Neurophysiological markers that link genes and behavior in humans: examples from rare genetic syndromes associated with autism spectrum disorders
Olga V. Sysoeva
Genes & Cells ›› 2023, Vol. 18 ›› Issue (4) : 297 -307.
Neurophysiological markers that link genes and behavior in humans: examples from rare genetic syndromes associated with autism spectrum disorders
Rare genetic syndromes associated with autism spectrum disorders have several noninvasive neurophysiological markers that can be linked with molecular genetic characteristics and behavioral characteristics in these diseases. For the recently discovered Potocki–Lupski syndrome associated with disturbances on the 17p11.2 segment, a previously undescribed epileptiform activity was detected, characterized by a saw-like hypersynchronization at a frequency of 13 Hz, which may indicate a certain type of disturbance in the excitation/inhibition balance in neural networks. For a rare case of microduplication in SH3 and ankyrin repeat domains 3 (SHANK3), also associated with the Phelan–McDermid syndrome, we described a pathway from a violation in the functioning of the SHANK3 protein, through a distorted interaction of excitatory and inhibitory neurons, primarily associated with hypofunction of N-methyl-D-aspartate receptors on inhibitory neurons, to reduced temporal resolution in the auditory cortex, reflected in the absence of response following 40 Hz auditory stimulation (40 Hz auditory steady-state response) and underlying problems in speech development. For the Rett syndrome, which is caused by a mutation in methyl CpG binding protein 2 (MECP2), which has a very wide influence on many other genes, the neurophysiological findings were also diverse. Among the most promising are changes in sensorimotor rhythm, potentially associated with a key symptom of the disease, namely, stereotyped hand movements, as well as more delayed latency of the main components of the event-related potentials, which can have a cascading effect on information processing and affect the perception of basic information, including speech.
This review focuses on the presentation of the concept of a neurophysiological profile, the construction of which can help not only to objectify the diagnosis of developmental disorders, but also in the construction of a mechanistic chain from gene to behavior.
autism spectrum disorder / noninvasive neurophysiological marker / electroencephalography / EEG / event-related potentials / ERP / Rett syndrome / Phelan–McDermid syndrome / Potocki–Lupski syndrome
| [1] |
Jeste SS, Frohlich J, Loo SK. Electrophysiological biomarkers of diagnosis and outcome in neurodevelopmental disorders. Curr Opin Neurol. 2015;28(2):110–116. doi: 10.1097/WCO.0000000000000181 |
| [2] |
Jeste S.S., Frohlich J., Loo S.K. Electrophysiological biomarkers of diagnosis and outcome in neurodevelopmental disorders // Curr Opin Neurol. 2015. Vol. 28, N 2. P. 110–116. doi: 10.1097/WCO.0000000000000181 |
| [3] |
Sysoeva OV, Smirnov K, Stroganova TA. Sensory evoked potentials in patients with Rett syndrome through the lens of animal studies: systematic review. Clin Neurophysiol. 2020;131(1):213–224. doi: 10.1016/j.clinph.2019.11.003 |
| [4] |
Sysoeva O.V., Smirnov K., Stroganova T.A. Sensory evoked potentials in patients with Rett syndrome through the lens of animal studies: systematic review // Clin Neurophysiol. 2020. Vol. 131, N 1. P. 213–224. doi: 10.1016/j.clinph.2019.11.003 |
| [5] |
Roberts TPL, Matsuzaki J, Blaskey L, et al. Delayed M50/M100 evoked response component latency in minimally verbal/nonverbal children who have autism spectrum disorder. Mol Autism. 2019;10:34. doi: 10.1186/s13229-019-0283-3 |
| [6] |
Roberts T.P.L., Matsuzaki J., Blaskey L., et al. Delayed M50/M100 evoked response component latency in minimally verbal/nonverbal children who have autism spectrum disorder // Mol Autism. 2019. Vol. 10. P. 34. doi: 10.1186/s13229-019-0283-3 |
| [7] |
Webb SJ, Naples AJ, Levin AR, et al. The autism biomarkers consortium for clinical trials: initial evaluation of a battery of candidate EEG biomarkers. Am J Psychiatry. 2023;180(1):41–49. Erratum in: Am J Psychiatry. 2023;180(2):145. doi: 10.1176/appi.ajp.21050485 |
| [8] |
Webb S.J., Naples A.J., Levin A.R., et al. The autism biomarkers consortium for clinical trials: initial evaluation of a battery of candidate EEG biomarkers // Am J Psychiatry. 2023. Vol. 180, N 1. P. 41–49. doi: 10.1176/appi.ajp.21050485 Erratum in: Am J Psychiatry. 2023. Vol. 180, N 2. P. 145. |
| [9] |
Grice SJ, Spratling MW, Karmiloff-Smith A, et al. Disordered visual processing and oscillatory brain activity in autism and Williams syndrome. Neuroreport. 2001;12(12):2697–2700. doi: 10.1097/00001756-200108280-00021 |
| [10] |
Grice S.J., Spratling M.W., Karmiloff-Smith A., et al. Disordered visual processing and oscillatory brain activity in autism and Williams syndrome // Neuroreport. 2001. Vol. 12, N 12. P. 2697–2700. doi: 10.1097/00001756-200108280-00021 |
| [11] |
Neklyudova AK, Portnova GV, Rebreikina AB, et al. 40-Hz auditory steady-state response (ASSR) as a biomarker of genetic defects in the SHANK3 gene: a case report of 15-year-old girl with a rare partial SHANK3 Duplication. Int J Mol Sci. 2021;22(4):1898. doi: 10.3390/ijms22041898 |
| [12] |
Neklyudova A.K., Portnova G.V., Rebreikina A.B., et al. 40-Hz auditory steady-state response (ASSR) as a biomarker of genetic defects in the SHANK3 gene: a case report of 15-year-old girl with a rare partial SHANK3 duplication // Int J Mol Sci. 2021. Vol. 22, N 4. P. 1898. doi: 10.3390/ijms22041898 |
| [13] |
Smirnov K, Stroganova T, Molholm S, et al. Reviewing evidence for the relationship of EEG abnormalities and RTT phenotype paralleled by insights from animal studies. Int J Mol Sci. 2021;22(10):5308. doi: 10.3390/ijms22105308 |
| [14] |
Smirnov K., Stroganova T., Molholm S., et al. Reviewing evidence for the relationship of EEG abnormalities and RTT phenotype paralleled by insights from animal studies // Int J Mol Sci. 2021. Vol. 22, N 10. P. 5308. doi: 10.3390/ijms22105308 |
| [15] |
Potocki L, Bi W, Treadwell-Deering D, et al. Characterization of Potocki–Lupski syndrome (dup(17)(p11.2p11.2)) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype. Am J Hum Genet. 2007;80(4):633–649. doi: 10.1086/512864 |
| [16] |
Potocki L., Bi W., Treadwell-Deering D., et al. Characterization of Potocki–Lupski syndrome (dup(17)(p11.2p11.2)) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype // Am J Hum Genet. 2007. Vol. 80, N 4. P. 633–649. doi: 10.1086/512864 |
| [17] |
Carmona-Mora P, Molina J, Encina CA, et al. Mouse models of genomic syndromes as tools for understanding the basis of complex traits: an example with the smith-magenis and the potocki-lupski syndromes. Curr Genomics. 2009;10(4):259–268. doi: 10.2174/138920209788488508 |
| [18] |
Carmona-Mora P., Molina J., Encina C.A., Walz K. Mouse models of genomic syndromes as tools for understanding the basis of complex traits: an example with the smith-magenis and the Potocki–Lupski syndromes // Curr Genomics. 2009. Vol. 10, N 4. P. 259–268. doi: 10.2174/138920209788488508 |
| [19] |
Lupski JR, Stankiewicz P. Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes. PLoS Genet. 2005;1(6):e49. doi: 10.1371/journal.pgen.0010049 |
| [20] |
Lupski J.R., Stankiewicz P. Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes // PLoS Genet. 2005. Vol. 1, N 6. P. e49. doi: 10.1371/journal.pgen.0010049 |
| [21] |
Molina J, Carmona-Mora P, Chrast J, et al. Abnormal social behaviors and altered gene expression rates in a mouse model for Potocki–Lupski syndrome. Hum Mol Genet. 2008;17(16):2486–2495. doi: 10.1093/hmg/ddn148 |
| [22] |
Molina J., Carmona-Mora P., Chrast J., et al. Abnormal social behaviors and altered gene expression rates in a mouse model for Potocki–Lupski syndrome // Hum Mol Genet. 2008. Vol. 17, N 16. P. 2486–2495. doi: 10.1093/hmg/ddn148 |
| [23] |
Praticò AD, Falsaperla R, Rizzo R, et al. New patient with Potocki–Lupski syndrome: a literature review. J Pediatr Genet. 2018;7(1):29–34. doi: 10.1055/s-0037-1604479 |
| [24] |
Praticò A.D., Falsaperla R., Rizzo R., et al. A new patient with Potocki–Lupski syndrome: a literature review // J Pediatr Genet. 2018. Vol. 7, N 1. P. 29–34. doi: 10.1055/s-0037-1604479 |
| [25] |
Talantseva OI, Portnova GV, Romanova RS, et al. Does the Potocki–Lupski syndrome convey the autism spectrum disorder phenotype? Case report and scoping review. J Pers Med. 2023;13(3):439. doi: 10.3390/jpm13030439 |
| [26] |
Talantseva O.I., Portnova G.V., Romanova R.S., et al. Does the Potocki–Lupski syndrome convey the autism spectrum disorder phenotype? Case report and scoping review // J Pers Med. 2023. Vol. 13, N 3. P. 439. doi: 10.3390/jpm13030439 |
| [27] |
Gulhan Ercan-Sencicek A, Davis Wright NR, Frost SJ, et al. Searching for Potocki–Lupski syndrome phenotype: a patient with language impairment and no autism. Brain Dev. 2012;34(8):700–703. doi: 10.1016/j.braindev.2011.11.003 |
| [28] |
Gulhan Ercan-Sencicek A., Davis Wright N.R., Frost S.J., et al. Searching for Potocki–Lupski syndrome phenotype: a patient with language impairment and no autism // Brain Dev. 2012. Vol. 34, N 8. P. 700–703. doi: 10.1016/j.braindev.2011.11.003 |
| [29] |
Treadwell-Deering DE, Powell MP, Potocki L. Cognitive and behavioral characterization of the Potocki–Lupski syndrome (duplication 17p11.2). J Dev Behav Pediatr. 2010;31(2):137–143. doi: 10.1097/DBP.0b013e3181cda67e |
| [30] |
Treadwell-Deering D.E., Powell M.P., Potocki L. Cognitive and behavioral characterization of the Potocki–Lupski syndrome (duplication 17p11.2) // J Dev Behav Pediatr. 2010. Vol. 31, N 2. P. 137–143. doi: 10.1097/DBP.0b013e3181cda67e |
| [31] |
Ciaccio C, Pantaleoni C, Milani D, et al. Neurological phenotype of Potocki–Lupski syndrome. Am J Med Genet A. 2020;182(10):2317–2324. doi: 10.1002/ajmg.a.61789 |
| [32] |
Ciaccio C., Pantaleoni C., Milani D., et al. Neurological phenotype of Potocki–Lupski syndrome // Am J Med Genet A. 2020. Vol. 182, N 10. P. 2317–2324. doi: 10.1002/ajmg.a.61789 |
| [33] |
Precenzano F, Parisi L, Lanzara V, et al. Electroencephalographic abnormalities in autism spectrum disorder: characteristics and therapeutic implications. Medicina (Kaunas). 2020;56(9):419. doi: 10.3390/medicina56090419 |
| [34] |
Precenzano F., Parisi L., Lanzara V., et al. Electroencephalographic abnormalities in autism spectrum disorder: characteristics and therapeutic implications // Medicina (Kaunas). 2020. Vol. 56, N 9. P. 419. doi: 10.3390/medicina56090419 |
| [35] |
Sanchez-Valle A, Pierpont ME, Potocki L. The severe end of the spectrum: hypoplastic left heart in Potocki–Lupski syndrome. Am J Med Genet A. 2011;155A(2):363–366. doi: 10.1002/ajmg.a.33844 |
| [36] |
Sanchez-Valle A., Pierpont M.E., Potocki L. The severe end of the spectrum: hypoplastic left heart in Potocki–Lupski syndrome // Am J Med Genet A. 2011. Vol. 155A, N 2. P. 363–366. doi: 10.1002/ajmg.a.33844 |
| [37] |
Naumova OY, Dobrynin PV, Gibitova EA, et al. Identification of pathogenic CNVs in unexplained developmental disabilities using exome sequencing: a family trio study. Russ J Genet. 2021;57:1351–1355. doi: 10.1134/S1022795421110090 |
| [38] |
Naumova O.Y., Dobrynin P.V., Gibitova E.A., et al. Identification of pathogenic CNVs in unexplained developmental disabilities using exome sequencing: a family trio study // Russ J Genet. 2021. Vol. 57. P. 1351–1355. doi: 10.1134/S1022795421110090 |
| [39] |
Portnova G, Neklyudova A, Voinova V, Sysoeva O. Clinical EEG of Rett syndrome: group analysis supplemented with longitudinal case report. J Pers Med. 2022;12(12):1973. doi: 10.3390/jpm12121973 |
| [40] |
Portnova G., Neklyudova A., Voinova V., Sysoeva O. Clinical EEG of Rett syndrome: group analysis supplemented with longitudinal case report // J Pers Med. 2022. Vol. 12, N 12. P. 1973. doi: 10.3390/jpm12121973 |
| [41] |
Cecchin T, Ranta R, Koessler L, et al. Seizure lateralization in scalp EEG using Hjorth parameters. Clin Neurophysiol. 2010;121(3):290–300. doi: 10.1016/j.clinph.2009.10.033 |
| [42] |
Cecchin T., Ranta R., Koessler L., et al. Seizure lateralization in scalp EEG using Hjorth parameters // Clin Neurophysiol. 2010. Vol. 121, N 3. P. 290–300. doi: 10.1016/j.clinph.2009.10.033 |
| [43] |
Ouyang CS, Yang RC, Wu RC, et al. Determination of antiepileptic drugs withdrawal through EEG Hjorth parameter analysis. Int J Neural Syst. 2020;30(11):2050036. doi: 10.1142/S0129065720500367 |
| [44] |
Ouyang C.S., Yang R.C., Wu R.C., et al. Determination of antiepileptic drugs withdrawal through EEG Hjorth parameter analysis // Int J Neural Syst. 2020. Vol. 30, N 11. P. 2050036. doi: 10.1142/S0129065720500367 |
| [45] |
Radhakrishnan M, Won D, Manoharan TA, et al. Investigating electroencephalography signals of autism spectrum disorder (ASD) using higuchi fractal dimension. Biomed Tech (Berl). 2020. doi: 10.1515/bmt-2019-0313 |
| [46] |
Radhakrishnan M., Won D., Manoharan T.A., et al. Investigating electroencephalography signals of autism spectrum disorder (ASD) using higuchi fractal dimension // Biomed Tech (Berl). 2020. doi: 10.1515/bmt-2019-0313 |
| [47] |
Phelan K, McDermid HE. The 22q13.3 deletion syndrome (Phelan–McDermid syndrome). Mol Syndromol. 2012;2(3-5):186–201. doi: 10.1159/000334260 |
| [48] |
Phelan K., McDermid H.E. The 22q13.3 deletion syndrome (Phelan–McDermid syndrome) // Mol Syndromol. 2012. Vol. 2, N 3–5. P. 186–201. doi: 10.1159/000334260 |
| [49] |
Sarasua SM, Boccuto L, Sharp JL, et al. Clinical and genomic evaluation of 201 patients with Phelan–McDermid syndrome. Hum Genet. 2014;133(7):847–859. doi: 10.1007/s00439-014-1423-7 |
| [50] |
Sarasua S.M., Boccuto L., Sharp J.L., et al. Clinical and genomic evaluation of 201 patients with Phelan–McDermid syndrome // Hum Genet. 2014. Vol. 133, N 7. P. 847–859. doi: 10.1007/s00439-014-1423-7 |
| [51] |
Boeckers TM, Bockmann J, Kreutz MR, et al. ProSAP/Shank proteins — a family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease. J Neurochem. 2002;81(5):903–910. doi: 10.1046/j.1471-4159.2002.00931.x |
| [52] |
Boeckers T.M., Bockmann J., Kreutz M.R., et al. ProSAP/Shank proteins — a family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease // J Neurochem. 2002. Vol. 81, N 5. P. 903–910. doi: 10.1046/j.1471-4159.2002.00931.x |
| [53] |
Sheng M, Kim E. The Shank family of scaffold proteins. J Cell Sci. 2000;113(Pt 11):1851–1856. doi: 10.1242/jcs.113.11.1851 |
| [54] |
Sheng M., Kim E. The Shank family of scaffold proteins // J Cell Sci. 2000. Vol. 113(Pt 11). P. 1851–1856. doi: 10.1242/jcs.113.11.1851 |
| [55] |
Filice F, Vörckel KJ, Sungur AÖ, et al. Reduction in parvalbumin expression not loss of the parvalbumin-expressing GABA interneuron subpopulation in genetic parvalbumin and shank mouse models of autism. Mol Brain. 2016;9:10. doi: 10.1186/s13041-016-0192-8 |
| [56] |
Filice F., Vörckel K.J., Sungur A.Ö., et al. Reduction in parvalbumin expression not loss of the parvalbumin-expressing GABA interneuron subpopulation in genetic parvalbumin and shank mouse models of autism // Mol Brain. 2016. Vol. 9. P. 10. doi: 10.1186/s13041-016-0192-8 |
| [57] |
Vreugdenhil M, Jefferys JGR, Celio MR, Schwaller B. Parvalbumin-deficiency facilitates repetitive IPSCs and gamma oscillations in the hippocampus. J Neurophysiol. 2003;89(3):1414–1422. doi: 10.1152/jn.00576.2002 |
| [58] |
Vreugdenhil M., Jefferys J.G., Celio M.R., Schwaller B. Parvalbumin-deficiency facilitates repetitive IPSCs and gamma oscillations in the hippocampus // J Neurophysiol. 2003. Vol. 89, N 3. P. 1414–1422. doi: 10.1152/jn.00576.2002 |
| [59] |
Chen Q, Deister CA, Gao X, et al. Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD. Nat Neurosci. 2020;23(4):520–532. doi: 10.1038/s41593-020-0598-6 |
| [60] |
Chen Q., Deister C.A., Gao X., et al. Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD // Nat Neurosci. 2020. Vol. 23, N 4. P. 520–532. doi: 10.1038/s41593-020-0598-6 |
| [61] |
Yoo T, Cho H, Lee J, et al. GABA neuronal deletion of Shank3 exons 14–16 in mice suppresses striatal excitatory synaptic input and induces social and locomotor abnormalities. Front Cell Neurosci. 2018;12:341. doi: 10.3389/fncel.2018.00341 |
| [62] |
Yoo T., Cho H., Lee J., et al. GABA neuronal deletion of Shank3 exons 14-16 in mice suppresses striatal excitatory synaptic input and induces social and locomotor abnormalities // Front Cell Neurosci. 2018. Vol. 12. P. 341. doi: 10.3389/fncel.2018.00341 |
| [63] |
Soorya L, Kolevzon A, Zweifach J, et al. Prospective investigation of autism and genotype-phenotype correlations in 22q13 deletion syndrome and SHANK3 deficiency. Mol Autism. 2013;4(1):18. doi: 10.1186/2040-2392-4-18 |
| [64] |
Soorya L., Kolevzon A., Zweifach J., et al. Prospective investigation of autism and genotype-phenotype correlations in 22q13 deletion syndrome and SHANK3 deficiency // Mol Autism. 2013. Vol. 4, N 1. P. 18. doi: 10.1186/2040-2392-4-18 |
| [65] |
Srivastava S, Condy E, Carmody E, et al. Parent-reported measure of repetitive behavior in Phelan–McDermid syndrome. J Neurodev Disord. 2021;13(1):53. doi: 10.1186/s11689-021-09398-7 |
| [66] |
Srivastava S., Condy E., Carmody E., et al. Parent-reported measure of repetitive behavior in Phelan–McDermid syndrome // J Neurodev Disord. 2021. Vol. 13, N 1. P. 53. doi: 10.1186/s11689-021-09398-7 |
| [67] |
Neklyudova A, Smirnov K, Rebreikina A, et al. Electrophysiological and behavioral evidence for hyper- and hyposensitivity in rare genetic syndromes associated with autism. Genes (Basel). 2022;13(4):671. doi: 10.3390/genes13040671 |
| [68] |
Neklyudova A., Smirnov K., Rebreikina A., et al. Electrophysiological and behavioral evidence for hyper- and hyposensitivity in rare genetic syndromes associated with autism // Genes (Basel). 2022. Vol. 13, N 4. P. 671. doi: 10.3390/genes13040671 |
| [69] |
Costales JL, Kolevzon A. Phelan-McDermid syndrome and SHANK3: implications for treatment. Neurotherapeutics. 2015;12(3):620–630. doi: 10.1007/s13311-015-0352-z |
| [70] |
Costales J.L., Kolevzon A. Phelan–McDermid syndrome and SHANK3: implications for treatment // Neurotherapeutics. 2015. Vol. 12, N 3. P. 620–630. doi: 10.1007/s13311-015-0352-z |
| [71] |
Reierson G, Bernstein J, Froehlich-Santino W, et al. Characterizing regression in Phelan McDermid Syndrome (22q13 deletion syndrome). J Psychiatr Res. 2017;91:139–144. doi: 10.1016/j.jpsychires.2017.03.010 |
| [72] |
Reierson G., Bernstein J., Froehlich-Santino W., et al. Characterizing regression in Phelan McDermid syndrome (22q13 deletion syndrome) // J Psychiatr Res. 2017. Vol. 91. P. 139–144. doi: 10.1016/j.jpsychires.2017.03.010 |
| [73] |
Khan OI, Zhou X, Leon J, et al. Prospective longitudinal overnight video-EEG evaluation in Phelan–McDermid syndrome. Epilepsy Behav. 2018;80:312–320. doi: 10.1016/j.yebeh.2017.11.034 |
| [74] |
Khan O.I., Zhou X., Leon J., et al. Prospective longitudinal overnight video-EEG evaluation in Phelan–McDermid syndrome // Epilepsy Behav. 2018. Vol. 80. P. 312–320. doi: 10.1016/j.yebeh.2017.11.034 |
| [75] |
Zhou X, Gropman A, D’Souza P, D’Souza P, et al. Epilepsy and electroencephalographic features in patients with Phelan McDermid syndrome (P6.270). Neurology. 2015;84(suppl. 14):P6.270. |
| [76] |
Zhou X., Gropman A., D’Souza P., et al. Epilepsy and electroencephalographic features in patients with Phelan McDermid syndrome (P6.270) // Neurology. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 2015. Vol. 84 (suppl. 14). P. P6.270. |
| [77] |
De Rubeis S, Siper PM, Durkin A, et al. Delineation of the genetic and clinical spectrum of Phelan–McDermid syndrome caused by SHANK3 point mutations. Mol Autism. 2018;9:31. doi: 10.1186/s13229-018-0205-9 |
| [78] |
De Rubeis S., Siper P.M., Durkin A., et al. Delineation of the genetic and clinical spectrum of Phelan–McDermid syndrome caused by SHANK3 point mutations // Mol Autism. 2018. Vol. 9. P. 31. doi: 10.1186/s13229-018-0205-9 |
| [79] |
Holder JL Jr, Quach MM. The spectrum of epilepsy and electroencephalographic abnormalities due to SHANK3 loss-of-function mutations. Epilepsia. 2016;57(10):1651–1659. doi: 10.1111/epi.13506 |
| [80] |
Holder J.L. Jr., Quach M.M. The spectrum of epilepsy and electroencephalographic abnormalities due to SHANK3 loss-of-function mutations // Epilepsia. 2016. Vol. 57, N 10. P. 1651–1659. doi: 10.1111/epi.13506 |
| [81] |
Mariscal MG, Berry-Kravis E, Buxbaum JD, et al. Shifted phase of EEG cross-frequency coupling in individuals with Phelan–McDermid syndrome. Mol Autism. 2021;12(1):29. doi: 10.1186/s13229-020-00411-9 |
| [82] |
Mariscal M.G., Berry-Kravis E., Buxbaum J.D., et al. Shifted phase of EEG cross-frequency coupling in individuals with Phelan–McDermid syndrome // Mol Autism. 2021. Vol. 12, N 1. P. 29. doi: 10.1186/s13229-020-00411-9 |
| [83] |
Siper PM, Rowe MA, Guillory SB, et al. Visual evoked potential abnormalities in Phelan–McDermid syndrome. J Am Acad Child Adolesc Psychiatry. 2022;61(4):565–574.e1. doi: 10.1016/j.jaac.2021.07.006 |
| [84] |
Siper P.M., Rowe M.A., Guillory S.B., et al. Visual evoked potential abnormalities in Phelan–McDermid syndrome // J Am Acad Child Adolesc Psychiatry. 2022. Vol. 61, N 4. P. 565–574.e1. doi: 10.1016/j.jaac.2021.07.006 |
| [85] |
Cardin JA, Carlén M, Meletis K, et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature. 2009;459(7247):663–667. doi: 10.1038/nature08002 |
| [86] |
Cardin J.A., Carlén M., Meletis K., et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses // Nature. 2009. Vol. 459, N 7247. P. 663–667. doi: 10.1038/nature08002 |
| [87] |
Nan X, Ng HH, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393(6683):386–389. doi: 10.1038/30764 |
| [88] |
Nan X., Ng H.H., Johnson C.A., et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex // Nature. 1998. Vol. 393, N 6683. P. 386–389. doi: 10.1038/30764 |
| [89] |
Jones PL, Veenstra GJ, Wade PA, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 1998;19(2):187–191. doi: 10.1038/561 |
| [90] |
Jones P.L., Veenstra G.J., Wade P.A., et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription // Nat Genet. 1998. Vol. 19, N 2. P. 187–191. doi: 10.1038/561 |
| [91] |
Chahrour M, Jung SY, Shaw C, et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science. 2008;320(5880):1224–1229. doi: 10.1126/science.1153252 |
| [92] |
Chahrour M., Jung S.Y., Shaw C., et al. MeCP2, a key contributor to neurological disease, activates and represses transcription // Science. 2008. Vol. 320, N 5880. P. 1224–1229. doi: 10.1126/science.1153252 |
| [93] |
Chao HT, Chen H, Samaco RC, et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature. 2010;468(7321):263–269. doi: 10.1038/nature09582 |
| [94] |
Chao H.T., Chen H., Samaco R.C., et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes // Nature. 2010. Vol. 468, N 7321. P. 263–269. doi: 10.1038/nature09582 |
| [95] |
Richards C, Jones C, Groves L, et al. Prevalence of autism spectrum disorder phenomenology in genetic disorders: a systematic review and meta-analysis. Lancet Psychiatry. 2015;2(10):909–916. doi: 10.1016/S2215-0366(15)00376-4 |
| [96] |
Richards C., Jones C., Groves L., et al. Prevalence of autism spectrum disorder phenomenology in genetic disorders: a systematic review and meta-analysis // Lancet Psychiatry. 2015. Vol. 2, N 10. P. 909–916. doi: 10.1016/S2215-0366(15)00376-4 |
| [97] |
Young DJ, Bebbington A, Anderson A, et al. The diagnosis of autism in a female: could it be Rett syndrome? Eur J Pediatr. 2008;167(6):661–669. doi: 10.1007/s00431-007-0569-x |
| [98] |
Young D.J., Bebbington A., Anderson A., et al. The diagnosis of autism in a female: could it be Rett syndrome? // Eur J Pediatr. 2008. Vol. 167, N 6. P. 661–669. doi: 10.1007/s00431-007-0569-x |
| [99] |
Buoni S, Zannolli R, De Felice C, et al. EEG features and epilepsy in MECP2-mutated patients with the Zappella variant of Rett syndrome. Clin Neurophysiol. 2010;121(5):652–657. doi: 10.1016/j.clinph.2010.01.003 |
| [100] |
Buoni S., Zannolli R., De Felice C., et al. EEG features and epilepsy in MECP2-mutated patients with the Zappella variant of Rett syndrome // Clin Neurophysiol. 2010. Vol. 121, N 5. P. 652–657. doi: 10.1016/j.clinph.2010.01.003 |
| [101] |
Weber AR, Ostendorf A. Teaching neuroimages: a central theta EEG rhythm in Rett syndrome can masquerade as seizure. Neurology. 2016;87(3):e29–e30. doi: 10.1212/WNL.0000000000002866 |
| [102] |
Weber A.R., Ostendorf A. Teaching neuroimages: a central theta EEG rhythm in Rett syndrome can masquerade as seizure // Neurology. 2016. Vol. 87, N 3. P. e29–e30. doi: 10.1212/WNL.0000000000002866 |
| [103] |
Niedermeyer E, Naidu SB, Plate C. Unusual EEG theta rhythms over central region in Rett syndrome: considerations of the underlying dysfunction. Clin EEG Electroencephalogr. 1997;28(1):36–43. doi: 10.1177/155005949702800107 |
| [104] |
Niedermeyer E., Naidu S.B., Plate C. Unusual EEG theta rhythms over central region in Rett syndrome: considerations of the underlying dysfunction // Clin EEG Electroencephalogr. 1997. Vol. 28, N 1. P. 36–43. doi: 10.1177/155005949702800107 |
| [105] |
Lappalainen R, Liewendahl K, Sainio K, et al. Brain perfusion SPECT and EEG findings in Rett syndrome. Acta Neurol Scand. 1997;95(1):44–50. doi: 10.1111/j.1600-0404.1997.tb00067.x |
| [106] |
Lappalainen R., Liewendahl K., Sainio K., et al. Brain perfusion SPECT and EEG findings in Rett syndrome // Acta Neurol Scand. 1997. Vol. 95, N 1. P. 44–50. doi: 10.1111/j.1600-0404.1997.tb00067.x |
| [107] |
Pitcher MR, Herrera JA, Buffington SA, et al. Rett syndrome like phenotypes in the R255X Mecp2 mutant mouse are rescued by MECP2 transgene. Hum Mol Genet. 2015;24(9):2662–2672. doi: 10.1093/hmg/ddv030 |
| [108] |
Pitcher M.R., Herrera J.A., Buffington S.A., et al. Rett syndrome like phenotypes in the R255X Mecp2 mutant mouse are rescued by MECP2 transgene // Hum Mol Genet. 2015. Vol. 24, N 9. P. 2662–2672. doi: 10.1093/hmg/ddv030 |
| [109] |
Rangasamy S, Olfers S, Gerald B, et al. Reduced neuronal size and mTOR pathway activity in the Mecp2 A140V Rett syndrome mouse model. F1000Res. 2016;5:2269. doi: 10.12688/f1000research.8156.1 |
| [110] |
Rangasamy S., Olfers S., Gerald B., et al. Reduced neuronal size and mTOR pathway activity in the Mecp2 A140V Rett syndrome mouse model // F1000Res. 2016. Vol. 5. P. 2269. doi: 10.12688/f1000research.8156.1 |
| [111] |
Nozawa K, Lin Y, Kubodera R, et al. Zebrafish Mecp2 is required for proper axonal elongation of motor neurons and synapse formation. Dev Neurobiol. 2017;77(9):1101–1113. doi: 10.1002/dneu.22498 |
| [112] |
Nozawa K., Lin Y., Kubodera R., et al. Zebrafish Mecp2 is required for proper axonal elongation of motor neurons and synapse formation // Dev Neurobiol. 2017. Vol. 77, N 9. P. 1101–1113. doi: 10.1002/dneu.22498 |
| [113] |
Vonhoff F, Williams A, Ryglewski S, Duch C. Drosophila as a model for MECP2 gain of function in neurons. PloS One. 2012;7(2):e31835. doi: 10.1371/journal.pone.0031835 |
| [114] |
Vonhoff F., Williams A., Ryglewski S., Duch C. Drosophila as a model for MECP2 gain of function in neurons // PloS One. 2012. Vol. 7, N 2. P. e31835. doi: 10.1371/journal.pone.0031835 |
| [115] |
Zhou Z, Goffin D. Modeling Rett syndrome with MeCP2 T158A Knockin mice. 2014:2723–2739. doi: 10.1007/978-1-4614-4788-7_181 |
| [116] |
Zhou Z., Goffin D. Modeling Rett syndrome with MeCP2 T158A Knockin mice. 2014. P. 2723–2739. doi: 10.1007/978-1-4614-4788-7_181 |
| [117] |
Sysoeva O, Maximenko V, Kuc A, et al. Abnormal spectral and scale-free properties of resting-state EEG in girls with Rett syndrome. Sci Rep. 2023;13(1):12932. doi: 10.1038/s41598-023-39398-7 |
| [118] |
Sysoeva O., Maximenko V., Kuc A., et al. Abnormal spectral and scale-free properties of resting-state EEG in girls with Rett syndrome // Sci Rep. 2023. Vol. 13, N 1. P. 12932. doi: 10.1038/s41598-023-39398-7 |
| [119] |
Sysoeva OV, Molholm S, Djukic A, et al. Atypical processing of tones and phonemes in Rett syndrome as biomarkers of disease progression. Transl Psychiatry. 2020;10(1):188. doi: 10.1038/s41398-020-00877-4 |
| [120] |
Sysoeva O.V., Molholm S., Djukic A., et al. Atypical processing of tones and phonemes in Rett Syndrome as biomarkers of disease progression // Transl Psychiatry. 2020. Vol. 10, N 1. P. 188. doi: 10.1038/s41398-020-00877-4 |
| [121] |
Brima T, Molholm S, Molloy CJ, et al. Auditory sensory memory span for duration is severely curtailed in females with Rett syndrome. Transl Psychiatry. 2019;9(1):130. doi: 10.1038/s41398-019-0463-0 |
| [122] |
Brima T., Molholm S., Molloy C.J., et al. Auditory sensory memory span for duration is severely curtailed in females with Rett syndrome // Transl Psychiatry. 2019. Vol. 9, N 1. P. 130. doi: 10.1038/s41398-019-0463-0 |
| [123] |
Clapp WC, Eckert MJ, Teyler TJ, Abraham WC. Rapid visual stimulation induces N-methyl-D-aspartate receptor-dependent sensory long-term potentiation in the rat cortex. Neuroreport. 2006;17(5):511–515. doi: 10.1097/01.wnr.0000209004.63352.10 |
| [124] |
Clapp W.C., Eckert M.J., Teyler T.J., Abraham W.C. Rapid visual stimulation induces N-methyl-D-aspartate receptor-dependent sensory long-term potentiation in the rat cortex // Neuroreport. 2006. Vol. 17, N 5. P. 511–515. doi: 10.1097/01.wnr.0000209004.63352.10 |
| [125] |
Cooke SF, Bear MF. Stimulus-selective response plasticity in the visual cortex: an assay for the assessment of pathophysiology and treatment of cognitive impairment associated with psychiatric disorders. Biol Psychiatry. 2012;71(6):487–495. doi: 10.1016/j.biopsych.2011.09.006 |
| [126] |
Cooke S.F., Bear M.F. Stimulus-selective response plasticity in the visual cortex: an assay for the assessment of pathophysiology and treatment of cognitive impairment associated with psychiatric disorders // Biol Psychiatry. 2012. Vol. 71, N 6. P. 487–495. doi: 10.1016/j.biopsych.2011.09.006 |
| [127] |
Kirk IJ, McNair NA, Hamm JP, et al. Long-term potentiation (LTP) of human sensory-evoked potentials. Wiley Interdiscip Rev Cogn Sci. 2010;1(5):766–773. doi: 10.1002/wcs.62 |
| [128] |
Kirk I.J., McNair N.A., Hamm J.P., et al. Long-term potentiation (LTP) of human sensory-evoked potentials // Wiley Interdiscip Rev Cogn Sci. 2010. Vol. 1, N 5. P. 766–773. doi: 10.1002/wcs.62 |
| [129] |
Sanders PJ, Thompson B, Corballis PM, et al. A review of plasticity induced by auditory and visual tetanic stimulation in humans. Eur J Neurosci. 2018;48(4):2084–2097. doi: 10.1111/ejn.14080 |
| [130] |
Sanders P.J., Thompson B., Corballis P.M., et al. A review of plasticity induced by auditory and visual tetanic stimulation in humans // Eur J Neurosci. 2018. Vol. 48, N 4. P. 2084–2097. doi: 10.1111/ejn.14080 |
| [131] |
Kleeva DF, Rebreikina AB, Soghoyan GA, et al. Generalization of sustained neurophysiological effects of short-term auditory 13-Hz stimulation to neighbouring frequency representation in humans. Eur J Neurosci. 2022;55(1):175–188. doi: 10.1111/ejn.15513 |
| [132] |
Kleeva D.F., Rebreikina A.B., Soghoyan G.A., et al. Generalization of sustained neurophysiological effects of short-term auditory 13-Hz stimulation to neighbouring frequency representation in humans // Eur J Neurosci. 2022. Vol. 55, N 1. P. 175–188. doi: 10.1111/ejn.15513 |
| [133] |
Rebreikina AB, Kleeva DF, Soghoyan GA, Sysoeva OV. Effects of auditory LTP-like stimulation on auditory stimulus processing. Neurosci Behav Physi. 2021;51:1323–1329. doi: 10.1007/s11055-021-01197-w |
| [134] |
Rebreikina A.B., Kleeva D.F., Soghoyan G.A., Sysoeva O.V. Effects of auditory LTP-like stimulation on auditory stimulus processing // Neurosci Behav Physi. 2021. Vol. 51. P. 1323–1329. doi: 10.1007/s11055-021-01197-w |
| [135] |
Dias JW, McClaskey CM, Rumschlag JA, Harris KC. Sensory tetanisation to induce long-term-potentiation-like plasticity: a review and reassessment of the approach. Eur J Neurosci. 2022;56(12):6115–6140. doi: 10.1111/ejn.15847 |
| [136] |
Dias J.W., McClaskey C.M., Rumschlag J.A., Harris K.C. Sensory tetanisation to induce long-term-potentiation-like plasticity: a review and reassessment of the approach // Eur J Neurosci. 2022. Vol. 56, N 12. P. 6115–6140. doi: 10.1111/ejn.15847 |
| [137] |
Soghoyan G, Ledovsky A, Nekrashevich M, et al. A toolbox and crowdsourcing platform for automatic labeling of independent components in electroencephalography. Front Neuroinformatics. 2021;15:720229. doi: 10.3389/fninf.2021.720229 |
| [138] |
Soghoyan G., Ledovsky A., Nekrashevich M., et al. A toolbox and crowdsourcing platform for automatic labeling of independent components in electroencephalography // Front Neuroinformatics. 2021. Vol. 15. P. 720229. doi: 10.3389/fninf.2021.720229 |
Eco-Vector
/
| 〈 |
|
〉 |