Exploring structural brain changes in children with neonatal brachial plexus palsy: a voxel-based morphometry analysis

Dzerassa V. Kadieva , Federico Gallo , Maxim A. Ulanov , Anna N. Shestakova , Victoria V. Moiseeva , Alina M. Hodorovskaya , Olga E. Agronovich

Genes & Cells ›› 2023, Vol. 18 ›› Issue (4) : 331 -339.

PDF (603KB)
Genes & Cells ›› 2023, Vol. 18 ›› Issue (4) : 331 -339. DOI: 10.23868/gc568311
Original Study Articles
research-article

Exploring structural brain changes in children with neonatal brachial plexus palsy: a voxel-based morphometry analysis

Author information +
History +
PDF (603KB)

Abstract

BACKGROUND: Obstetric brachial plexus palsy (OBPP) is paralysis of the upper limb resulting from nerve injury during vaginal delivery. Although current treatment approaches frequently lead to complete reinnervation of the limb, some patients show long-term motor deficits. These impairments may result from upper limb disuse that causes structural brain changes.

AIM: This study aimed to compare deep gray matter volumes between children with OBPP and healthy controls.

METHODS: We analyzed the structural magnetic resonance imaging results of 46 children with OBPP (n=24, mean age — 10.20, of whom 12 were girls) and healthy age-matched controls (n=22, mean age — 9.63, of whom 10 were girls) using a voxel-based morphometry technique in SPM12 package (Statistical Parametric Mapping) in MATLAB R2019b. To minimize false discoveries, we used a stringent procedure to control the family-wise error rate.

RESULTS: We found volumetric brain differences between children with OBPP and healthy controls (all FWE-corrected p <0.005). Children with OBPP had significantly lower gray matter volumes in the left amygdala, bilateral hippocampus, and right entorhinal cortex.

CONCLUSION: Integrating our findings with previous work, we speculate that the amygdala–hippocampus–entorhinal cortex complex might play a significant role in motor disorders.

Keywords

motor disorder / gray matter / obstetric brachial plexus palsy

Cite this article

Download citation ▾
Dzerassa V. Kadieva, Federico Gallo, Maxim A. Ulanov, Anna N. Shestakova, Victoria V. Moiseeva, Alina M. Hodorovskaya, Olga E. Agronovich. Exploring structural brain changes in children with neonatal brachial plexus palsy: a voxel-based morphometry analysis. Genes & Cells, 2023, 18(4): 331-339 DOI:10.23868/gc568311

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Walle T, Hartikainen-Sorri A-L. Obstetric shoulder injury: associated risk factors, prediction and prognosis. Acta Obstet Gynecol Scand. 1993;72(6):450–454. doi: 10.3109/00016349309021133

[2]

Walle T., Hartikainen-Sorri A.L. Obstetric shoulder injury. Associated risk factors, prediction and prognosis // Acta Obstet Gynecol Scand. 1993. Vol. 72, N 6. P. 450–454. doi: 10.3109/00016349309021133

[3]

Hoeksma AF, ter Steeg AM, Nelissen RG, et al. Neurological recovery in obstetric brachial plexus injuries: an historical cohort study. Dev Med Child Neurol. 2007;46(2):76–83. doi: 10.1111/j.1469-8749.2004.tb00455.x

[4]

Hoeksma A.F., ter Steeg A.M., Nelissen R.G., et al. Neurological recovery in obstetric brachial plexus injuries: an historical cohort study // Dev Med Child Neurol. 2007. Vol. 46, N 2. P. 76–83. doi: 10.1111/j.1469-8749.2004.tb00455.x

[5]

Coroneos CJ, Voineskos SH, Coroneos MK, et al. Primary nerve repair for obstetrical brachial plexus injury: a meta-analysis. Plast Reconstr Surg. 2015;136(4):765–779. doi: 10.1097/prs.0000000000001629

[6]

Coroneos C.J., Voineskos S.H., Coroneos M.K., et al. Primary nerve repair for obstetrical brachial plexus injury: a meta-analysis // Plast Reconstr Surg. 2015. Vol. 136, N 4. P. 765–779. doi: 10.1097/prs.0000000000001629

[7]

Pondaag W, Malessy MJ, van Dijk JG, Thomeer RT. Natural history of obstetric brachial plexus palsy: a systematic review. Dev Med Child Neurol. 2004;46(02):138–144. doi: 10.1017/s0012162204000258

[8]

Pondaag W., Malessy M.J., van Dijk J.G., Thomeer R.T. Natural history of obstetric brachial plexus palsy: a systematic review // Dev Med Child Neurol. 2004. Vol. 46, N 2. P. 138–144. doi: 10.1017/s0012162204000258

[9]

Anguelova GV, Malessy MJ, Buitenhuis SM, et al. Impaired automatic arm movements in obstetric brachial plexus palsy suggest a central disorder. J Child Neurol. 2016;31(8):1005–1009. doi: 10.1177/0883073816635746

[10]

Anguelova G.V., Malessy M.J., Buitenhuis S.M., et al. Impaired automatic arm movements in obstetric brachial plexus palsy suggest a central disorder // J Child Neurol. 2016. Vol. 31, N 8. P. 1005–1009. doi: 10.1177/0883073816635746

[11]

Hale HB, Bae DS, Waters PM. Current concepts in the management of brachial plexus birth palsy. J Hand Surg Am. 2010;35(2):322–331. doi: 10.1016/j.jhsa.2009.11.026

[12]

Hale H.B., Bae D.S., Waters P.M. Current concepts in the management of brachial plexus birth palsy // J Hand Surg Am. 2010. Vol. 35, N 2. P. 322–331. doi: 10.1016/j.jhsa.2009.11.026

[13]

Smania N, Gandolfi M, Paolucci S, et al. Reduced-intensity modified constraint-induced movement therapy versus conventional therapy for upper extremity rehabilitation after stroke. Neurorehabil Neural Repair. 2012;26(9):1035–1045. doi: 10.1177/1545968312446003

[14]

Smania N., Gandolfi M., Paolucci S., et al. Reduced-intensity modified constraint-induced movement therapy versus conventional therapy for upper extremity rehabilitation after stroke // Neurorehabil Neural Repair. 2012. Vol. 26, N 9. P. 1035–1045. doi: 10.1177/1545968312446003

[15]

Bhat DI, Indira Devi B, Bharti K, Panda R. Cortical plasticity after brachial plexus injury and repair: a resting-state functional MRI study. Neurosurg Focus. 2017;42(3):E14. doi: 10.3171/2016.12.focus16430

[16]

Bhat D.I., Indira Devi B., Bharti K., Panda R. Cortical plasticity after brachial plexus injury and repair: a resting-state functional MRI study // Neurosurg Focus. 2017. Vol. 42, N 3. P. E14. doi: 10.3171/2016.12.focus16430

[17]

Longo E, Nishiyori R, Cruz T, et al. Obstetric brachial plexus palsy: can a unilateral birth onset peripheral injury significantly affect brain development? Dev Neurorehabil. 2020;23(6):375–382. doi: 10.1080/17518423.2019.1689437

[18]

Longo E., Nishiyori R., Cruz T., et al. Obstetric brachial plexus palsy: can a unilateral birth onset peripheral injury significantly affect brain development? // Dev Neurorehabil. 2020. Vol. 23, N 6. P. 375–382. doi: 10.1080/17518423.2019.1689437

[19]

Scarfone H, McComas AJ, Pape K, Newberry R. Denervation and reinnervation in congenital brachial palsy. Muscle Nerve. 1999;22(5):600–607. doi: 10.1002/(sici)1097-4598(199905)22:5<600::aid-mus8>3.0.co;2-b

[20]

Scarfone H., McComas A.J., Pape K., Newberry R. Denervation and reinnervation in congenital brachial palsy // Muscle Nerve. 1999. Vol. 22, N 5. P. 600–607. doi: 10.1002/(sici)1097-4598(199905)22:5<600::aid-mus8>3.0.co;2-b

[21]

Blagovechtchenski E, Koriakina M, Bredikhin D, et al. Similar cognitive skill impairment in children with upper limb motor disorders due to arthrogryposis multiplex congenita and obstetrical brachial plexus palsy. Int J Environ Res Public Health. 2023;20(3):1841. doi: 10.3390/ijerph20031841

[22]

Blagovechtchenski E., Koriakina M., Bredikhin D., et al. Similar cognitive skill impairment in children with upper limb motor disorders due to arthrogryposis multiplex congenita and obstetrical brachial plexus palsy // Int J Environ Res Public Health. 2023. Vol. 20, N 3. P. 1841. doi: 10.3390/ijerph20031841

[23]

Björkman A, Weibull A, Svensson H, Dahlin L. Cerebral reorganization in patients with brachial plexus birth injury and residual shoulder problems. Front Neurol. 2016;7. doi: 10.3389/fneur.2016.00240

[24]

Björkman A., Weibull A., Svensson H., Dahlin L. Cerebral reorganization in patients with brachial plexus birth injury and residual shoulder problems // Front Neurol. 2016. Vol. 7. P. 240. doi: 10.3389/fneur.2016.00240

[25]

Kislay K, Devi BI, Bhat DI, et al. Novel findings in obstetric brachial plexus palsy: a study of corpus callosum volumetry and resting-state functional magnetic resonance imaging of Sensorimotor Network. Neurosurgery. 2018;83(5):905–914. doi: 10.1093/neuros/nyx495

[26]

Kislay K., Devi B.I., Bhat D.I., et al. Novel findings in obstetric brachial plexus palsy: a study of corpus callosum volumetry and resting-state functional magnetic resonance imaging of Sensorimotor Network // Neurosurgery. 2018. Vol. 83, N 5. P. 905–914. doi: 10.1093/neuros/nyx495

[27]

Roozendaal B, McGaugh JL. Memory modulation. Behav Neurosci. 2011;125(6):797–824. doi: 10.1037/a0026187

[28]

Roozendaal B., McGaugh J.L. Memory modulation // Behav Neurosci. 2011. Vol. 125, N 6. P. 797–824. doi: 10.1037/a0026187

[29]

Baxter MG, Croxson PL. Facing the role of the amygdala in emotional information processing. Proc Natl Acad Sci U S A. 2012;109(52):21180–21181. doi: 10.1073/pnas.1219167110

[30]

Baxter M.G., Croxson P.L. Facing the role of the amygdala in emotional information processing // Proc Natl Acad Sci U S A. 2012. Vol. 109, N 52. P. 21180–21181. doi: 10.1073/pnas.1219167110

[31]

Adolphs R. What does the amygdala contribute to social cognition? Ann N Y Acad Sci. 2010;1191(1):42–61. doi: 10.1111/j.1749-6632.2010.05445.x

[32]

Adolphs R. What does the amygdala contribute to social cognition? // Ann N Y Acad Sci. 2010. Vol. 1191, N 1. P. 42–61. doi: 10.1111/j.1749-6632.2010.05445.x

[33]

Grèzes J, Valabrègue R, Gholipour B, Chevallier C. A direct amygdala-motor pathway for emotional displays to influence action: a diffusion tensor imaging study. Hum Brain Mapp. 2014;35(12):5974–5983. doi: 10.1002/hbm.22598

[34]

Grèzes J., Valabrègue R., Gholipour B., Chevallier C. A direct amygdala-motor pathway for emotional displays to influence action: a diffusion tensor imaging study // Human Brain Mapp. 2014. Vol. 35, N 12. P. 5974–5983. doi: 10.1002/hbm.22598

[35]

Dum RP, Strick PL. Frontal lobe inputs to the digit representations of the motor areas on the lateral surface of the hemisphere. J Neurosci. 2005;25(6):1375–1386. doi: 10.1523/jneurosci.3902-04.2005

[36]

Dum R.P., Strick P.L. Frontal lobe inputs to the digit representations of the motor areas on the lateral surface of the Hemisphere // J Neurosci. 2005. Vol. 25, N 6. P. 1375–1386. doi: 10.1523/jneurosci.3902-04.2005

[37]

Ahveninen LM, Stout JC, Georgiou-Karistianis N, et al. Reduced amygdala volumes are related to motor and cognitive signs in Huntington’s disease: the image-HD study. Neuroimage Clin. 2018;18:881–887. doi: 10.1016/j.nicl.2018.03.027

[38]

Ahveninen L.M., Stout J.C., Georgiou-Karistianis N., et al. Reduced amygdala volumes are related to motor and cognitive signs in Huntington’s disease: The IMAGE-HD study // Neuroimage Clin. 2018. Vol. 18. P. 881–887. doi: 10.1016/j.nicl.2018.03.027

[39]

Chipika RH, Christidi F, Finegan E, et al. Amygdala pathology in amyotrophic lateral sclerosis and primary lateral sclerosis. J Neurol Sci. 2020;417:117039. doi: 10.1016/j.jns.2020.117039

[40]

Chipika R.H., Christidi F., Finegan E., et al. Amygdala pathology in amyotrophic lateral sclerosis and primary lateral sclerosis // J Neurol Sci. 2020. Vol. 417. P. 117039. doi: 10.1016/j.jns.2020.117039

[41]

Fernández-Seara MA, Aznárez-Sanado M, Mengual E, et al. Continuous performance of a novel motor sequence leads to highly correlated striatal and hippocampal perfusion increases. Neuroimage. 2009;47(4):1797–1808. doi: 10.1016/j.neuroimage.2009.05.061

[42]

Fernández-Seara M.A., Aznárez-Sanado M., Mengual E., et al. Continuous performance of a novel motor sequence leads to highly correlated striatal and hippocampal perfusion increases // NeuroImage. 2009. Vol. 47, N 4. P. 1797–1808. doi: 10.1016/j.neuroimage.2009.05.061

[43]

Gheysen F, Van Opstal F, Roggeman C, et al. The neural basis of implicit perceptual sequence learning. Front Hum Neurosci. 2011;5:137. doi: 10.3389/fnhum.2011.00137

[44]

Gheysen F., Van Opstal F., Roggeman C., et al. The neural basis of implicit perceptual sequence learning // Front Hum Neurosci. 2011. Vol. 5. doi: 10.3389/fnhum.2011.00137

[45]

Kelemen E, Fenton AA. Dynamic grouping of hippocampal neural activity during cognitive control of two spatial frames. PLoS Biol. 2010;8(6):e1000403. Corrected and republished from: PLoS Biol. 2015;13(3):e1002100. doi: 10.1371/journal.pbio.1000403

[46]

Kelemen E., Fenton A.A. Dynamic grouping of hippocampal neural activity during cognitive control of two spatial frames // PLoS Biol. 2010. Vol. 8, N 6. P. e1000403. Corrected and republished from: PLoS Biol. 2015. Vol. 13. P. e1002100. doi: 10.1371/journal.pbio.1000403

[47]

Rudner M, Rönnberg J. The role of the episodic buffer in working memory for language processing. Cogn Process. 2007;9(1):19–28. doi: 10.1007/s10339-007-0183-x

[48]

Rudner M., Rönnberg J. The role of the episodic buffer in working memory for language processing // Cogn Process. 2007. Vol. 9, N 1. P. 19–28. doi: 10.1007/s10339-007-0183-x

[49]

Rose M, Haider H, Salari N, Büchel C. Functional dissociation of hippocampal mechanism during implicit learning based on the domain of associations. J Neurosci. 2011;31(39):13739–13745. doi: 10.1523/jneurosci.3020-11.2011

[50]

Rose M., Haider H., Salari N., Büchel C. Functional dissociation of hippocampal mechanism during implicit learning based on the domain of Associations // J Neurosci. 2011. Vol. 31, N 39. P. 13739–13745. doi: 10.1523/jneurosci.3020-11.2011

[51]

Hoffmann LC, Cicchese JJ, Berry SD. Harnessing the power of theta: Natural manipulations of cognitive performance during hippocampal theta-contingent eyeblink conditioning. Front Syst Neurosci. 2015;9:50. doi: 10.3389/fnsys.2015.00050

[52]

Hoffmann L.C., Cicchese J.J., Berry S.D. Harnessing the power of theta: natural manipulations of cognitive performance during hippocampal theta-contingent eyeblink conditioning // Front Syst Neurosci. 2015. Vol. 9. P. 50. doi: 10.3389/fnsys.2015.00050

[53]

Burman DD. Hippocampal connectivity with sensorimotor cortex during volitional finger movements: laterality and relationship to motor learning. PLoS One. 2019;14(9):e0222064. doi: 0.1371/journal.pone.0222064

[54]

Burman D.D. Hippocampal connectivity with sensorimotor cortex during volitional finger movements: laterality and relationship to Motor Learning // PLoS One. 2019. Vol. 14, N 9. P. e0222064. doi: 10.1371/journal.pone.0222064

[55]

de Brouwer AJ, Areshenkoff CN, Rashid MR, et al. Human variation in error-based and reinforcement motor learning is associated with entorhinal volume. Cereb Cortex. 2022;32(16):3423–3440. doi: 10.1093/cercor/bhab424

[56]

de Brouwer A.J., Areshenkoff C.N., Rashid M.R., et al. Human variation in error-based and reinforcement motor learning is associated with entorhinal volume // Cereb Cortex. 2022. Vol. 32, N 16. P. 3423–3440. doi: 10.1093/cercor/bhab424

[57]

Quirk GJ, Muller RU, Kubie JL, Ranck JB Jr. The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells. J Neurosci. 1992;12(5):1945–1963. doi: 10.1523/jneurosci.12-05-01945.1992

[58]

Quirk G.J., Muller R.U., Kubie J.L., Ranck J.B. Jr. The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells // J Neurosci. 1992. Vol. 12, N 5. P. 1945–1963. doi: 10.1523/jneurosci.12-05-01945.1992

[59]

Tukker JJ, Beed P, Brecht M, et al. Microcircuits for spatial coding in the medial entorhinal cortex. Physiol Rev. 2022;102(2):653–688. doi: 10.1152/physrev.00042.2020

[60]

Tukker J.J., Beed P., Brecht M., et al. Microcircuits for spatial coding in the medial entorhinal cortex // Physiol Rev. 2022. Vol. 102, N 2. P. 653–688. doi: 10.1152/physrev.00042.2020

[61]

Epstein RA, Patai EZ, Julian JB, Spiers HJ. The cognitive map in humans: spatial navigation and beyond. Nat Neurosci. 2017;20(11):1504–1513. doi: 10.1038/nn.4656

[62]

Epstein R.A., Patai E.Z., Julian J.B., Spiers H.J. The cognitive map in humans: spatial navigation and beyond // Nat Neurosci. 2017. Vol. 20, N 11. P. 1504–1513. doi: 10.1038/nn.4656

[63]

Howard LR, Javadi AH, Yu Y, et al. The hippocampus and entorhinal cortex encode the path and euclidean distances to goals during navigation. Curr Biol. 2014;24(12):1331–1340. doi: 10.1016/j.cub.2014.05.001

[64]

Howard L.R., Javadi A.H., Yu Y., et al. The hippocampus and entorhinal cortex encode the path and euclidean distances to goals during navigation // Curr Biol. 2014. Vol. 24, N 12. P. 1331–1340. doi: 10.1016/j.cub.2014.05.001

[65]

Pratt WE, Mizumori SJ. Characteristics of basolateral amygdala neuronal firing on a spatial memory task involving differential reward. Behav Neurosci. 1998;112(3):554–570. doi: 10.1037/0735-7044.112.3.554

[66]

Pratt W.E., Mizumori S.J. Characteristics of basolateral amygdala neuronal firing on a spatial memory task involving differential reward // Behav Neurosci. 1998. Vol. 112, N 3. P. 554–570. doi: 10.1037/0735-7044.112.3.554

[67]

Takehara-Nishiuchi K. Entorhinal cortex and consolidated memory. Neurosci Res. 2014;84:27–33. doi: 10.1016/j.neures.2014.02.012

[68]

Takehara-Nishiuchi K. Entorhinal cortex and consolidated memory // Neurosci Res. 2014. Vol. 84. P. 27–33. doi: 10.1016/j.neures.2014.02.012

[69]

Lu Y, Liu H, Hua X, et al. Attenuation of brain grey matter volume in brachial plexus injury patients. Neurol Sci. 2016;37(1):51–56. doi: 10.1007/s10072-015-2356-1

[70]

Lu Y., Liu H., Hua X., et al. Attenuation of brain grey matter volume in brachial plexus injury patients // Neurol Sci. 2015. Vol. 37, N 1. P. 51–56. doi: 10.1007/s10072-015-2356-1

[71]

Fraiman D, Miranda MF, Erthal F, et al. Reduced functional connectivity within the primary motor cortex of patients with brachial plexus injury. Neuroimage Clin. 2016;12:277–284. doi: 10.1016/j.nicl.2016.07.008

[72]

Fraiman D., Miranda M.F., Erthal F., et al. Reduced functional connectivity within the primary motor cortex of patients with brachial plexus injury // Neuroimage Clin. 2016. Vol. 12. P. 277–284. doi: 10.1016/j.nicl.2016.07.008

[73]

Pearson K. Motor systems. Curr Opin Neurobiol. 2000;10(5):649–654. doi: 10.1016/s0959-4388(00)00130-6

[74]

Pearson K. Motor systems // Curr Opin Neurobiol. 2000. Vol. 10, N 5. P. 649–654. doi: 10.1016/s0959-4388(00)00130-6

[75]

Lang EJ, Apps R, Bengtsson F, et al. The roles of the Olivocerebellar pathway in motor learning and motor control. A consensus paper. Cerebellum. 2016;16(1):230–252. doi: 10.1007/s12311-016-0787-8

[76]

Lang E.J., Apps R., Bengtsson F., et al. The roles of the olivocerebellar pathway in motor learning and motor control. A consensus paper // Cerebellum. 2017. Vol. 16, N 1. P. 230–252. doi: 10.1007/s12311-016-0787-8

[77]

Doyon J, Gabitov E, Vahdat S, et al. Current issues related to motor sequence learning in humans. Curr Opin Behav Sci. 2018;20:89–97. doi: 10.1016/j.cobeha.2017.11.012

[78]

Doyon J., Gabitov E., Vahdat S., et al. Current issues related to motor sequence learning in humans // Curr Opin Behav Sci. 2018. Vol. 20. P. 89–97. doi: 10.1016/j.cobeha.2017.11.012

[79]

Krakauer JW, Hadjiosif AM, Xu J, et al. Motor learning. Compr Physiol. 2019;9(2):613–663. Corrected and republished from: Compr Physiol. 2019;9(3):1279. doi: 10.1002/cphy.c170043

[80]

Krakauer J.W., Hadjiosif A.M., Xu J., et al. Motor learning // Compr Physiol. 2019. Vol. 9, N 2. P. 613–663. Corrected and republished from: Compr Physiol. 2019. Vol. 9, N 3. P. 1279. doi: 10.1002/cphy.c170043

[81]

Dhawale AK, Wolff SBE, Ko R, Ölveczky BP. The basal ganglia control the detailed kinematics of learned motor skills. Nat Neurosci. 2021;24(9):1256–1269. doi: 10.1038/s41593-021-00889-3

[82]

Dhawale A.K., Wolff S.B.E., Ko R., Ölveczky B.P. The basal ganglia control the detailed kinematics of learned motor skills // Nat Neurosci. 2021. Vol. 24, N 9. P. 1256–1269. doi: 10.1038/s41593-021-00889-3

[83]

Rossi C, Bastian AJ, Therrien AS. Mechanisms of proprioceptive realignment in human motor learning. Curr Opin Physiol. 2021;20:186–197. doi: 10.1016/j.cophys.2021.01.011

[84]

Rossi C., Bastian A.J., Therrien A.S. Mechanisms of proprioceptive realignment in Human Motor Learning // Curr Opin Physiol. 2021. Vol. 20. P. 186–197. doi: 10.1016/j.cophys.2021.01.011

[85]

Taubert M, Draganski B, Anwander A, et al. Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections. J Neurosci. 2010;30(35):11670–11677. doi: 10.1523/jneurosci.2567-10.2010

[86]

Taubert M., Draganski B., Anwander A., et al. Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections // J Neurosci. 2010. Vol. 30, N 35. P. 11670–11677. doi: 10.1523/jneurosci.2567-10.2010

[87]

Casey BJ, Tottenham N, Liston C, Durston S. Imaging the developing brain: what have we learned about cognitive development? Trends Cogn Sci. 2005;9(3):104–110. doi: 10.1016/j.tics.2005.01.011

[88]

Casey B., Tottenham N., Liston C., Durston S. Imaging the developing brain: what have we learned about cognitive development? // Trends Cogn Sci. 2005. Vol. 9, N 3. P. 104–110. doi: 10.1016/j.tics.2005.01.011

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (603KB)

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/