Animal models of epilepsy
Natalia N. Mitina , Elena V. Kondakova , Victor S. Tarabykin , Alexey A. Babaev
Genes & Cells ›› 2023, Vol. 18 ›› Issue (4) : 281 -296.
Animal models of epilepsy
Animal models of epilepsy are valuable tools for studying the pathogenesis of the disease, developing new methods of treatment, searching for anticonvulsants and evaluating their effectiveness. Rodents, such as rats and mice, are the most popular subjects for research due to the similarity of the human and rodent brain structure. Recent studies include other model species such as dogs, cats, primates, as well as non-mammals such as zebrafish, fruit flies, leeches and planarians.
This review discusses the use of animal models in research and analyzes their advantages and limitations. The classification of models is based on the phenotype of the disorder, with special attention paid to drug-resistant epilepsy. The review also highlights the imperfection of existing models and the need to select the most relevant for specific research purposes. It is also important to remember that animal models cannot fully recreate the complexity of the clinical picture of epilepsy in humans, but they play an important role in understanding the mechanisms of the disease and developing new therapeutic approaches.
In conclusion, the review highlights the need for continuous improvement of existing animal models and the development of new ones to more accurately reflect the diversity of epilepsy phenotypes and provide more effective research and treatment methods. The need for new models of drug-resistant epilepsy, which could help in the development of fundamentally new antiepileptic drugs, remains particularly relevant.
epilepsy / animal models / absence epilepsy / drug resistant epilepsy / idiopathic epilepsy
| [1] |
Chen T, Giri M, Xia Z, et al. Genetic and epigenetic mechanisms of epilepsy: a review. Neuropsychiatr Dis Treat. 2017;13:1841–1859. doi: 10.2147/NDT.S142032 |
| [2] |
Chen T., Giri M., Xia Z., et al. Genetic and epigenetic mechanisms of epilepsy: a review // Neuropsychiatr Dis Treat. 2017. Vol. 13. P. 1841–1859. doi: 10.2147/NDT.S142032 |
| [3] |
Scharfman HE. The neurobiology of epilepsy. Curr Neurol Neurosci Rep. 2007;7(4):348–354. doi: 10.1007/s11910-007-0053-z |
| [4] |
Scharfman H.E. The neurobiology of epilepsy // Curr Neurol Neurosci Rep. 2007. Vol. 7, N 4. P. 348–354. doi: 10.1007/s11910-007-0053-z |
| [5] |
Browne TR, Holmes GL. Handbook of epilepsy. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2008. |
| [6] |
Browne T.R., Holmes G.L. Handbook of epilepsy. 4th ed. Philadelphia : Lippincott Williams & Wilkins, 2008. |
| [7] |
Ellis CA, Ottman R, Epstein MP, Berkovic SF. Generalized, focal, and combined epilepsies in families: new evidence for distinct genetic factors // Epilepsia. 2020. Vol. 61, N 12. P. 2667–2674. doi: 10.1111/epi.16732 |
| [8] |
Ellis C.A., Ottman R., Epstein M.P., Berkovic S.F. Generalized, focal, and combined epilepsies in families: new evidence for distinct genetic factors // Epilepsia. 2020. Vol. 61, N 12. P. 2667–2674. doi: 10.1111/epi.16732 |
| [9] |
Mesraoua B, Brigo F, Lattanzi S, et al. Drug-resistant epilepsy: definition, pathophysiology, and management. J Neurol Sci. 2023;452:120766. doi: 10.1016/j.jns.2023.120766 |
| [10] |
Mesraoua B., Brigo F., Lattanzi S., et al. Drug-resistant epilepsy: definition, pathophysiology, and management // J Neurol Sci. 2023. Vol. 452. P. 120766. doi: 10.1016/j.jns.2023.120766 |
| [11] |
Stafstrom CE, Carmant L. Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb Perspect Med. 2015;5(6):a022426. doi: 10.1101/cshperspect.a022426 |
| [12] |
Stafstrom C.E., Carmant L. Seizures and epilepsy: an overview for neuroscientists // Cold Spring Harb Perspect Med. 2015. Vol. 5, N 6. P. a022426. doi: 10.1101/cshperspect.a022426 |
| [13] |
Johan Arief MF, Choo BKM, Yap JL, et al. A systematic review on non-mammalian models in epilepsy research. Front Pharmacol. 2018;9:655. doi: 10.3389/fphar.2018.00655 |
| [14] |
Johan Arief M.F., Yap J.L., Kumari Y., Shaikh M.F. A systematic review on non-mammalian models in epilepsy research // Front Pharmacol. 2018. Vol. 9. P. 655. doi: 10.3389/fphar.2018.00655 |
| [15] |
Löscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure. 2011;20(5):359–368. doi: 10.1016/j.seizure.2011.01.003 |
| [16] |
Löscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs // Seizure. 2011. Vol. 20, N 5. P. 359–368. doi: 10.1016/j.seizure.2011.01.003 |
| [17] |
Wang Y, Wei P, Yan F, et al. Animal models of epilepsy: a phenotype-oriented review. Aging Dis. 2022;13(1):215–231. doi: 10.14336/AD.2021.0723 |
| [18] |
Wang Y., Wei P., Yan F., et al. Animal models of epilepsy: a phenotype-oriented review // Aging Dis. 2022. Vol. 13, N 1. P. 215–231. doi: 10.14336/AD.2021.0723 |
| [19] |
Löscher W. Dogs as a natural animal model of epilepsy. Front Vet Sci. 2022;9:928009. doi: 10.3389/fvets.2022.928009 |
| [20] |
Löscher W. Dogs as a natural animal model of epilepsy // Front Vet Sci. 2022. Vol. 9. P. 928009. doi: 10.3389/fvets.2022.928009 |
| [21] |
Kitz S, Thalhammer JG, Glantschnigg U, et al. Feline temporal lobe epilepsy: review of the experimental literature. J Vet Intern Med. 2017;31(3):633–640. doi: 10.1111/jvim.14699 |
| [22] |
Kitz S., Thalhammer J.G., Glantschnigg U., et al. Feline temporal lobe epilepsy: review of the experimental literature // J Vet Intern Med. 2017. Vol. 31, N 3. P. 633–640. doi: 10.1111/jvim.14699 |
| [23] |
Noebels JL. Modeling human epilepsies in mice. Epilepsia. 2001;42 Suppl 5:11–15. doi: 10.1046/j.1528-1157.2001.0420s5011.x |
| [24] |
Noebels J.L. Modeling human epilepsies in mice // Epilepsia. 2001. Vol. 42 Suppl 5. P. 11–15. doi: 10.1046/j.1528-1157.2001.0420s5011.x |
| [25] |
Borisova EV, Turovsky EA, Turovskaya MV, et al. ENU mutagenesis as a tool for identifying novel mouse models of epilepsy. Opera Medica et Physiologica. 202;8(1):5–11. doi: 10.24412/2500-2295-2021-1-5-11 |
| [26] |
Borisova E.V., Turovsky E.A., Turovskaya M.V., et al. ENU mutagenesis as a tool for identifying novel mouse models of epilepsy // Opera Medica et Physiologica. 2021. Vol. 8, N 1. P. 5–11. doi: 10.24412/2500-2295-2021-1-5-11 |
| [27] |
Stottmann R, Beier D. ENU Mutagenesis in the mouse. Curr Protoc Hum Genet. 2014;82:15.4.1–15.4.10. doi: 10.1002/0471142905.hg1504s82 |
| [28] |
Stottmann R., Beier D. ENU mutagenesis in the mouse // Curr Protoc Hum Genet. 2014. Vol. 82. P. 15. doi: 10.1002/0471142905.hg1504s82 |
| [29] |
Löscher W. Animal models of seizures and epilepsy: past, present, and future role for the discovery of antiseizure drugs. Neurochem Res. 2017;42(7):1873–1888. doi: 10.1007/s11064-017-2222-z |
| [30] |
Löscher W. Animal models of seizures and epilepsy: past, present, and future role for the discovery of antiseizure drugs // Neurochem Res. 2017. Vol. 42, N 7. P. 1873–1888. doi: 10.1007/s11064-017-2222-z |
| [31] |
Cunliffe VT, Baines RA, Giachello CN, et al. Epilepsy research methods update: Understanding the causes of epileptic seizures and identifying new treatments using non-mammalian model organisms. Seizure. 2015;24:44–51. doi: 10.1016/j.seizure.2014.09.018 |
| [32] |
Cunliffe V.T., Baines R.A., Giachello C.N., et al. Epilepsy research methods update: Understanding the causes of epileptic seizures and identifying new treatments using non-mammalian model organisms // Seizure. 2015. Vol. 24. P. 44–51. doi: 10.1016/j.seizure.2014.09.018 |
| [33] |
Marley R, Giachello CN, Scrutton NS, et al. Cryptochrome-dependent magnetic field effect on seizure response in Drosophila larvae. Sci Rep. 2014;4:5799. doi: 10.1038/srep05799 |
| [34] |
Marley R., Giachello C.N., Scrutton N.S., Baines R.A., Jones A.R. Cryptochrome-dependent magnetic field effect on seizure response in Drosophila larvae // Sci Rep. 2014. Vol. 4. P. 5799. doi: 10.1038/srep05799 |
| [35] |
Cho SJ, Byun D, Nam TS, et al. Zebrafish as an animal model in epilepsy studies with multichannel EEG recordings. Sci Rep. 2017;7(1):3099. Corrected and published from: Sci Rep. 2017;7(1):18112. doi: 10.1038/s41598-017-03482-6 |
| [36] |
Cho S.J., Byun D., Nam T.S., et al. Zebrafish as an animal model in epilepsy studies with multichannel EEG recordings // Sci Rep. 2017. Vol. 7, N 1. P. 3099. Corrected and published from: Sci Rep. 2017. Vol. 7, N 1. P. 18112. doi: 10.1038/s41598-017-03482-6 |
| [37] |
Hui Yin Y, Ahmad N, Makmor-Bakry M. Pathogenesis of epilepsy: challenges in animal models. Iran J Basic Med Sci. 2013;16(11):1119–1132. |
| [38] |
Hui Y., Ahmad N., Makmor-Bakry M. Pathogenesis of epilepsy: challenges in animal models // Iran J Basic Med Sci. 2013. Vol. 16, N 11. P. 1119–1132. |
| [39] |
Lévesque M, Biagini G, de Curtis M, et al. The pilocarpine model of mesial temporal lobe epilepsy: over one decade later, with more rodent species and new investigative approaches. Neurosci Biobehav Rev. 2021;130:274–291. doi: 10.1016/j.neubiorev.2021.08.020 |
| [40] |
Lévesque M., Biagini G., de Curtis M., et al. The pilocarpine model of mesial temporal lobe epilepsy: over one decade later, with more rodent species and new investigative approaches // Neurosci Biobehav Rev. 2021. Vol. 130. P. 274–291. doi: 10.1016/j.neubiorev.2021.08.020 |
| [41] |
Cela E, McFarlan AR, Chung AJ, et al. An оptogenetic kindling model of neocortical epilepsy. Sci Rep. 2019;9(1):5236. doi: 10.1038/s41598-019-41533-2 |
| [42] |
Cela E., McFarlan A.R., Chung A.J., et al. An optogenetic kindling model of neocortical epilepsy // Sci Rep. 2019. Vol. 9, N 1. P. 5236. doi: 10.1038/s41598-019-41533-2 |
| [43] |
Clausen F, Hansson HA, Raud J, Marklund N. Intranasal administration of the antisecretory peptide af-16 reduces edema and improves cognitive function following diffuse traumatic brain injury in the rat. Front Neurol. 2017;8:39. doi: 10.3389/fneur.2017.00039 |
| [44] |
Clausen F., Hansson H.A., Raud J., Marklund N. Intranasal administration of the antisecretory peptide af-16 reduces edema and improves cognitive function following diffuse traumatic brain injury in the rat // Front Neurol. 2017. Vol. 8. P. 39. doi: 10.3389/fneur.2017.00039 |
| [45] |
Katz PS, Molina PE. A lateral fluid percussion injury model for studying traumatic brain injury in rats. Methods Mol Biol. 2018;1717:27–36. doi: 10.1007/978-1-4939-7526-6_3 |
| [46] |
Katz P.S., Molina P.E. A lateral fluid percussion injury model for studying traumatic brain injury in rats // Methods Mol Biol. 2018. Vol. 1717. P. 27–36. doi: 10.1007/978-1-4939-7526-6_3 |
| [47] |
Eakin K, Rowe RK, Lifshitz J. Modeling fluid percussion injury: relevance to human traumatic brain injury. In: Kobeissy FH, editor. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Boca Raton (FL): CRC Press/Taylor & Francis; 2015. |
| [48] |
Eakin K., Rowe R.K., Lifshitz J. Modeling fluid percussion injury: relevance to human traumatic brain injury // Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Boca Raton (FL): CRC Press/Taylor & Francis; 2015. |
| [49] |
Albert-Weissenberger C, Sirén AL. Experimental traumatic brain injury. Exp Transl Stroke Med. 2010;2(1):16. doi: 10.1186/2040-7378-2-16 |
| [50] |
Albert-Weissenberger C., Sirén A.L. Experimental traumatic brain injury // Exp Transl Stroke Med. 2010. Vol. 2, N 1. P. 16. doi: 10.1186/2040-7378-2-16 |
| [51] |
Chen S, Chen Y, Zhang Y, et al. Iron metabolism and ferroptosis in epilepsy. Front Neurosci. 2020;14:601193. doi: 10.3389/fnins.2020.601193 |
| [52] |
Chen S., Chen Y., Zhang Y., et al. Iron metabolism and ferroptosis in epilepsy // Front Neurosci. 2020. Vol. 14. P. 601193. doi: 10.3389/fnins.2020.601193 |
| [53] |
Prince DA, Parada I, Scalise K, et al. Epilepsy following cortical injury: cellular and molecular mechanisms as targets for potential prophylaxis. Epilepsia. 2009;50 Suppl 2:30–40. doi: 10.1111/j.1528-1167.2008.02008.x |
| [54] |
Prince D.A., Parada I., Scalise K., et al. Epilepsy following cortical injury: cellular and molecular mechanisms as targets for potential prophylaxis // Epilepsia. 2009. Vol. 50 Suppl 2. P. 30–40. doi: 10.1111/j.1528-1167.2008.02008.x |
| [55] |
Ping X, Jin X. Chronic posttraumatic epilepsy following neocortical undercut lesion in mice. PLoS One. 2016;11(6):e0158231. doi: 10.1371/journal.pone.0158231 |
| [56] |
Ping X., Jin X. Chronic posttraumatic epilepsy following neocortical undercut lesion in mice // PLoS One. 2016. Vol. 11, N 6. P. e0158231. doi: 10.1371/journal.pone.0158231 |
| [57] |
Kendirli MT, Rose DT, Bertram EH. A model of posttraumatic epilepsy after penetrating brain injuries: effect of lesion size and metal fragments. Epilepsia. 2014;55(12):1969–1977. doi: 10.1111/epi.12854 |
| [58] |
Kendirli M.T., Rose D.T., Bertram E.H. A model of posttraumatic epilepsy after penetrating brain injuries: effect of lesion size and metal fragments // Epilepsia. 2014. Vol. 55, N 12. P. 1969–1977. doi: 10.1111/epi.12854 |
| [59] |
Kandratavicius L, Balista PA, Lopes-Aguiar C, et al. Animal models of epilepsy: use and limitations. Neuropsychiatr Dis Treat. 2014;10:1693–1705. doi: 10.2147/NDT.S50371 |
| [60] |
Kandratavicius L., Balista P.A., Lopes-Aguiar C., et al. Animal models of epilepsy: use and limitations // Neuropsychiatr Dis Treat. 2014. Vol. 10. P. 1693–1705. doi: 10.2147/NDT.S50371 |
| [61] |
Crunelli V, Lőrincz ML, McCafferty C, et al. Clinical and experimental insight into pathophysiology, comorbidity and therapy of absence seizures. Brain. 2020;143(8):2341–2368. doi: 10.1093/brain/awaa072 |
| [62] |
Crunelli V., Lőrincz M.L., McCafferty McC., et al. Clinical and experimental insight into pathophysiology, comorbidity and therapy of absence seizures // Brain. 2020. Vol. 143, N 8. P. 2341–2368. doi: 10.1093/brain/awaa072 |
| [63] |
Fischer FP, Karge RA, Weber YG, et al. Drosophila melanogaster as a versatile model organism to study genetic epilepsies: an overview. Front Mol Neurosci. 2023;16:1116000. doi: 10.3389/fnmol.2023.1116000 |
| [64] |
Fischer F.P., Karge R.A., Weber Y.G., et al. Drosophila melanogaster as a versatile model organism to study genetic epilepsies: an overview // Front Mol Neurosci. 2023. Vol. 16. P. 1116000. doi: 10.3389/fnmol.2023.1116000 |
| [65] |
Jafarian M, Esmaeil Alipour M, Karimzadeh F. Experimental models of absence epilepsy. Basic Clin Neurosci. 2020;11(6):715–726. doi: 10.32598/bcn.11.6.731.1 |
| [66] |
Jafarian M., Esmaeil Alipour M., Karimzadeh F. Experimental models of absence epilepsy // Basic Clin Neurosci. 2020. Vol. 11, N 6. P. 715–726. doi: 10.32598/bcn.11.6.731.1 |
| [67] |
Pinault D, O’Brien TJ. Cellular and network mechanisms of genetically-determined absence seizures. Thalamus Relat Syst. 2005;3(3):181–203. doi: 10.1017/S1472928807000209 |
| [68] |
Pinault D., O’Brien T.J. Cellular and network mechanisms of genetically-determined absence seizures // Thalamus Relat Syst. 2005. Vol. 3, N 3. P. 181–203. doi: 10.1017/S1472928807000209 |
| [69] |
Salinas FS, Szabó CÁ. Resting-state functional connectivity in the baboon model of genetic generalized epilepsy. Epilepsia. 2015;56(10):1580–1589. doi: 10.1111/epi.13115 |
| [70] |
Salinas F.S., Szabó C.Á. Resting-state functional connectivity in the baboon model of genetic generalized epilepsy // Epilepsia. 2015. Vol. 56, N 10. P. 1580–1589. doi: 10.1111/epi.13115 |
| [71] |
Chen G, Popa LS, Wang X, et al. Low-frequency oscillations in the cerebellar cortex of the tottering mouse. J Neurophysiol. 2009;101(1):234–245. doi: 10.1152/jn.90829.2008 |
| [72] |
Chen G., Popa L.S., Wang X., et al. Low-frequency oscillations in the cerebellar cortex of the tottering mouse // J Neurophysiol. 2009. Vol. 101, N 1. P. 234–245. doi: 10.1152/jn.90829.2008 |
| [73] |
Khan Z, Jinnah HA. Paroxysmal dyskinesias in the lethargic mouse mutant. J Neurosci. 2002;22(18):8193–8200. doi: 10.1523/JNEUROSCI.22-18-08193.2002 |
| [74] |
Khan Z., Jinnah H.A. Paroxysmal dyskinesias in the lethargic mouse mutant // J Neurosci. 2002. Vol. 22, N 18. P. 8193–8200. doi: 10.1523/JNEUROSCI.22-18-08193.2002 |
| [75] |
Menuz K, Nicoll RA. Loss of inhibitory neuron AMPA receptors contributes to ataxia and epilepsy in stargazer mice. J Neurosci. 2008;28(42):10599–10603. doi: 10.1523/JNEUROSCI.2732-08.2008 |
| [76] |
Menuz K., Nicoll R.A. Loss of inhibitory neuron AMPA receptors contributes to ataxia and epilepsy in stargazer mice // J Neurosci. 2008. Vol. 28, N 42. P. 10599–10603. doi: 10.1523/JNEUROSCI.2732-08.2008 |
| [77] |
Nakatsu F, Okada M, Mori F, et al. Defective function of GABA-containing synaptic vesicles in mice lacking the AP-3B clathrin adaptor. J Cell Biol. 2004;167(2):293–302. doi: 10.1083/jcb.200405032 |
| [78] |
Nakatsu F., Okada M., Mori F., et al. Defective function of GABA-containing synaptic vesicles in mice lacking the AP-3B clathrin adaptor // J Cell Biol. 2004. Vol. 167, N 2. P. 293–302. doi: 10.1083/jcb.200405032 |
| [79] |
Barclay J, Balaguero N, Mione M, et al. Ducky mouse phenotype of epilepsy and ataxia is associated with mutations in the Cacna2d2 gene and decreased calcium channel current in cerebellar Purkinje cells. J Neurosci. 2001;21(16):6095–6104. doi: 10.1523/JNEUROSCI.21-16-06095.2001 |
| [80] |
Barclay J., Balaguero N., Mione M., et al. Ducky mouse phenotype of epilepsy and ataxia is associated with mutations in the Cacna2d2 gene and decreased calcium channel current in cerebellar Purkinje cells // J Neurosci. 2001. Vol. 21, N 16. P. 6095–6104. doi: 10.1523/JNEUROSCI.21-16-06095.2001 |
| [81] |
Donato R, Page KM, Koch D, et al. The ducky(2J) mutation in Cacna2d2 results in reduced spontaneous Purkinje cell activity and altered gene expression. J Neurosci. 2006;26(48):12576–12586. doi: 10.1523/JNEUROSCI.3080-06.2006 |
| [82] |
Donato R., Page K.M., Koch D., et al. The ducky(2J) mutation in Cacna2d2 results in reduced spontaneous Purkinje cell activity and altered gene expression // J Neurosci. 2006. Vol. 26, N 48. P. 12576–12586. doi: 10.1523/JNEUROSCI.3080-06.2006 |
| [83] |
Depaulis A, David O, Charpier S. The genetic absence epilepsy rat from Strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies. J Neurosci Methods. 2016;260:159–174. doi: 10.1016/j.jneumeth.2015.05.022 |
| [84] |
Depaulis A., David O., Charpier S. The genetic absence epilepsy rat from Strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies // J Neurosci Methods. 2016. Vol. 260. P. 159–174. doi: 10.1016/j.jneumeth.2015.05.022 |
| [85] |
Proft J, Rzhepetskyy Y, Lazniewska J, et al. The Cacna1h mutation in the GAERS model of absence epilepsy enhances T-type Ca2+ currents by altering calnexin-dependent trafficking of Cav3.2 channels. Sci Rep. 2017;7(1):11513. doi: 10.1038/s41598-017-11591-5 |
| [86] |
Proft J., Rzhepetskyy Y., Lazniewska J., et al. The Cacna1h mutation in the GAERS model of absence epilepsy enhances T-type Ca2+ currents by altering calnexin-dependent trafficking of Cav3.2 channels // Sci Rep. 2017. Vol. 7, N 1. P. 11513. doi: 10.1038/s41598-017-11591-5 |
| [87] |
Sarkisova K, van Luijtelaar G. The WAG/Rij strain: a genetic animal model of absence epilepsy with comorbidity of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(4):854–876. Corrected and published from: Prog Neuropsychopharmacol Biol Psychiatry. 2012;36(1):212. doi: 10.1016/j.pnpbp.2010.11.010 |
| [88] |
Sarkisova K., van Luijtelaar G. The WAG/Rij strain: a genetic animal model of absence epilepsy with comorbidity of depression // Prog Neuropsychopharmacol Biol Psychiatry. 2011. Vol. 35, N 4. P. 854–876. Corrected and published from: Prog Neuropsychopharmacol Biol Psychiatry. 2012. Vol. 36, N 1. P. 212. doi: 10.1016/j.pnpbp.2010.11.010 |
| [89] |
Sanz P, Serratosa JM. Neuroinflammation and progressive myoclonus epilepsies: from basic science to therapeutic opportunities. Expert Rev Mol Med. 2020;22:e4. doi: 10.1017/erm.2020.5 |
| [90] |
Sanz P., Serratosa J.M. Neuroinflammation and progressive myoclonus epilepsies: from basic science to therapeutic opportunities // Expert Rev Mol Med. 2020. Vol. 22. P. e4. doi: 10.1017/erm.2020.5 |
| [91] |
Parviainen L, Dihanich S, Anderson GW, et al. Glial cells are functionally impaired in juvenile neuronal ceroid lipofuscinosis and detrimental to neurons. Acta Neuropathol Commun. 2017;5(1):74. doi: 10.1186/s40478-017-0476-y |
| [92] |
Parviainen L., Dihanich S., Anderson G.W., et al. Glial cells are functionally impaired in juvenile neuronal ceroid lipofuscinosis and detrimental to neurons // Acta Neuropathol Commun. 2017. Vol. 5, N 1. P. 74. doi: 10.1186/s40478-017-0476-y |
| [93] |
Orsini A, Valetto A, Bertini V, et al. The best evidence for progressive myoclonic epilepsy: а pathway to precision therapy. Seizure. 2019;71:247–257. doi: 10.1016/j.seizure.2019.08.012 |
| [94] |
Orsini A., Valetto A., Bertini V., et al. The best evidence for progressive myoclonic epilepsy: a pathway to precision therapy // Seizure. 2019. Vol. 71. P. 247–257. doi: 10.1016/j.seizure.2019.08.012 |
| [95] |
Ahmed Juvale II, Che Has AT. The evolution of the pilocarpine animal model of status epilepticus. Heliyon. 2020;6(7):e04557. doi: 10.1016/j.heliyon.2020.e04557 |
| [96] |
Ahmed Juvale I.I., Che Has A.T. The evolution of the pilocarpine animal model of status epilepticus // Heliyon. 2020. Vol. 6, N 7. P. e04557. doi: 10.1016/j.heliyon.2020.e04557 |
| [97] |
McIntosh WC, M Das J. Temporal seizure. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. |
| [98] |
McIntosh W.C., M Das J. Temporal seizure. In: StatPearls. Treasure Island (FL) : StatPearls Publishing, 2023. |
| [99] |
Ferecskó AS, Jiruska P, Foss L, et al. Structural and functional substrates of tetanus toxin in an animal model of temporal lobe epilepsy. Brain Struct Funct. 2015;220(2):1013–1029. doi: 10.1007/s00429-013-0697-1 |
| [100] |
Ferecskó A.S., Jiruska P., Foss L., et al. Structural and functional substrates of tetanus toxin in an animal model of temporal lobe epilepsy // Brain Struct Funct. 2015. Vol. 220, N 2. P. 1013–1029. doi: 10.1007/s00429-013-0697-1 |
| [101] |
Dogru YZ, Nacar T, Erat M. Effect of adropin on seizure activity in rats with penicillin-induced epilepsy. Epilepsy Res. 2023;194:107170. doi: 10.1016/j.eplepsyres.2023.107170 |
| [102] |
Dogru Y.Z., Nacar T., Erat M. Effect of adropin on seizure activity in rats with penicillin-induced epilepsy // Epilepsy Res. 2023. Vol. 194. P. 107170. doi: 10.1016/j.eplepsyres.2023.107170 |
| [103] |
Hong Z, Yang TH, Tang MH, et al. A novel kindling model of temporal lobe epilepsy in rhesus monkeys induced by coriaria lactone. Epilepsy Behav. 2013;29(3):457–465. doi: 10.1016/j.yebeh.2013.07.028 |
| [104] |
Hong Z., Yang T.H., Tang M.H., et al. A novel kindling model of temporal lobe epilepsy in rhesus monkeys induced by coriaria lactone // Epilepsy Behav. 2013. Vol. 29, N 3. P. 457–465. doi: 10.1016/j.yebeh.2013.07.028 |
| [105] |
He S, Qiu X, Wang J, et al. Behavioral and brain structural changes in kindled rats induced by coriaria lactone/pentylenetetrazol. Front Behav Neurosci. 2021;15:727872. doi: 10.3389/fnbeh.2021.727872 |
| [106] |
He S., Qiu X., Wang J., et al. Behavioral and brain structural changes in kindled rats induced by coriaria lactone/pentylenetetrazol // Front Behav Neurosci. 2021. Vol. 15. P. 727872. doi: 10.3389/fnbeh.2021.727872 |
| [107] |
Wu D, Tang Y, Li W, et al. Thermo-sensitive micelles extend therapeutic potential for febrile seizures. Signal Transduct Target Ther. 2021;6(1):296. |
| [108] |
Wu D., Tang Y., Li W., et al. Thermo-sensitive micelles extend therapeutic potential for febrile seizures // Signal Transduct Target Ther. 2021. Vol. 6, N 1. P. 296. doi: 10.1038/s41392-021-00638-9 |
| [109] |
Scalise S, Zannino C, Lucchino V, et al. Human iPSC modeling of genetic febrile seizure reveals aberrant molecular and physiological features underlying an impaired neuronal activity. Biomedicines. 2022;10(5):1075. doi: 10.3390/biomedicines10051075 |
| [110] |
Scalise S., Zannino C., Lucchino V., et al. Human iPSC modeling of genetic febrile seizure reveals aberrant molecular and physiological features underlying an impaired neuronal activity // Biomedicines. 2022. Vol. 10, N 5. P. 1075. doi: 10.3390/biomedicines10051075 |
| [111] |
Osier N, Dixon CE. The controlled cortical impact model of experimental brain trauma: overview, research applications, and protocol. Methods Mol Biol. 2016;1462:177–192. doi: 10.1007/978-1-4939-3816-2_11 |
| [112] |
Osier N., Dixon C.E. The controlled cortical impact model of experimental brain trauma: overview, research applications, and protocol // Methods Mol Biol. 2016. Vol. 1462. P. 177–192. doi: 10.1007/978-1-4939-3816-2_11 |
| [113] |
Sun H, Juul HM, Jensen FE. Models of hypoxia and ischemia-induced seizures. J Neurosci Methods. 2016;260:252–260. doi: 10.1016/j.jneumeth.2015.09.023 |
| [114] |
Sun H., Juul H.M., Jensen F.E. Models of hypoxia and ischemia-induced seizures // J Neurosci Methods. 2016. Vol. 260. P. 252–260. doi: 10.1016/j.jneumeth.2015.09.023 |
| [115] |
Gailus B, Naundorf H, Welzel L, et al. Long-term outcome in a noninvasive rat model of birth asphyxia with neonatal seizures: cognitive impairment, anxiety, epilepsy, and structural brain alterations. Epilepsia. 2021;62(11):2826–2844. doi: 10.1111/epi.17050 |
| [116] |
Gailus B., Naundorf H., Welzel L., et al. Long-term outcome in a noninvasive rat model of birth asphyxia with neonatal seizures: cognitive impairment, anxiety, epilepsy, and structural brain alterations // Epilepsia. 2021. Vol. 62, N 11. P. 2826–2844. doi: 10.1111/epi.17050 |
| [117] |
Alder J, Fujioka W, Lifshitz J, et al. Lateral fluid percussion: model of traumatic brain injury in mice. J Vis Exp. 2011;(54):3063. doi: 10.3791/3063 |
| [118] |
Alder J., Fujioka W., Lifshitz J., et al. Lateral fluid percussion: model of traumatic brain injury in mice // J Vis Exp. 2011. N 54. P. 3063. doi: 10.3791/3063 |
| [119] |
Shandra O, Winemiller AR, Heithoff BP, et al. Repetitive diffuse mild traumatic brain injury causes an atypical astrocyte response and spontaneous recurrent seizures. J Neurosci. 2019;39(10):1944–1963. doi: 10.1523/JNEUROSCI.1067-18.2018 |
| [120] |
Shandra O., Winemiller A.R., Heithoff B.P., et al. Repetitive diffuse mild traumatic brain injury causes an atypical astrocyte response and spontaneous recurrent seizures // J Neurosci. 2019. Vol. 39, N 10. P. 1944–1963. doi: 10.1523/JNEUROSCI.1067-18.2018 |
| [121] |
Brady RD, Casillas-Espinosa PM, Agoston DV, et al. Modelling traumatic brain injury and posttraumatic epilepsy in rodents. Neurobiol Dis. 2019;123:8–19. doi: 10.1016/j.nbd.2018.08.007 |
| [122] |
Brady R.D., Casillas-Espinosa P.M., Agoston D.V., et al. Modelling traumatic brain injury and posttraumatic epilepsy in rodents // Neurobiol Dis. 2019. Vol. 123. P. 8–19. doi: 10.1016/j.nbd.2018.08.007 |
| [123] |
Santana-Gomez CE, Medel-Matus JS, Rundle BK. Animal models of post-traumatic epilepsy and their neurobehavioral comorbidities. Seizure. 2021;90:9–16. doi: 10.1016/j.seizure.2021.05.008 |
| [124] |
Santana-Gomez C.E., Medel-Matus J.S., Rundle B.K. Animal models of post-traumatic epilepsy and their neurobehavioral comorbidities // Seizure. 2021. Vol. 90. P. 9–16. doi: 10.1016/j.seizure.2021.05.008 |
| [125] |
Golub VM, Reddy DS. Post-traumatic epilepsy and comorbidities: advanced models, molecular mechanisms, biomarkers, and novel therapeutic interventions. Pharmacol Rev. 2022;74(2):387–438. doi: 10.1124/pharmrev.121.000375 |
| [126] |
Golub V.M., Reddy D.S. Post-traumatic epilepsy and comorbidities: advanced models, molecular mechanisms, biomarkers, and novel therapeutic interventions // Pharmacol Rev. 2022. Vol. 74, N 2. P. 387–438. doi: 10.1124/pharmrev.121.000375 |
| [127] |
Ebner TJ, Carter RE, Chen G. Tottering mouse. In: Manto M, Gruol D, Schmahmann J, editors. Handbook of the cerebellum and cerebellar disorders. Springer, Cham; 2020. doi: 10.1007/978-3-319-97911-3_67-2 |
| [128] |
Ebner T.J., Carter R.E., Chen G. Tottering mouse. In: Manto M., Gruol D., Schmahmann J., editors. Handbook of the cerebellum and cerebellar disorders. Springer, Cham, 2020. doi: 10.1007/978-3-319-97911-3_67-2 |
| [129] |
Harper A. Mouse models of neurological disorders--a comparison of heritable and acquired traits. Biochim Biophys Acta. 2010;1802(10):785–795. doi: 10.1016/j.bbadis.2010.05.009 |
| [130] |
Harper A. Mouse models of neurological disorders — a comparison of heritable and acquired traits // Biochim Biophys Acta. 2010. Vol. 1802, N 10. P. 785–795. doi: 10.1016/j.bbadis.2010.05.009 |
| [131] |
Hosford DA, Wang Y, Utility of the lethargic (lh/lh) mouse model of absence seizures in predicting the effects of lamotrigine, vigabatrin, tiagabine, gabapentin, and topiramate against human absence seizures. Epilepsia. Vol. 38, N 4. P. 408–414. doi: 10.1111/j.1528-1157.1997.tb01729.x |
| [132] |
Hosford D.A., Wang Y. Utility of the lethargic (lh/lh) mouse model of absence seizures in predicting the effects of lamotrigine,vigabatrin, tiagabine, gabapentin, and topiramate against human absence seizures // Epilepsia. Vol. 38, N 4. P. 408–414. doi: 10.1111/j.1528-1157.1997.tb01729.x |
| [133] |
Langin L, Johnson TB, Kovács AD, et al. A tailored Cln3Q352X mouse model for testing therapeutic interventions in CLN3 Batten disease. Sci Rep. 2020;10(1):10591. doi: 10.1038/s41598-020-67478-5 |
| [134] |
Langin L., Johnson T.B., Kovács A.D., et al. A tailored Cln3Q352X mouse model for testing therapeutic interventions in CLN3 Batten disease // Sci Rep. 2020. Vol. 10, N 1. P. 10591. doi: 10.1038/s41598-020-67478-5 |
| [135] |
Löscher W, White HS. Animal models of drug-resistant epilepsy as tools for deciphering the cellular and molecular mechanisms of pharmacoresistance and discovering more effective treatments. Cells. 2023;12(9):1233. doi: 10.3390/cells12091233 |
| [136] |
Löscher W., White H.S. Animal models of drug-resistant epilepsy as tools for deciphering the cellular and molecular mechanisms of pharmacoresistance and discovering more effective treatments // Cells. 2023. Vol. 12, N 9. P. 1233. doi: 10.3390/cells12091233 |
| [137] |
Löscher W, Jäckel R, Czuczwar SJ. Is amygdala kindling in rats a model for drug-resistant partial epilepsy? Exp Neurol. 1986;93(1):211–226. doi: 10.1016/0014-4886(86)90160-3 |
| [138] |
Löscher W., Jäckel R., Czuczwar S.J. Is amygdala kindling in rats a model for drug-resistant partial epilepsy? // Exp Neurol. 1986. Vol. 93, N 1. P. 211–226. doi: 10.1016/0014-4886(86)90160-3 |
| [139] |
Löscher W. Animal models of intractable epilepsy. Prog Neurobiol. 1997;53(2):239–258. doi: 10.1016/s0301-0082(97)00035-x |
| [140] |
Löscher W. Animal models of intractable epilepsy // Prog Neurobiol. 1997. Vol. 53, N 2. P. 239–258. doi: 10.1016/s0301-0082(97)00035-x |
| [141] |
Jambroszyk M, Tipold A, Potschka H. Add-on treatment with verapamil in pharmacoresistant canine epilepsy. Epilepsia. 2011;52(2):284–291. doi: 10.1111/j.1528-1167.2010.02886.x |
| [142] |
Jambroszyk M., Tipold A., Potschka H. Add-on treatment with verapamil in pharmacoresistant canine epilepsy // Epilepsia. 2011. Vol. 52, N 2. P. 284–291. doi: 10.1111/j.1528-1167.2010.02886.x |
| [143] |
Stables JP, Bertram E, Dudek FE, et al. Therapy discovery for pharmacoresistant epilepsy and for disease-modifying therapeutics: summary of the NIH/NINDS/AES models II workshop. Epilepsia. 2003;44(12):1472–1478. doi: 10.1111/j.0013-9580.2003.32803.x |
| [144] |
Stables J.P., Bertram E., Dudek F.E., et al. Therapy discovery for pharmacoresistant epilepsy and for disease-modifying therapeutics: summary of the NIH/NINDS/AES models II workshop // Epilepsia. 2003. Vol. 44, N 12. P. 1472–1478. doi: 10.1111/j.0013-9580.2003.32803.x |
Eco-Vector
/
| 〈 |
|
〉 |