Current possibilities and prospects of tocolytic therapy

Anastasia O. Kiryanova , Andrey V. Murashko

V.F.Snegirev Archives of Obstetrics and Gynecology ›› 2024, Vol. 11 ›› Issue (3) : 233 -244.

PDF (641KB)
V.F.Snegirev Archives of Obstetrics and Gynecology ›› 2024, Vol. 11 ›› Issue (3) : 233 -244. DOI: 10.17816/aog626529
Reviews
review-article

Current possibilities and prospects of tocolytic therapy

Author information +
History +
PDF (641KB)

Abstract

The urgency of the problem of preterm birth (PB) is because of its high prevalence and neonatal mortality. The effects of PB on the fetus are often fatal, and PB accounts for 70% of neonatal mortality and 36% of infant mortality. Severe neurological deficits (e.g., cerebral palsy, epilepsy, intraventricular hemorrhages, retinopathy, blindness, hearing loss, delayed neuropsychiatric and motor development) occur in 68% of surviving premature infants. Additionally, children born prematurely have a high risk for purulent septic diseases. The metabolic consequences of prematurity cause diseases such as metabolic syndrome and hypertension. Thus, tocolytic therapy is a crucial therapeutic measure in obstetrics. However, most known and actively used tocolytic drugs induce insufficient effect for long-term prolongation of pregnancy or have serious side effects. Currently, there is a search for new tocolytics to obtain safe, adequate, and long-term effects. This review examines promising and relevant drugs that may be used in routine obstetric practice. Scientific articles, meta-analyses, and systematic reviews from the databases PubMed, Embase, Web of Science, and Google Scholar, and RSCI were analyzed. For the analysis, publications in English and posted no more than 5 years before the study was conducted were selected, except for fundamental works with a longer publication period.

Keywords

preterm birth / tocolysis / tocolytic therapy

Cite this article

Download citation ▾
Anastasia O. Kiryanova, Andrey V. Murashko. Current possibilities and prospects of tocolytic therapy. V.F.Snegirev Archives of Obstetrics and Gynecology, 2024, 11(3): 233-244 DOI:10.17816/aog626529

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barfield WD. Public health implications of very preterm birth. Clin Perinatol. 2018;45(3):565–577. doi: 10.1016/j.clp.2018.05.007

[2]

Barfield W.D. Public health implications of very preterm birth // Clin Perinatol. 2018. Vol. 45, N 3. P. 565–577. doi: 10.1016/j.clp.2018.05.007

[3]

Barfield WD. Public health implications of very preterm birth. Clin Perinatol. 2018;45(3):565–577. doi: 10.1016/j.clp.2018.05.007

[4]

Khodjaeva ZS, Shmakov RG, Adamyan LV, et al. Clinical recommendations: Premature birth. Moscow; 2020. (In Russ.)

[5]

Ходжаева З.С., Шмаков Р.Г., Адамян Л.В., и др. Клинические рекомендации: Преждевременные роды. Москва, 2020.

[6]

Khodjaeva ZS, Shmakov RG, Adamyan LV, et al. Clinical recommendations: Premature birth. Moscow; 2020. (In Russ.)

[7]

Green ES, Arck PC. Pathogenesis of preterm birth: bidirectional inflammation in mother and fetus. Semin Immunopathol. 2020;42(4):413–429. doi: 10.1007/s00281-020-00807-y

[8]

Green E.S., Arck P.C. Pathogenesis of preterm birth: bidirectional inflammation in mother and fetus // Semin Immunopathol. 2020. Vol. 42, N 4. P. 413–429. doi: 10.1007/s00281-020-00807-y

[9]

Green ES, Arck PC. Pathogenesis of preterm birth: bidirectional inflammation in mother and fetus. Semin Immunopathol. 2020;42(4):413–429. doi: 10.1007/s00281-020-00807-y

[10]

Fowlie PW, Davis PG. Prophylactic indomethacin for preterm infants: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2003;88(6):F464–F466. doi: 10.1136/fn.88.6.f464

[11]

Fowlie P.W., Davis P.G. Prophylactic indomethacin for preterm infants: a systematic review and meta-analysis // Arch Dis Child Fetal Neonatal Ed. 2003. Vol. 88, N 6. P. F464–F466. doi: 10.1136/fn.88.6.f464

[12]

Fowlie PW, Davis PG. Prophylactic indomethacin for preterm infants: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2003;88(6):F464–F466. doi: 10.1136/fn.88.6.f464

[13]

Wilson A, Hodgetts-Morton VA, et al. Tocolytics for delaying preterm birth: a network meta-analysis (0924). Cochrane Database Syst Rev. 2022;8(8):CD014978. doi: 10.1002/14651858.CD014978.pub2

[14]

Wilson A., Hodgetts-Morton V.A., Marson E.J., et al. Tocolytics for delaying preterm birth: a network meta-analysis (0924) // Cochrane Database Syst Rev. 2022. Vol. 8, N 8. P. CD014978. doi: 10.1002/14651858.CD014978.pub2

[15]

Wilson A, Hodgetts-Morton VA, et al. Tocolytics for delaying preterm birth: a network meta-analysis (0924). Cochrane Database Syst Rev. 2022;8(8):CD014978. doi: 10.1002/14651858.CD014978.pub2

[16]

Prasath A, Aronoff N, Chandrasekharan P, Diggikar S. Antenatal MAGNESIUM Sulfate and adverse gastrointestinal outcomes in preterm infants-a systematic review and meta-analysis. J Perinatol. 2023;43(9):1087–1100. doi: 10.1038/s41372-023-01710-8

[17]

Prasath A., Aronoff N., Chandrasekharan P., Diggikar S. Antenatal magnesium sulfate and adverse gastrointestinal outcomes in preterm infants-a systematic review and meta-analysis // J Perinatol. 2023. Vol. 43, N 9. P. 1087–1100. doi: 10.1038/s41372-023-01710-8

[18]

Prasath A, Aronoff N, Chandrasekharan P, Diggikar S. Antenatal MAGNESIUM Sulfate and adverse gastrointestinal outcomes in preterm infants-a systematic review and meta-analysis. J Perinatol. 2023;43(9):1087–1100. doi: 10.1038/s41372-023-01710-8

[19]

Kosyakova OV, Bespalova ON. Prevention and therapy of threatened preterm birth in multiple pregnancy. Journal of Obstetrics and Womans Diseases. 2019;68(4):55–70. EDN: TLCJUV doi: 10.17816/JOWD68455-70

[20]

Косякова О.В., Беспалова О.Н. Профилактика и терапия угрожающих преждевременных родов при многоплодии // Журнал акушерства и женских болезней. 2019. Т. 68, № 4. С. 55–70. EDN: TLCJUV doi: 10.17816/JOWD68455-70

[21]

Kosyakova OV, Bespalova ON. Prevention and therapy of threatened preterm birth in multiple pregnancy. Journal of Obstetrics and Womans Diseases. 2019;68(4):55–70. EDN: TLCJUV doi: 10.17816/JOWD68455-70

[22]

Norman JE. Progesterone and preterm birth. Int J Gynaecol Obstet. 2020;150(1):24–30. doi: 10.1002/ijgo.13187

[23]

Norman J.E. Progesterone and preterm birth // Int J Gynaecol Obstet. 2020. Vol. 150, N 1. P. 24–30. doi: 10.1002/ijgo.13187

[24]

Norman JE. Progesterone and preterm birth. Int J Gynaecol Obstet. 2020;150(1):24–30. doi: 10.1002/ijgo.13187

[25]

Kirchhoff E, Schnei Thiele K, Hierweger AM, Riquelme JIA, et al. Impaired progesterone-responsiveness of CD11c+ dendritic cells affects the generation of CD4+ regulatory T cells and is associated with intrauterine growth restriction in mice. Front Endocrinol (Lausanne). 2019;10:96. doi: 10.3389/fendo.2019.00096

[26]

Thiele K., Hierweger A.M., Riquelme J.I.A., et al. Impaired progesterone-responsiveness of CD11c+ dendritic cells affects the generation of CD4+ regulatory T cells and is associated with intrauterine growth restriction in mice // Front Endocrinol (Lausanne). 2019. Vol. 10. P. 96. doi: 10.3389/fendo.2019.00096

[27]

Kirchhoff E, Schnei Thiele K, Hierweger AM, Riquelme JIA, et al. Impaired progesterone-responsiveness of CD11c+ dendritic cells affects the generation of CD4+ regulatory T cells and is associated with intrauterine growth restriction in mice. Front Endocrinol (Lausanne). 2019;10:96. doi: 10.3389/fendo.2019.00096

[28]

der V, Pichler G, et al. Hexoprenaline Compared with Atosiban as Tocolytic Treatment for Preterm Labor. Geburtshilfe Frauenheilkd. 2022;82(8):852–858. doi: 10.1055/a-1823-0176

[29]

Kirchhoff E., Schneider V., Pichler G., et al. Hexoprenaline compared with atosiban as tocolytic treatment for preterm labor // Geburtshilfe Frauenheilkd. 2022. Vol. 82, N 8. P. 852–858. doi: 10.1055/a-1823-0176

[30]

der V, Pichler G, et al. Hexoprenaline Compared with Atosiban as Tocolytic Treatment for Preterm Labor. Geburtshilfe Frauenheilkd. 2022;82(8):852–858. doi: 10.1055/a-1823-0176

[31]

Helmer H, Saleh L, Petricevic L, et al. Barusiban, a selective oxytocin receptor antagonist: placental transfer in rabbit, monkey, and human. Biol Reprod. 2020;103(1):135–143. doi: 10.1093/biolre/ioaa048

[32]

Helmer H., Saleh L., Petricevic L., et al. Barusiban, a selective oxytocin receptor antagonist: placental transfer in rabbit, monkey, and human // Biol Reprod. 2020. Vol. 103, N 1. P. 135–143. doi: 10.1093/biolre/ioaa048

[33]

Helmer H, Saleh L, Petricevic L, et al. Barusiban, a selective oxytocin receptor antagonist: placental transfer in rabbit, monkey, and human. Biol Reprod. 2020;103(1):135–143. doi: 10.1093/biolre/ioaa048

[34]

Saade GR, Shennan A, Beach KJ, et al. Randomized trials of retosiban versus placebo or atosiban in spontaneous preterm labor. Am J Perinatol. 2021;38(S01):e309–e317. doi: 10.1055/s-0040-1710034

[35]

Saade G.R., Shennan A., Beach K.J., et al. Randomized trials of retosiban versus placebo or atosiban in spontaneous preterm labor // Am J Perinatol. 2021. Vol. 38, N S01. P. e309–e317. doi: 10.1055/s-0040-1710034

[36]

Saade GR, Shennan A, Beach KJ, et al. Randomized trials of retosiban versus placebo or atosiban in spontaneous preterm labor. Am J Perinatol. 2021;38(S01):e309–e317. doi: 10.1055/s-0040-1710034

[37]

Powell M, Saade G, Thornton S, et al. Safety and outcomes in infants born to mothers participating in retosiban treatment trials: ARIOS follow-up study. Am J Perinatol. 2023;40(10):1135–1148. doi: 10.1055/s-0041-1733784

[38]

Powell M., Saade G., Thornton S., et al. Safety and outcomes in infants born to mothers participating in retosiban treatment trials: ARIOS follow-up study // Am J Perinatol. 2023. Vol. 40, N 10. P. 1135–1148. doi: 10.1055/s-0041-1733784

[39]

Powell M, Saade G, Thornton S, et al. Safety and outcomes in infants born to mothers participating in retosiban treatment trials: ARIOS follow-up study. Am J Perinatol. 2023;40(10):1135–1148. doi: 10.1055/s-0041-1733784

[40]

Deng W, Yuan J, Cha J, et al. Endothelial cells in the decidual bed are potential therapeutic targets for preterm birth prevention. Cell Rep. 2019;27(6):1755–1768.e4. doi: 10.1016/j.celrep.2019.04.049

[41]

Deng W., Yuan J., Cha J., et al. Endothelial cells in the decidual bed are potential therapeutic targets for preterm birth prevention // Cell reports. 2019. Vol. 27, N 6. P. 1755–1768.e4. doi: 10.1016/j.celrep.2019.04.049

[42]

Deng W, Yuan J, Cha J, et al. Endothelial cells in the decidual bed are potential therapeutic targets for preterm birth prevention. Cell Rep. 2019;27(6):1755–1768.e4. doi: 10.1016/j.celrep.2019.04.049

[43]

Manning M, Misicka A, Olma A, et al. Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. J Neuroendocrinol. 2012;24(4):609–628. doi: 10.1111/j.1365-2826.2012.02303.x

[44]

Manning M., Misicka A., Olma A., et al. Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics // J of Neuroendocrinol. 2012. Vol. 24, N 4. P. 609–628. doi: 10.1111/j.1365-2826.2012.02303.x

[45]

Manning M, Misicka A, Olma A, et al. Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. J Neuroendocrinol. 2012;24(4):609–628. doi: 10.1111/j.1365-2826.2012.02303.x

[46]

Boccia ML, Gorsaud AP, Bachevalier J, et al. Peripherally administered non-peptide oxytocin antagonist, L368,899, accumulates in limbic brain areas: a new pharmacological tool for the study of social motivation in non-human primates. Hormones and Behavior. 2007;52(3):344–351. doi: 10.1016/j.yhbeh.2007.05.009

[47]

Boccia M.L., Gorsaud A.P., Bachevalier J., et al. Peripherally administered non-peptide oxytocin antagonist, L368,899, accumulates in limbic brain areas: a new pharmacological tool for the study of social motivation in non-human primates // Hormones and Behavior. 2007. Vol. 52, N 3. P. 344–351. doi: 10.1016/j.yhbeh.2007.05.009

[48]

Boccia ML, Gorsaud AP, Bachevalier J, et al. Peripherally administered non-peptide oxytocin antagonist, L368,899, accumulates in limbic brain areas: a new pharmacological tool for the study of social motivation in non-human primates. Hormones and Behavior. 2007;52(3):344–351. doi: 10.1016/j.yhbeh.2007.05.009

[49]

Pohl O, Méen M, Lluel P, et al. Effect of OBE022, an oral and selective non-prostanoid PGF2α receptor antagonist in combination with nifedipine for preterm labor: a study on RU486-induced pregnant mice. Reprod Sci. 2017;24:(40A):S-002.

[50]

Pohl O., Méen M., Lluel P., et al. Effect of OBE022, an oral and selective non-prostanoid PGF2α receptor antagonist in combination with nifedipine for preterm labor: a study on RU486-induced pregnant mice // Reprod Sci. 2017. Vol. 24, N 40A. S-002.

[51]

Pohl O, Méen M, Lluel P, et al. Effect of OBE022, an oral and selective non-prostanoid PGF2α receptor antagonist in combination with nifedipine for preterm labor: a study on RU486-induced pregnant mice. Reprod Sci. 2017;24:(40A):S-002.

[52]

Pohl O, Chollet A, Kim SH, et al. OBE022, an oral and selective prostaglandin F2α receptor antagonist as an effective and safe modality for the treatment of preterm labour. J Pharmacol Exp Ther. 2018;366(2):349–364. doi: 10.1124/jpet.118.247668

[53]

Pohl O., Chollet A., Kim S.H., et al. OBE022, an oral and selective prostaglandin F2α receptor antagonist as an effective and safe modality for the treatment of preterm labour // J Pharmacol Exp Ther. 2018. Vol. 366, N 2. P. 349–364. doi: 10.1124/jpet.118.247668

[54]

Pohl O, Chollet A, Kim SH, et al. OBE022, an oral and selective prostaglandin F2α receptor antagonist as an effective and safe modality for the treatment of preterm labour. J Pharmacol Exp Ther. 2018;366(2):349–364. doi: 10.1124/jpet.118.247668

[55]

Fernandez-Martinez E, Ponce-Monter H, Soria-Jasso LE, et al. Inhibition of uterine contractility by thalidomide analogs via phosphodiesterase-4 inhibition and calcium entry blockade. Molecules. 2016;21(10):1332. doi: 10.3390/molecules21101332

[56]

Fernandez-Martinez E., Ponce-Monter H., Soria-Jasso L.E., et al. Inhibition of uterine contractility by thalidomide analogs via phosphodiesterase-4 inhibition and calcium entry blockade // Molecules. 2016. Vol. 21, N 10. P. 1332. doi: 10.3390/molecules21101332

[57]

Fernandez-Martinez E, Ponce-Monter H, Soria-Jasso LE, et al. Inhibition of uterine contractility by thalidomide analogs via phosphodiesterase-4 inhibition and calcium entry blockade. Molecules. 2016;21(10):1332. doi: 10.3390/molecules21101332

[58]

Tyson EK, Smith R, Read M. Evidence that corticotropin-releasing hormone modulates myometrial contractility during human pregnancy. Endocrinology. 2009;150(12):5617–5625. doi: 10.1210/en.2009-0348

[59]

Tyson E.K., Smith R., Read M. Evidence that corticotropin-releasing hormone modulates myometrial contractility during human pregnancy // Endocrinology. 2009. Vol. 150, N 12. P. 5617–5625. doi: 10.1210/en.2009-0348

[60]

Tyson EK, Smith R, Read M. Evidence that corticotropin-releasing hormone modulates myometrial contractility during human pregnancy. Endocrinology. 2009;150(12):5617–5625. doi: 10.1210/en.2009-0348

[61]

Coutinho EM, Vieira Lopes AC. Inhibition of uterine motility by aminophylline. Am J Obstet Gynecol. 1971;110(5):726–729. doi: 10.1016/0002-9378(71)90261-4

[62]

Coutinho E.M., Vieira Lopes A.C. Inhibition of uterine motility by aminophylline // Am J Obstet Gynecol. 1971. Vol. 110, N 5. P. 726–729. doi: 10.1016/0002-9378(71)90261-4

[63]

Coutinho EM, Vieira Lopes AC. Inhibition of uterine motility by aminophylline. Am J Obstet Gynecol. 1971;110(5):726–729. doi: 10.1016/0002-9378(71)90261-4

[64]

Laifer SA, Ghodgaonkar RB, Zacur HA, Dubin NH. The effect of aminophylline on uterine smooth muscle contractility and prostaglandin production in the pregnant rat uterus in vitro. Am J Obstet Gynecol. 1986;155(1):212–215. doi: 10.1016/0002-9378(86)90113-4

[65]

Laifer S.A., Ghodgaonkar R.B., Zacur H.A., Dubin N.H. The effect of aminophylline on uterine smooth muscle contractility and prostaglandin production in the pregnant rat uterus in vitro // Am J Obstet Gynecol. 1986. Vol. 155, N 1. P. 212–215. doi: 10.1016/0002-9378(86)90113-4

[66]

Laifer SA, Ghodgaonkar RB, Zacur HA, Dubin NH. The effect of aminophylline on uterine smooth muscle contractility and prostaglandin production in the pregnant rat uterus in vitro. Am J Obstet Gynecol. 1986;155(1):212–215. doi: 10.1016/0002-9378(86)90113-4

[67]

Buckle JW, Nathanielsz PW. Modification of myometrial activity in vivo by administration of cyclic nucleotides and theophylline to the pregnant rat. J Endocrinol. 1975;66(3):339–347. doi: 10.1677/joe.0.0660339

[68]

Buckle J.W., Nathanielsz P.W. Modification of myometrial activity in vivo by administration of cyclic nucleotides and theophylline to the pregnant rat // J Endocrinol. 1975. Vol. 66, N 3. P. 339–347. doi: 10.1677/joe.0.0660339

[69]

Buckle JW, Nathanielsz PW. Modification of myometrial activity in vivo by administration of cyclic nucleotides and theophylline to the pregnant rat. J Endocrinol. 1975;66(3):339–347. doi: 10.1677/joe.0.0660339

[70]

Sanborn BM. Relationship of ion channel activity to control of myometrial calcium. J Soc Gynecol Investig. 2000;7(1):4–11. doi: 10.1016/s1071-5576(99)00051-9

[71]

Sanborn B.M. Relationship of ion channel activity to control of myometrial calcium // J Soc Gynecol Investig. 2000. Vol. 7, N 1. P. 4–11. doi: 10.1016/s1071-5576(99)00051-9

[72]

Sanborn BM. Relationship of ion channel activity to control of myometrial calcium. J Soc Gynecol Investig. 2000;7(1):4–11. doi: 10.1016/s1071-5576(99)00051-9

[73]

Birnbaumer L, Zhu X, Jiang M, et al. On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins. Proc Natl Acad Sci USA. 1996;93(26):15195–15202. doi: 10.1073/pnas.93.26.15195

[74]

Birnbaumer L., Zhu X., Jiang M., et al. On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins // Proc Natl Acad Sci USA. 1996. Vol. 93, N 26. P. 15195–15202. doi: 10.1073/pnas.93.26.15195

[75]

Birnbaumer L, Zhu X, Jiang M, et al. On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins. Proc Natl Acad Sci USA. 1996;93(26):15195–15202. doi: 10.1073/pnas.93.26.15195

[76]

Liedtke W, Kim C. Functionality of the TRPV subfamily of TRP ion channels: add mechano-TRP and osmo-TRP to the lexicon! Cell Mol Life Sci. 2005;62(24):2985–3001. doi: 10.1007/s00018-005-5181-5

[77]

Liedtke W., Kim C. Functionality of the TRPV subfamily of TRP ion channels: add mechano-TRP and osmo-TRP to the lexicon! // Cell Mol Life Sci. 2005. Vol. 62, N 24. P. 2985–3001. doi: 10.1007/s00018-005-5181-5

[78]

Liedtke W, Kim C. Functionality of the TRPV subfamily of TRP ion channels: add mechano-TRP and osmo-TRP to the lexicon! Cell Mol Life Sci. 2005;62(24):2985–3001. doi: 10.1007/s00018-005-5181-5

[79]

Nilius B, Vriens J, Prenen J, et al. TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol Cell Physiol. 2004;286(2):C195–205. doi: 10.1152/ajpcell.00365.2003

[80]

Nilius B., Vriens J., Prenen J., et al. TRPV4 calcium entry channel: a paradigm for gating diversity // Am J Physiol Cell Physiol. 2004. Vol. 286, N 2. P. C195–205. doi: 10.1152/ajpcell.00365.2003

[81]

Nilius B, Vriens J, Prenen J, et al. TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol Cell Physiol. 2004;286(2):C195–205. doi: 10.1152/ajpcell.00365.2003

[82]

Becker D, Blase C, Bereiter-Hahn J, Jendrach M. TRPV4 exhibits a functional role in cell-volume regulation. J Cell Sci. 2005;118 (Pt 11):2435–2440. doi: 10.1242/jcs.02372

[83]

Becker D., Blase C., Bereiter-Hahn J., Jendrach M. TRPV4 exhibits a functional role in cell-volume regulation // J Cell Sci. 2005. Vol. 118, Pt 11. P. 2435–2440. doi: 10.1242/jcs.02372

[84]

Becker D, Blase C, Bereiter-Hahn J, Jendrach M. TRPV4 exhibits a functional role in cell-volume regulation. J Cell Sci. 2005;118 (Pt 11):2435–2440. doi: 10.1242/jcs.02372

[85]

Benfenati V, Caprini M, Dovizio M, et al. An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proc Natl Acad Sci USA. 2011;108(6):2563–2568. doi: 10.1073/pnas.1012867108

[86]

Benfenati V., Caprini M., Dovizio M., et al. An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes // Proc Natl Acad Sci USA. 2011. Vol. 108, N 6. P. 2563–2568. doi: 10.1073/pnas.1012867108

[87]

Benfenati V, Caprini M, Dovizio M, et al. An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proc Natl Acad Sci USA. 2011;108(6):2563–2568. doi: 10.1073/pnas.1012867108

[88]

Maruyama T, Kanaji T, Nakade S, et al. 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J Biochem. 1997;122(3):498–505. doi: 10.1093/oxfordjournals.jbchem.a021780

[89]

Maruyama T., Kanaji T., Nakade S., et al. 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release // J Biochem. 1997. Vol. 122, N 3. P. 498–505. doi: 10.1093/oxfordjournals.jbchem.a021780

[90]

Maruyama T, Kanaji T, Nakade S, et al. 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J Biochem. 1997;122(3):498–505. doi: 10.1093/oxfordjournals.jbchem.a021780

[91]

Bilmen JG, Wootton LL, Godfrey RE, et al. Inhibition of SERCA Ca2+ pumps by 2-aminoethoxydiphenyl borate (2-APB). 2-APB reduces both Ca2+ binding and phosphoryl transfer from ATP, by interfering with the pathway leading to the Ca2+-binding sites. Eur J Biochem. 2002;269(15):3678–3687. doi: 10.1046/j.1432-1033.2002.03060.x

[92]

Bilmen J.G., Wootton L.L., Godfrey R.E., et al. Inhibition of SERCA Ca2+ pumps by 2-aminoethoxydiphenyl borate (2-APB). 2-APB reduces both Ca2+ binding and phosphoryl transfer from ATP, by interfering with the pathway leading to the Ca2+-binding sites // Eur J Biochem. 2002. Vol. 269, N 15. P. 3678–3687. doi: 10.1046/j.1432-1033.2002.03060.x

[93]

Bilmen JG, Wootton LL, Godfrey RE, et al. Inhibition of SERCA Ca2+ pumps by 2-aminoethoxydiphenyl borate (2-APB). 2-APB reduces both Ca2+ binding and phosphoryl transfer from ATP, by interfering with the pathway leading to the Ca2+-binding sites. Eur J Biochem. 2002;269(15):3678–3687. doi: 10.1046/j.1432-1033.2002.03060.x

[94]

Ma HT, Venkatachalam K, Parys JB, Gill DL. Modification of store-operated channel coupling and inositol trisphosphate receptor function by 2-aminoethoxydiphenyl borate in DT40 lymphocytes. J Biol Chem. 2002;277(9):6915–6922. doi: 10.1074/jbc.M107755200

[95]

Ma H.T., Venkatachalam K., Parys J.B., Gill D.L. Modification of store-operated channel coupling and inositol trisphosphate receptor function by 2-aminoethoxydiphenyl borate in DT40 lymphocytes // J Biol Chem. 2002. Vol. 277, N 9. P. 6915–6922. doi: 10.1074/jbc.M107755200

[96]

Ma HT, Venkatachalam K, Parys JB, Gill DL. Modification of store-operated channel coupling and inositol trisphosphate receptor function by 2-aminoethoxydiphenyl borate in DT40 lymphocytes. J Biol Chem. 2002;277(9):6915–6922. doi: 10.1074/jbc.M107755200

[97]

Missiaen L, Callewaert G, De Smedt H, Parys JB. 2-Aminoethoxydiphenyl borate affects the inositol 1,4,5-trisphosphate receptor, the intracellular Ca2+ pump and the non-specific Ca2+ leak from the non-mitochondrial Ca2+ stores in permeabilized A7r5 cells. Cell Calcium. 2001;29(2):111–116. doi: 10.1054/ceca.2000.0163

[98]

Missiaen L., Callewaert G., De Smedt H., Parys J.B. 2-Aminoethoxydiphenyl borate affects the inositol 1,4,5-trisphosphate receptor, the intracellular Ca2+ pump and the non-specific Ca2+ leak from the non-mitochondrial Ca2+ stores in permeabilized A7r5 cells // Cell Calcium. 2001. Vol. 29, N 2. P. 111–116. doi: 10.1054/ceca.2000.0163

[99]

Missiaen L, Callewaert G, De Smedt H, Parys JB. 2-Aminoethoxydiphenyl borate affects the inositol 1,4,5-trisphosphate receptor, the intracellular Ca2+ pump and the non-specific Ca2+ leak from the non-mitochondrial Ca2+ stores in permeabilized A7r5 cells. Cell Calcium. 2001;29(2):111–116. doi: 10.1054/ceca.2000.0163

[100]

Ngadjui E, Kouam JY, Fozin GRB, et al. Uterotonic effects of aqueous and methanolic extracts of Lannea acida in Wistar rats: an in vitro study. Reprod Sci. 2021;28(9):2448–2457. doi: 10.1007/s43032-021-00465-x

[101]

Ngadjui E., Kouam J.Y., Fozin G.R.B., et al. Uterotonic effects of aqueous and methanolic extracts of Lannea acida in Wistar rats: an in vitro study // Reprod Sci. 2021. Vol. 28, N 9. P. 2448–2457. doi: 10.1007/s43032-021-00465-x

[102]

Ngadjui E, Kouam JY, Fozin GRB, et al. Uterotonic effects of aqueous and methanolic extracts of Lannea acida in Wistar rats: an in vitro study. Reprod Sci. 2021;28(9):2448–2457. doi: 10.1007/s43032-021-00465-x

[103]

McGuire W, Fowlie PW. Naloxone for narcotic exposed newborn infants: systematic review. Arch Dis Child Fetal Neonatal Ed. 2003;88(4):F308–F311. doi: 10.1136/fn.88.4.f308

[104]

McGuire W., Fowlie P.W. Naloxone for narcotic exposed newborn infants: systematic review // Arch Dis Child Fetal Neonatal Ed. 2003. Vol. 88, N 4. P. F308–F311. doi: 10.1136/fn.88.4.f308

[105]

McGuire W, Fowlie PW. Naloxone for narcotic exposed newborn infants: systematic review. Arch Dis Child Fetal Neonatal Ed. 2003;88(4):F308–F311. doi: 10.1136/fn.88.4.f308

[106]

Debelak K, Morrone WR, O'Grady KE, Jones HE. Buprenorphine + naloxone in the treatment of opioid dependence during pregnancy-initial patient care and outcome data. Am J Addict. 2013;22(3):252–254. doi: 10.1111/j.1521-0391.2012.12005.x

[107]

Debelak K., Morrone W.R., O'Grady K.E., Jones H.E. Buprenorphine + naloxone in the treatment of opioid dependence during pregnancy-initial patient care and outcome data // Am J Addict. 2013. Vol. 22, N 3. P. 252–254. doi: 10.1111/j.1521-0391.2012.12005.x

[108]

Debelak K, Morrone WR, O'Grady KE, Jones HE. Buprenorphine + naloxone in the treatment of opioid dependence during pregnancy-initial patient care and outcome data. Am J Addict. 2013;22(3):252–254. doi: 10.1111/j.1521-0391.2012.12005.x

[109]

Kemp MW, Saito M, Newnham JP, et al. Preterm birth, infection, and inflammation advances from the study of animal models. Reprod Sci. 2010;17(7):619–628. doi: 10.1177/1933719110373148

[110]

Kemp M.W., Saito M., Newnham J.P., et al. Preterm birth, infection, and inflammation advances from the study of animal models // Reprod Sci. 2010. Vol. 17, N 7. P. 619–628. doi: 10.1177/1933719110373148

[111]

Kemp MW, Saito M, Newnham JP, et al. Preterm birth, infection, and inflammation advances from the study of animal models. Reprod Sci. 2010;17(7):619–628. doi: 10.1177/1933719110373148

[112]

Morgan SJ, Deshpande DA, Tiegs BC, et al. β-Agonist-mediated relaxation of airway smooth muscle is protein kinase A-dependent. J Biol Chem. 2014;289(33):23065–23074. doi: 10.1074/jbc.M114.557652

[113]

Morgan S.J., Deshpande D.A., Tiegs B.C., et al. β-Agonist-mediated relaxation of airway smooth muscle is protein kinase A-dependent // J Biol Chem. 2014. Vol. 289, N 33. P. 23065–23074. doi: 10.1074/jbc.M114.557652

[114]

Morgan SJ, Deshpande DA, Tiegs BC, et al. β-Agonist-mediated relaxation of airway smooth muscle is protein kinase A-dependent. J Biol Chem. 2014;289(33):23065–23074. doi: 10.1074/jbc.M114.557652

[115]

Billington CK, Ojo OO, Penn RB, Ito S. cAMP regulation of airway smooth muscle function. Pulm Pharmacol Ther. 2013;26(1):112–120. doi: 10.1016/j.pupt.2012.05.007

[116]

Billington C.K., Ojo O.O., Penn R.B., Ito S. cAMP regulation of airway smooth muscle function // Pulm Pharmacol Ther. 2013. Vol. 26, N 1. P. 112–120. doi: 10.1016/j.pupt.2012.05.007

[117]

Billington CK, Ojo OO, Penn RB, Ito S. cAMP regulation of airway smooth muscle function. Pulm Pharmacol Ther. 2013;26(1):112–120. doi: 10.1016/j.pupt.2012.05.007

[118]

Xu Q, Jennings NL, Sim K, et al. Pathological hypertrophy reverses β2-adrenergic receptor-induced angiogenesis in mouse heart. Physiol Rep. 2015;3(3):e12340. doi: 10.14814/phy2.12340

[119]

Xu Q., Jennings N.L., Sim K., et al. Pathological hypertrophy reverses β2-adrenergic receptor-induced angiogenesis in mouse heart // Physiol Rep. 2015. Vol. 3, N 3. P. e12340. doi: 10.14814/phy2.12340

[120]

Xu Q, Jennings NL, Sim K, et al. Pathological hypertrophy reverses β2-adrenergic receptor-induced angiogenesis in mouse heart. Physiol Rep. 2015;3(3):e12340. doi: 10.14814/phy2.12340

[121]

Pohl O, Marchand L, Gotteland JP, et al. Pharmacokinetics, safety and tolerability of OBE022, a selective prostaglandin F2α receptor antagonist tocolytic: a first-in-human trial in healthy post-menopausal women. Br J Clin Pharmacol. 2018;84(8):1839–1855. doi: 10.1111/bcp.13622

[122]

Pohl O., Marchand L., Gotteland J.P., et al. Pharmacokinetics, safety and tolerability of OBE022, a selective prostaglandin F2α receptor antagonist tocolytic: a first-in-human trial in healthy post-menopausal women // Br J Clin Pharmacol. 2018. Vol. 84, N 8. P. 1839–1855. doi: 10.1111/bcp.13622

[123]

Pohl O, Marchand L, Gotteland JP, et al. Pharmacokinetics, safety and tolerability of OBE022, a selective prostaglandin F2α receptor antagonist tocolytic: a first-in-human trial in healthy post-menopausal women. Br J Clin Pharmacol. 2018;84(8):1839–1855. doi: 10.1111/bcp.13622

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (641KB)

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/