes for TNT recognition. Anal Chem. 2008;80(2):437–443. doi: 10.1021/ac701767h |
| [103] |
Aguilar AD, Forzani ES, Leright M, et al. A hybrid nanosensor for TNT vapor detection. Nano Letters. 2010;10(2):380–384. doi: 10.1021/nl902382s |
| [104] |
Aguilar A.D., Forzani E.S., Leright M., et al. A hybrid nanosensor for TNT vapor detection // Nano Letters. 2010. Vol. 10, N 2. P. 380–384. doi: 10.1021/nl902382s |
| [105] |
Aguilar AD, Forzani ES, Leright M, et al. A hybrid nanosensor for TNT vapor detection. Nano Letters. 2010;10(2):380–384. doi: 10.1021/nl902382s |
| [106] |
Hwang J, Choi N, Park A, et al. Fast and sensitive recognition of various explosive compounds using Raman spectroscopy and principal component analysis. J Molecular Structure. 2013;(1039):130–136. doi: 10.1016/j.molstruc.2013.01.079 |
| [107] |
Hwang J., Choi N., Park A., et al. Fast and sensitive recognition of various explosive compounds using Raman spectroscopy and principal component analysis // J Mol Structure. 2013. N 1039. P. 130–136. doi: 10.1016/j.molstruc.2013.01.079 |
| [108] |
Hwang J, Choi N, Park A, et al. Fast and sensitive recognition of various explosive compounds using Raman spectroscopy and principal component analysis. J Molecular Structure. 2013;(1039):130–136. doi: 10.1016/j.molstruc.2013.01.079 |
| [109] |
Chajistamatiou A, Angelis Y, Kiousi P, et al. Discrimination of tetryl samples by gas chromatography: Isotope ratio mass spectrometry. Forensic Chem. 2019;(12):42–45. doi: 10.1016/j.forc.2018.11.006 |
| [110] |
Chajistamatiou A., Angelis Y., Kiousi P., et al. Discrimination of tetryl samples by gas chromatography: Isotope ratio mass spectrometry // Forensic Chem. 2019. N 12. P. 42–45. doi: 10.1016/j.forc.2018.11.006 |
| [111] |
Chajistamatiou A, Angelis Y, Kiousi P, et al. Discrimination of tetryl samples by gas chromatography: Isotope ratio mass spectrometry. Forensic Chem. 2019;(12):42–45. doi: 10.1016/j.forc.2018.11.006 |
| [112] |
Holmgren E, Ek S, Colmsjö A. Extraction of explosives from soil followed by gas chromatography/mass spectrometry analysis with negative chemical ionization. J Chromatogr A. 2012;(1222):109–115. doi: 10.1016/j.chroma.2011.12.014 |
| [113] |
Holmgren E., Ek S., Colmsjö A. Extraction of explosives from soil followed by gas chromatography/mass spectrometry analysis with negative chemical ionization // J Chromatogr A. 2012. N 1222. P. 109–115. doi: 10.1016/j.chroma.2011.12.014 |
| [114] |
Holmgren E, Ek S, Colmsjö A. Extraction of explosives from soil followed by gas chromatography/mass spectrometry analysis with negative chemical ionization. J Chromatogr A. 2012;(1222):109–115. doi: 10.1016/j.chroma.2011.12.014 |
| [115] |
Nilles JM, Connell TR, Sarah TS, Durst HD. Explosives detection using direct analysis in real time (DART) mass spectrometry. Propellants Explosives Pyrotechnics. 2010;35(5):446–451. doi: 10.1002/prep.200900084 |
| [116] |
Nilles J.M., Connell T.R., Sarah T.S., Durst H.D. Explosives detection using direct analysis in real time (DART) mass spectrometry // Propellants Explosives Pyrotechnics. 2010. Vol. 35, N 5. P. 446–451. doi: 10.1002/prep.200900084 |
| [117] |
Nilles JM, Connell TR, Sarah TS, Durst HD. Explosives detection using direct analysis in real time (DART) mass spectrometry. Propellants Explosives Pyrotechnics. 2010;35(5):446–451. doi: 10.1002/prep.200900084 |
| [118] |
Cagan A, Schmidt H, Rodriguez JE, Eiceman GA. Fast gas chromatography-differential mobility spectrometry of explosives from TATP to Tetryl without gas atmosphere modifiers. Int J Ion Mobility Spectrometry. 2010;13(3):157–165. doi: 10.1007/s12127-010-0054-5 |
| [119] |
Cagan A., Schmidt H., Rodriguez J.E., Eiceman G.A. Fast gas chromatography-differential mobility spectrometry of explosives from TATP to Tetryl without gas atmosphere modifiers // Int J Ion Mobility Spectrometry. 2010. Vol. 13, N 3. P. 157–165. doi: 10.1007/s12127-010-0054-5 |
| [120] |
Cagan A, Schmidt H, Rodriguez JE, Eiceman GA. Fast gas chromatography-differential mobility spectrometry of explosives from TATP to Tetryl without gas atmosphere modifiers. Int J Ion Mobility Spectrometry. 2010;13(3):157–165. doi: 10.1007/s12127-010-0054-5 |
| [121] |
To KC, Ben-Jaber S, Parkin IP. Recent developments in the field of explosive trace detection. ACS Nano. 2020;14(9):10804–10833. doi: 10.1021/acsnano.0c01579 |
| [122] |
To K.C., Ben-Jaber S., Parkin I.P. Recent developments in the field of explosive trace detection // ACS Nano. 2020. Vol. 14, N 9. P. 10804–10833. doi: 10.1021/acsnano.0c01579 |
| [123] |
To KC, Ben-Jaber S, Parkin IP. Recent developments in the field of explosive trace detection. ACS Nano. 2020;14(9):10804–10833. doi: 10.1021/acsnano.0c01579 |
| [124] |
Lan EH, Dunn B, Zink JI. Sol-Gel encapsulated anti-trinitrotoluene antibodies in immunoassays for TNT. Chem Materials. 2000;12(7):1874–1878. doi: 10.1021/cm990726y |
| [125] |
Lan E.H., Dunn B., Zink J.I. Sol-Gel encapsulated anti-trinitrotoluene antibodies in immunoassays for TNT // Chem Materials. 2000. Vol. 12, N 7. P. 1874–1878. doi: 10.1021/cm990726y |
| [126] |
Lan EH, Dunn B, Zink JI. Sol-Gel encapsulated anti-trinitrotoluene antibodies in immunoassays for TNT. Chem Materials. 2000;12(7):1874–1878. doi: 10.1021/cm990726y |
| [127] |
Shaw A, Lindhome P, Calhoun RL. Electrogenerated chemiluminescence (ECL) quenching of Ru(bpy)32+ by the explosives TATP and tetryl [abstract]. J Electrochemical Soc. 2013;160(10):H782. doi: 10.1149/2.005311jes |
| [128] |
Shaw A., Lindhome P., Calhoun R.L. Electrogenerated chemiluminescence (ECL) quenching of Ru(bpy)32+ by the explosives TATP and tetryl [abstract] // J Electrochemical Soc. 2013. Vol. 160, N 10. P. H782. doi: 10.1149/2.005311jes |
| [129] |
Shaw A, Lindhome P, Calhoun RL. Electrogenerated chemiluminescence (ECL) quenching of Ru(bpy)32+ by the explosives TATP and tetryl [abstract]. J Electrochemical Soc. 2013;160(10):H782. doi: 10.1149/2.005311jes |
Eco-Vector
/
| 〈 |
|
〉 |