Age-related differences in the interhemispheric asymmetry of local cortical responses to abstract and concrete verbs in children: a magnetic mismatch negativity study

Maxim A. Ulanov , Grigory A. Kopytin , Beatriz Bermudez-Margaretto , Ekaterina D. Pomelova , Alyona V. Popyvanova , Evgeny D. Blagovechtchenski , Victoria V. Moiseeva , Anna N. Shestakova , Iiro P. Jääskeläinen , Yury Y. Shtyrov

Genes & Cells ›› 2023, Vol. 18 ›› Issue (4) : 409 -420.

PDF (1571KB)
Genes & Cells ›› 2023, Vol. 18 ›› Issue (4) : 409 -420. DOI: 10.23868/gc568067
Original Study Articles
research-article

Age-related differences in the interhemispheric asymmetry of local cortical responses to abstract and concrete verbs in children: a magnetic mismatch negativity study

Author information +
History +
PDF (1571KB)

Abstract

BACKGROUND: The development of brain neural networks that support lexico-semantic processing in children remains a poorly understood topic in neuroscience. Meanwhile, investigations in adults have provided ample evidence regarding the brain circuits underpinning the processing of abstract and concrete semantics. These studies have shown that interhemispheric asymmetry in neural responses across modal and amodal cortical areas might be an important marker that helps in distinguishing these two types of semantics, with more left-lateralized activity patterns for abstract than concrete word comprehension. However, little is known about such distinctions in children; thus, addressing this gap was the goal of this study.

AIM: This study aimed to investigate age-related differences in the lateralization of neural response patterns associated with the processing of abstract and concrete semantics in children.

METHODS: This study employed magnetoencephalography and a mismatch negativity (MMN) paradigm in a group of 41 healthy children aged 5–13 years. The participants were passively exposed to the auditory series of abstract and concrete Russian verbs presented outside the focus of attention. Spatiotemporal patterns of the dynamics of neuromagnetic sources activity were reconstructed using minimum-norm estimate within predefined regions of interest: primary auditory cortex, primary motor cortex, and inferior frontal gyrus of both hemispheres. The magnitudes of MMN responses were further compared statistically between the two hemispheres within two age groups: younger (aged 5–9 years) and older (aged 10–13 years) children.

RESULTS: Regionally specific differences were found in the lateralization of event-related MMN responses to concrete compared with abstract words in motor and inferior frontal cortical areas (paired permutation tests, p <0.05). Moreover, in the younger group (aged 5–9 years), responses to the abstract and pseudoword stimulus were left-lateralized, and this effect was most pronounced in the inferior frontal regions (45 and 47 Brodmann fields) of the left hemisphere. In the older group (aged 10–13 years), no pronounced left-lateralized response was observed in these areas. However, for the concrete hand action verb stimulus, different patterns of the interhemispheric asymmetry of the hand motor area responses were observed: the response in the younger group was right-lateralized, whereas in the older group, the response was bilateral.

CONCLUSION: The present area- and hemisphere-specific dynamics of neuromagnetic responses in the motor cortex and Broca’s area might correlate with the age-related changes in neurocognitive strategies for the comprehension of abstract and concrete language.

Keywords

children / semantics / functional laterality / magnetoencephalography

Cite this article

Download citation ▾
Maxim A. Ulanov, Grigory A. Kopytin, Beatriz Bermudez-Margaretto, Ekaterina D. Pomelova, Alyona V. Popyvanova, Evgeny D. Blagovechtchenski, Victoria V. Moiseeva, Anna N. Shestakova, Iiro P. Jääskeläinen, Yury Y. Shtyrov. Age-related differences in the interhemispheric asymmetry of local cortical responses to abstract and concrete verbs in children: a magnetic mismatch negativity study. Genes & Cells, 2023, 18(4): 409-420 DOI:10.23868/gc568067

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pulvermüller F. The neuroscience of language: on brain circuits of words and serial order. New York: Cambridge University Press; 2002. 315 p.

[2]

Pulvermüller F. The neuroscience of language: on brain circuits of words and serial order. New York : Cambridge University Press, 2002. 315 p.

[3]

Wildgruber D, Ethofer T, Grandjean D, Kreifelts B. A cerebral network model of speech prosody comprehension. Int J Speech Lang Pathol. 2009;11(4):277–281. doi: 10.1080/17549500902943043

[4]

Wildgruber D., Ethofer T., Grandjean D., Kreifelts B. A cerebral network model of speech prosody comprehension // Int J Speech Lang Pathol. 2009. Vol. 11, N 4. P. 277–281. doi: 10.1080/17549500902943043

[5]

Vigliocco G, Perniss P, Vinson D. Language as a multimodal phenomenon: implications for language learning, processing and evolution. Philos Trans R Soc Lond B Biol Sci. 2014;369(1651):20130292. doi: 10.1098/rstb.2013.0292

[6]

Vigliocco G., Perniss P., Vinson D. Language as a multimodal phenomenon: implications for language learning, processing and evolution // Philos Trans R Soc Lond B Biol Sci. 2014. Vol. 369, N 1651. P. 20130292. doi: 10.1098/rstb.2013.0292

[7]

Cohn N. A multimodal parallel architecture: a cognitive framework for multimodal interactions. Cognition. 2016;146:304–323. doi: 10.1016/j.cognition.2015.10.007

[8]

Cohn N. A multimodal parallel architecture: a cognitive framework for multimodal interactions // Cognition. 2016. N 146. P. 304–323. doi: 10.1016/j.cognition.2015.10.007

[9]

Gogtay N, Giedd JN, Lusk L, et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci U S A. 2004;101(21):8174–8179. doi: 10.1073/pnas.0402680101

[10]

Gogtay N., Giedd J.N., Lusk L., et al. Dynamic mapping of human cortical development during childhood through early adulthood // Proc Natl Acad Sci U S A. 2004. Vol. 101, N 21. P. 8174–8179. doi: 10.1073/pnas.0402680101

[11]

Amunts K, Schleicher A, Ditterich A, Zilles K. Broca’s region: cytoarchitectonic asymmetry and developmental changes. J Comp Neurol. 2003;465(1):72–89. Corrected and republished from: J Comp Neurol. 2003;467(2):270. doi: 10.1002/cne.10829

[12]

Amunts K., Schleicher A., Ditterich A., Zilles K. Broca’s region: cytoarchitectonic asymmetry and developmental changes // J Comp Neurol. 2003. Vol. 465, N 1. P. 72–89. Corrected and republished from: J Comp Neurol. 2003. Vol. 467. P. 270. doi: 10.1002/cne.10829

[13]

Emerson RW, Gao W, Lin W. Longitudinal study of the emerging functional connectivity asymmetry of primary language regions during infancy. J Neurosci. 2016;36(42):10883–10892. doi: 10.1523/JNEUROSCI.3980-15.2016

[14]

Emerson R.W., Gao W., Lin W. Longitudinal study of the emerging functional connectivity asymmetry of primary language regions during infancy // J Neurosci. 2016. Vol. 36, N 42. P. 10883–10892. doi: 10.1523/JNEUROSCI.3980-15.2016

[15]

Paivio A, Walsh M, Bons T. Concreteness effects on memory: when and why? J Exp Psychol Learn Mem Cogn. 1994;20(5):1196–1204. doi: 10.1037/0278-7393.20.5.1196

[16]

Paivio A., Walsh M., Bons T. Concreteness effects on memory: when and why? // J Exp Psychol Learn Mem Cogn. 1994. Vol. 20, N 5. P. 1196–1204. doi: 10.1037/0278-7393.20.5.1196

[17]

Binder JR, Desai RH, Graves WW, Conant LL. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex. 2009;19(12):2767–2796. doi: 10.1093/cercor/bhp055

[18]

Binder J.R., Desai R.H., Graves W.W., Conant L.L. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies // Cerebr Cortex. 2009. Vol. 19, N 12. P. 2767–2796. doi: 10.1093/cercor/bhp055

[19]

Wang J, Conder JA, Blitzer DN, Shinkareva SV. Neural representation of abstract and concrete concepts: a meta-analysis of neuroimaging studies. Hum Brain Mapp. 2010;31(10):1459–1468. doi: 10.1002/hbm.20950

[20]

Wang J., Conder J.A., Blitzer D.N., Shinkareva S.V. Neural representation of abstract and concrete concepts: a meta-analysis of neuroimaging studies // Hum Brain Mapp. 2010. Vol. 31, N 10. P. 1459–1468. doi: 10.1002/hbm.20950

[21]

Bucur M, Papagno C. Are transcranial brain stimulation effects long-lasting in post-stroke aphasia? A comparative systematic review and meta-analysis on naming performance. Neurosci Biobehav Rev. 2019;102:264–289. doi: 10.1016/j.neubiorev.2019.04.019

[22]

Bucur M., Papagno C. Are transcranial brain stimulation effects long-lasting in post-stroke aphasia? A comparative systematic review and meta-analysis on naming performance // Neurosci Biobehav Rev. 2019. Vol. 102. P. 264–289. doi: 10.1016/j.neubiorev.2019.04.019

[23]

Pulvermüller F, Kujala T, Shtyrov Y, et al. Memory traces for words as revealed by the mismatch negativity. Neuroimage. 2001;14(3):607–616. doi: 10.1006/nimg.2001.0864

[24]

Pulvermüller F., Kujala T., Shtyrov Y., et al. Memory traces for words as revealed by the mismatch negativity // Neuroimage. 2001. Vol. 14, N 3. P. 607–616. doi: 10.1006/nimg.2001.0864

[25]

Näätänen R, Lehtokoski A, Lennes M, et al. Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature. 1997;385(6615):432–434. doi: 10.1038/385432a0

[26]

Näätänen R., Lehtokoski A., Lennes M., et al. Language-specific phoneme representations revealed by electric and magnetic brain responses // Nature. 1997. Vol. 385, N 6615. P. 432–434. doi: 10.1038/385432a0

[27]

Kraus N, McGee T, Micco A, et al. Mismatch negativity in school-age children to speech stimuli that are just perceptibly different. Electroencephalogr Clin Neurophysiol. 1993;88(2):123–130. doi: 10.1016/0168-5597(93)90063-u

[28]

Kraus N., McGee T., Micco A., et al. Mismatch negativity in school-age children to speech stimuli that are just perceptibly different // Electroencephalography and clinical neurophysiology/evoked potentials section. 1993. Vol. 88, N 2. P. 123–130. doi: 10.1016/0168-5597(93)90063-u

[29]

Shafer VL, Morr ML, Kreuzer JA, Kurtzberg D. Maturation of mismatch negativity in school-age children. Ear Hear. 2000;21(3):242–251. doi: 10.1097/00003446-200006000-00008

[30]

Shafer V.L., Morr M.L., Kreuzer J.A., Kurtzberg D. Maturation of mismatch negativity in school-age children // Ear Hear. 2000. Vol. 21, N 3. P. 242–251. doi: 10.1097/00003446-200006000-00008

[31]

Gomot M, Giard MH, Roux S, et al. Maturation of frontal and temporal components of mismatch negativity (MMN) in children. Neuroreport. 2000;11(14):3109–3112. doi: 10.1097/00001756-200009280-00014

[32]

Gomot M., Giard M.H., Roux S., et al. Maturation of frontal and temporal components of mismatch negativity (MMN) in children // Neuroreport. 2000. Vol. 11, N 14. P. 3109–3112. doi: 10.1097/00001756-200009280-00014

[33]

Cheour M, Korpilahti P, Martynova O, Lang AH. Mismatch negativity and late discriminative negativity in investigating speech perception and learning in children and infants. Audiol Neurootol. 2001;6(1):2–11. doi: 10.1159/000046804

[34]

Cheour M., Korpilahti P., Martynova O., Lang A.H. Mismatch negativity and late discriminative negativity in investigating speech perception and learning in children and infants // Audiol Neurootol. 2001. Vol. 6, N 1. P. 2–11. doi: 10.1159/000046804

[35]

Poldrack RA, Wagner AD, Prull MW, et al. Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. Neuroimage. 1999;10(1):15–35. doi: 10.1006/nimg.1999.0441

[36]

Poldrack R.A., Wagner A.D., Prull M.W., et al. Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex // Neuroimage. 1999. Vol. 10, N 1. P. 15–35. doi: 10.1006/nimg.1999.0441

[37]

Heim S, Alter K, Ischebeck AK, et al. The role of the left Brodmann’s areas 44 and 45 in reading words and pseudowords. Brain Res Cogn Brain Res. 2005;25(3):982–993. doi: 10.1016/j.cogbrainres.2005.09.022

[38]

Heim S., Alter K., Ischebeck A.K., et al. The role of the left Brodmann’s areas 44 and 45 in reading words and pseudowords // Brain Res Cogn Brain Res. 2005. Vol. 25, N 3. P. 982–993. doi: 10.1016/j.cogbrainres.2005.09.022

[39]

Heim S, Eickhoff SB, Amunts K. Different roles of cytoarchitectonic BA 44 and BA 45 in phonological and semantic verbal fluency as revealed by dynamic causal modelling. Neuroimage. 2009;48(3):616–624. doi: 10.1016/j.neuroimage.2009.06.044

[40]

Heim S., Eickhoff S.B., Amunts K. Different roles of cytoarchitectonic BA 44 and BA 45 in phonological and semantic verbal fluency as revealed by dynamic causal modeling // Neuroimage. 2009. Vol. 48, N 3. P. 616–624. doi: 10.1016/j.neuroimage.2009.06.044

[41]

Skeide MA, Friederici AD. The ontogeny of the cortical language network. Nat Rev Neurosci. 2016;17(5):323–332. doi: 10.1038/nrn.2016.23

[42]

Skeide M.A., Friederici A.D. The ontogeny of the cortical language network // Nat Rev Neurosci. 2016. Vol. 17, N 5. P. 323–332. doi: 10.1038/nrn.2016.23

[43]

Shtyrov Y, Butorina A, Nikolaeva A, Stroganova T. Automatic ultrarapid activation and inhibition of cortical motor systems in spoken word comprehension. Proc Natl Acad Sci U S A. 2014;111(18) E1918–1923. doi: 10.1073/pnas.1323158111

[44]

Shtyrov Y., Butorina A., Nikolaeva A., Stroganova T. Automatic ultrarapid activation and inhibition of cortical motor systems in spoken word comprehension // Proc Natl Acad Sci U S A. 2014. Vol. 111, N 18. P. E1918–E1923. doi: 10.1073/pnas.1323158111

[45]

Lyashevskaya ON, Sharov SA. Frequency dictionary of the Russian National Corpus: principles and technology. In: VP Selegej, editor. Computational linguistics and intellectual technologies. Moscow: Dialogue; 2008. Issue 7. P. 345–351.

[46]

Ляшевская О.Н., Шаров С.А. Частотный словарь национального корпуса русского языка: концепция и технология создания. В кн.: Материалы ежегодной международной конференции «Диалог», cборник «Компьютерная лингвистика и интеллектуальные технологии» / под ред. В.П. Селегей. Москва : «Диалог», 2008. Вып. 7. С. 345–351.

[47]

Taulu S, Simola J. Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys Med Biol. 2006;51(7):1759–1768. doi: 10.1088/0031-9155/51/7/008

[48]

Taulu S., Simola J. Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements // Phys Med Biol. 2006. Vol. 51, N 7. P. 1759–1768. doi: 10.1088/0031-9155/51/7/008

[49]

Van Essen DC. A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex. Neuroimage. 2005;28(3):635–662. doi: 10.1016/j.neuroimage.2005.06.058

[50]

Van Essen D.C. A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex // Neuroimage. 2005. Vol. 28, N 3. P. 635–662. doi: 10.1016/j.neuroimage.2005.06.058

[51]

Rankin CH, Abrams T, Barry RJ, et al. Habituation revisited: an updated and revised description of the behavioral characteristics of habituation. Neurobiol Learn Mem. 2009;92(2):135–138. doi: 10.1016/j.nlm.2008.09.012

[52]

Rankin C.H., Abrams T., Barry R.J., et al. Habituation revisited: an updated and revised description of the behavioral characteristics of habituation // Neurobiol Learn Mem. 2009. Vol. 92, N 2. P. 135–138. doi: 10.1016/j.nlm.2008.09.012

[53]

McGee T, Kraus N, Nicol T. Is it really a mismatch negativity? An assessment of methods for determining response validity in individual subjects. Electroencephalogr Clin Neurophysiol. 1997;104(4): 359–368. doi: 10.1016/s0168-5597(97)00024-5

[54]

McGee T., Kraus N., Nicol T. Is it really a mismatch negativity? An assessment of methods for determining response validity in individual subjects // Electroencephalogr Clin Neurophysiol. 1997. Vol. 104, N 4. P. 359–368. doi: 10.1016/s0168-5597(97)00024-5

[55]

Pettigrew C, Murdoch B, Chenery H, Kei J. The relationship between the mismatch negativity (MMN) and psycholinguistic models of spoken word processing. Aphasiology. 2004;18(1):3–28. doi: 10.1080/02687030344000463

[56]

Pettigrew C., Murdoch B., Chenery H., Kei J. The relationship between the mismatch negativity (MMN) and psycholinguistic models of spoken word processing // Aphasiology. 2004. Vol. 18, N 1. P. 3–28. doi: 10.1080/02687030344000463

[57]

Pulvermüller F, Shtyrov Y. Automatic processing of grammar in the human brain as revealed by the mismatch negativity. Neuroimage. 2003;20(1):159–172. doi: 10.1016/s1053-8119(03)00261-1

[58]

Pulvermüller F., Shtyrov Y. Automatic processing of grammar in the human brain as revealed by the mismatch negativity // Neuroimage. 2003. Vol. 20, N 1. P. 159–172. doi: 10.1016/s1053-8119(03)00261-1

[59]

Noesselt T, Shah NJ, Jäncke L. Top-down and bottom-up modulation of language related areas — an fMRI study. BMC Neurosci. 2003;4:13. doi: 10.1186/1471-2202-4-13

[60]

Noesselt T., Shah N., Jäncke L. Top-down and bottom-up modulation of language related areas — an fMRI Study // BMC Neurosci. 2003. Vol. 4, N 1. P. 13. doi: 10.1186/1471-2202-4-13

[61]

Zekveld AA, Heslenfeld DJ, Festen JM, Schoonhoven R. Top-down and bottom-up processes in speech comprehension. Neuroimage. 2006;32(4):1826–1836. doi: 10.1016/j.neuroimage.2006.04.199

[62]

Zekveld A.A., Heslenfeld D.J., Festen J.M., Schoonhoven R. Top-down and bottom-up processes in speech comprehension // Neuroimage. 2006. Vol. 32, N 4, P. 1826–1836. doi: 10.1016/j.neuroimage.2006.04.199

[63]

Bouton S, Chambon V, Tyrand R, et al. Focal versus distributed temporal cortex activity for speech sound category assignment. Proc Natl Acad Sci U S A. 2018;115(6):E1299–E1308. doi: 10.1073/pnas.1714279115

[64]

Bouton S., Chambon V., Tyrand R., et al. Focal versus distributed temporal cortex activity for speech sound category assignment // Proc Natl Acad Sci U S A. 2018. Vol. 115, N 6. P. E1299–E1308. doi: 10.1073/pnas.1714279115

[65]

Dave S, Brothers T, Hoversten LJ, et al. Cognitive control mediates age-related changes in flexible anticipatory processing during listening comprehension. Brain Res. 2021;1768:147573. doi: 10.1016/j.brainres.2021.147573

[66]

Dave S., Brothers T., Hoversten L.J., et al. Cognitive control mediates age-related changes in flexible anticipatory processing during listening comprehension // Brain Res. 2021. Vol. 1768. P. 147573. doi: 10.1016/j.brainres.2021.147573

[67]

van der Burght CL, Goucha T, Friederici AD, et al. Intonation guides sentence processing in the left inferior frontal gyrus. Cortex. 2019;117:122–134. doi: 10.1016/j.cortex.2019.02.011

[68]

van der Burght C.L., Goucha T., Friederici A.D., et al. Intonation guides sentence processing in the left inferior frontal gyrus // Cortex. 2019. Vol. 117. P. 122–134. doi: 10.1016/j.cortex.2019.02.011

[69]

Oestreich LKL, Whitford TJ, Garrido MI. Prediction of speech sounds is facilitated by a functional fronto-temporal network. Front Neural Circuits. 2018;12:43. doi: 10.3389/fncir.2018.00043

[70]

Oestreich L.K.L., Whitford T.J., Garrido M.I. Prediction of speech sounds is facilitated by a functional fronto-temporal network // Front Neural Circuits. 2018. Vol. 12. P. 43. doi: 10.3389/fncir.2018.00043

[71]

Agmon G, Yahav PH, Ben-Shachar M, Golumbic EZ. Attention to speech: mapping distributed and selective attention systems. Cereb Cortex. 2022;32(17):3763–3776. doi: 10.1093/cercor/bhab446

[72]

Agmon G., Yahav P.H., Ben-Shachar M., Golumbic E.Z. Attention to speech: mapping distributed and selective attention systems // Cereb Cortex. 2022. Vol. 32, N 17. P. 3763–3776. doi: 10.1093/cercor/bhab446

[73]

Harter MR, Miller SL, Price NJ, et al. Neural processes involved in directing attention. J Cogn Neurosci. 1989;1(3):223–237. doi: 10.1162/jocn.1989.1.3.223

[74]

Harter M.R., Miller S.L., Price N.J., et al. Neural processes involved in directing attention // J Cogn Neurosci. 1989. Vol. 1, N 3. P. 223–237. doi: 10.1162/jocn.1989.1.3.223

[75]

Mai G, Schoof T, Howell P. Modulation of phase-locked neural responses to speech during different arousal states is age-dependent. Neuroimage. 2019;189:734–744. doi: 10.1016/j.neuroimage.2019.01.049

[76]

Mai G., Schoof T., Howell P. Modulation of phase-locked neural responses to speech during different arousal states is age-dependent // Neuroimage. 2019. Vol. 189. P. 734–744. doi: 10.1016/j.neuroimage.2019.01.049

[77]

Niesen M, Vander Ghinst M, Bourguignon M, et al. Tracking the effects of top-down attention on word discrimination using frequency-tagged neuromagnetic responses. J Cogn Neurosci. 2020;32(5):877–888. doi: 10.1162/jocn_a_01522

[78]

Niesen M., Vander Ghinst M., Bourguignon M., et al. Tracking the effects of top-down attention on word discrimination using frequency-tagged neuromagnetic responses // J Cogn Neurosci. 2020. Vol. 32, N 5. P. 877–888. doi: 10.1162/jocn_a_01522

[79]

Kujala A, Huotilainen M, Uther M, et al. Plastic cortical changes induced by learning to communicate with non-speech sounds. Neuroreport. 2003;14(13):1683–1687. doi: 10.1097/00001756-200309150-00005

[80]

Kujala A., Huotilainen M., Uther M., et al. Plastic cortical changes induced by learning to communicate with non-speech sounds // Neuroreport. 2003. Vol. 14, N 13. P. 1683–1687. doi: 10.1097/00001756-200309150-00005

[81]

Warren DE, Rubin R, Shune S, Duff MC. Memory and language in aging: how their shared cognitive processes, neural correlates, and supporting mechanisms change with age. The Wiley. 2018:270–295. doi: 10.1002/9781118772034.ch14

[82]

Warren D.E., Rubin R., Shune S., Duff M.C. Memory and language in aging: how their shared cognitive processes, neural correlates, and supporting mechanisms change with age // The Wiley. 2018. P. 270–295. doi: 10.1002/9781118772034.ch14

[83]

Bi Y. Dual coding of knowledge in the human brain. Trends Cogn Sci. 2021;25(10):883–895. doi: 10.1016/j.tics.2021.07.006

[84]

Bi Y. Dual coding of knowledge in the human brain // Trends Cogn Sci. 2021. Vol. 25, N 10. P. 883–895. doi: 10.1016/j.tics.2021.07.006

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (1571KB)

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/