Sphingomyelinases as modulators of synaptic transmission
Chulpan R. Gafurova , Alexey M. Petrov
Genes & Cells ›› 2023, Vol. 18 ›› Issue (4) : 255 -267.
Sphingomyelinases as modulators of synaptic transmission
The brain has a high content of sphingomyelin, which is involved in the formation of plasma membranes and myelin, and is also an important for the organization of membrane microdomains (lipid rafts). Lipid rafts, as well as derivatives of sphingomyelin hydrolysis (ceramide, sphingosine, sphingosine-1-phosphate), are vital for synaptic transmission and its regulation. One of the main pathways to control the level of sphingomyelin and its derivatives is cleavage of membrane sphingomyelin by sphingomyelinases.
Sphingomyelinases are localized inside the cell (in association with the plasma membrane, in lysosomes, endosomes, Golgi complex and endoplasmic reticulum) as well as can be secreted into the extracellular space. The levels and activity of sphingomyelinases significantly increase under the action of various stressful stimuli (including inflammation). At the same time, sphingomyelinase activity deficiency causes diseases with severe neurological manifestations.
In the present review, we summarized the data on the currently known effects of acidic and neutral sphingomyelinases on pre- and postsynaptic processes, as well as about the synaptic localization of sphingomyelinases. In addition, a brief analysis of possible synaptic dysfunction due to hypo- or hyperfunction of sphingomyelinases in a number of neurological diseases is given. Thus, sphingomyelinases are considered as important modulators of synaptic transmission at the pre- and postsynaptic levels in normal and pathological conditions.
sphingomyelinase / synapse / neurotransmitter release / synaptic vesicle exocytosis / ceramide / neurodegeneration
| [1] |
Petrov AM, Kasimov MR, Zefirov AL. Brain cholesterol metabolism and its defects: linkage to neurodegenerative diseases and synaptic dysfunction. Acta Naturae. 2016;8(1):58–73. |
| [2] |
Petrov A.M., Kasimov M.R., Zefirov A.L. Brain cholesterol metabolism and its defects: linkage to neurodegenerative diseases and synaptic dysfunction // Acta Naturae. 2016. Vol. 8, N 1. P. 58–73. |
| [3] |
Lewis KT, Maddipati KR, Naik AR, Jena BP. Unique lipid chemistry of synaptic vesicle and synaptosome membrane revealed using mass spectrometry. ACS Chem Neurosci. 2017;8(6):1163–1169. doi: 10.1021/acschemneuro.7b00030 |
| [4] |
Lewis K.T., Maddipati K.R., Naik A.R., Jena B.P. Unique lipid chemistry of synaptic vesicle and synaptosome membrane revealed using mass spectrometry // ACS Chem Neurosci. 2017. Vol. 8, N 6. P. 1163–1169. doi: 10.1021/acschemneuro.7b00030 |
| [5] |
Krivoi, II, Petrov AM. Cholesterol and the safety factor for neuromuscular transmission. Int J Mol Sci. 2019;20(5):1046. doi: 10.3390/ijms20051046 |
| [6] |
Krivoi I.I., Petrov A.M. Cholesterol and the safety factor for neuromuscular transmission // Int J Mol Sci. 2019. Vol. 20, N 5. P. 1046. doi: 10.3390/ijms20051046 |
| [7] |
Egawa J, Pearn ML, Lemkuil BP, et al. Membrane lipid rafts and neurobiology: age-related changes in membrane lipids and loss of neuronal function. J Physiol. 2016;594(16):4565–4579. doi: 10.1113/JP270590 |
| [8] |
Egawa J., Pearn M.L., Lemkuil B.P., et al. Membrane lipid rafts and neurobiology: age-related changes in membrane lipids and loss of neuronal function // J Physiol. 2016. Vol. 594, N 16. P. 4565–4579. doi: 10.1113/JP270590 |
| [9] |
Tsentsevitsky AN, Gafurova CR, Mukhutdinova KA, et al. Sphingomyelinase modulates synaptic vesicle mobilization at the mice neuromuscular junctions. Life Sci. 2023;318:121507. doi: 10.1016/j.lfs.2023.121507 |
| [10] |
Tsentsevitsky A.N., Gafurova C.R., Mukhutdinova K.A., et al. Sphingomyelinase modulates synaptic vesicle mobilization at the mice neuromuscular junctions // Life Sci. 2023. Vol. 318. P. 121507. doi: 10.1016/j.lfs.2023.121507 |
| [11] |
Bryndina IG, Shalagina MN, Sekunov AV, et al. Clomipramine counteracts lipid raft disturbance due to short-term muscle disuse. Neurosci Lett. 2018;664:1–6. doi: 10.1016/j.neulet.2017.11.009 |
| [12] |
Bryndina I.G., Shalagina M.N., Sekunov A.V., et al. Clomipramine counteracts lipid raft disturbance due to short-term muscle disuse // Neurosci Lett. 2018. Vol. 664. P. 1–6. doi: 10.1016/j.neulet.2017.11.009 |
| [13] |
Murata M, Matsumori N, Kinoshita M, London E. Molecular substructure of the liquid-ordered phase formed by sphingomyelin and cholesterol: sphingomyelin clusters forming nano-subdomains are a characteristic feature. Biophys Rev. 2022;14(3):655–678. doi: 10.1007/s12551-022-00967-1 |
| [14] |
Murata M., Matsumori N., Kinoshita M., London E. Molecular substructure of the liquid-ordered phase formed by sphingomyelin and cholesterol: sphingomyelin clusters forming nano-subdomains are a characteristic feature // Biophys Rev. 2022. Vol. 14, N 3. P. 655–678. doi: 10.1007/s12551-022-00967-1 |
| [15] |
Huston JP, Kornhuber J, Mühle C, et al. A sphingolipid mechanism for behavioral extinction. J Neurochem. 2016;137(4):589–603. doi: 10.1111/jnc.13537 |
| [16] |
Huston J.P., Kornhuber J., Mühle C., et al. A sphingolipid mechanism for behavioral extinction // J Neurochem. 2016. Vol. 137, N 4. P. 589–603. doi: 10.1111/jnc.13537 |
| [17] |
Wheeler D, Knapp E, Bandaru VV, et al. Tumor necrosis factor-alpha-induced neutral sphingomyelinase-2 modulates synaptic plasticity by controlling the membrane insertion of NMDA receptors. J Neurochem. 2009;109(5):1237–1249. doi: 10.1111/j.1471-4159.2009.06038.x |
| [18] |
Wheeler D., Knapp E., Bandaru V.V., et al. Tumor necrosis factor-alpha-induced neutral sphingomyelinase-2 modulates synaptic plasticity by controlling the membrane insertion of NMDA receptors // J Neurochem. 2009. Vol. 109, N 5. P. 1237–1249. doi: 10.1111/j.1471-4159.2009.06038.x |
| [19] |
Tan LH, Tan AJ, Ng YY, et al. Enriched expression of neutral sphingomyelinase 2 in the striatum is essential for regulation of lipid raft content and motor coordination. Mol Neurobiol. 2018;55(7):5741–5756. doi: 10.1007/s12035-017-0784-z |
| [20] |
Tan L.H., Tan A.J., Ng Y.Y., et al. Enriched expression of neutral sphingomyelinase 2 in the striatum is essential for regulation of lipid raft content and motor coordination // Mol Neurobiol. 2018. Vol. 55, N 7. P. 5741–5756. doi: 10.1007/s12035-017-0784-z |
| [21] |
Won JH, Jeon HJ, Kim SK, et al. Interaction of synaptosomal-associated protein 25 with neutral sphingomyelinase 2: functional impact on the sphingomyelin pathway. Neuroscience. 2020;427:1–15. doi: 10.1016/j.neuroscience.2019.08.015 |
| [22] |
Won J.H., Jeon H.J., Kim S.K., et al. Interaction of synaptosomal-associated protein 25 with neutral sphingomyelinase 2: functional impact on the sphingomyelin pathway // Neuroscience. 2020. Vol. 427, N 1. P. 1–15. doi: 10.1016/j.neuroscience.2019.08.015 |
| [23] |
Camoletto PG, Vara H, Morando L, et al. Synaptic vesicle docking: sphingosine regulates syntaxin1 interaction with Munc18. PLoS One. 2009;4(4):e5310. doi: 10.1371/journal.pone.0005310 |
| [24] |
Camoletto P.G., Vara H., Morando L., et al. Synaptic vesicle docking: sphingosine regulates syntaxin1 interaction with Munc18 // PLoS One. 2009. Vol. 4, N 4. P. e5310. doi: 10.1371/journal.pone.0005310 |
| [25] |
Arroyo AI, Camoletto PG, Morando L, et al. Pharmacological reversion of sphingomyelin-induced dendritic spine anomalies in a Niemann Pick disease type A mouse model. EMBO Mol Med. 2014;6(3):398–413. doi: 10.1002/emmm.201302649 |
| [26] |
Arroyo A.I., Camoletto P.G., Morando L., et al. Pharmacological reversion of sphingomyelin-induced dendritic spine anomalies in a Niemann Pick disease type A mouse model // EMBO Mol Med. 2014. Vol. 6, N 3. P. 398–413. doi: 10.1002/emmm.201302649 |
| [27] |
Stoffel W, Jenke B, Blöck B, et al. Neutral sphingomyelinase 2 (SMPD3) in the control of postnatal growth and development. Proc Natl Acad Sci U S A. 2005;102(12):4554–4559. doi: 10.1073/pnas.0406380102 |
| [28] |
Stoffel W., Jenke B., Blöck B., et al. Neutral sphingomyelinase 2 (SMPD3) in the control of postnatal growth and development // Proc Natl Acad Sci U S A. 2005. Vol. 102, N 12. P. 4554–4559. doi: 10.1073/pnas.0406380102 |
| [29] |
Stoffel W, Jenke B, Schmidt-Soltau I, et al. SMPD3 deficiency perturbs neuronal proteostasis and causes progressive cognitive impairment. Cell Death Dis. 2018;9(5):507. doi: 10.1038/s41419-018-0560-7 |
| [30] |
Stoffel W., Jenke B., Schmidt-Soltau I., et al. SMPD3 deficiency perturbs neuronal proteostasis and causes progressive cognitive impairment // Cell Death Dis. 2018. Vol. 9, N 5. P. 507. doi: 10.1038/s41419-018-0560-7 |
| [31] |
Chami M, Halmer R, Schnoeder L, et al. Acid sphingomyelinase deficiency enhances myelin repair after acute and chronic demyelination. PLoS One. 2017;12(6):e0178622. doi: 10.1371/journal.pone.0178622 |
| [32] |
Chami M., Halmer R., Schnoeder L., et al. Acid sphingomyelinase deficiency enhances myelin repair after acute and chronic demyelination // PLoS One. 2017. Vol. 12, N 6. P. e0178622. doi: 10.1371/journal.pone.0178622 |
| [33] |
Schumacher F, Carpinteiro A, Edwards MJ, et al. Stress induces major depressive disorder by a neutral sphingomyelinase 2-mediated accumulation of ceramide-enriched exosomes in the blood plasma. J Mol Med (Berl). 2022;100(10):1493–1508. doi: 10.1007/s00109-022-02250-y |
| [34] |
Schumacher F., Carpinteiro A., Edwards M.J., et al. Stress induces major depressive disorder by a neutral sphingomyelinase 2-mediated accumulation of ceramide-enriched exosomes in the blood plasma // J Mol Med (Berl). 2022. Vol. 100, N 10. P. 1493–1508. doi: 10.1007/s00109-022-02250-y |
| [35] |
Zhuo C, Zhao F, Tian H, et al. Acid sphingomyelinase/ceramide system in schizophrenia: implications for therapeutic intervention as a potential novel target. Transl Psychiatry. 2022;12(1):260. doi: 10.1038/s41398-022-01999-7 |
| [36] |
Zhuo C., Zhao F., Tian H., et al. Acid sphingomyelinase/ceramide system in schizophrenia: implications for therapeutic intervention as a potential novel target // Transl Psychiatry. 2022. Vol. 12, N 1. P. 260. doi: 10.1038/s41398-022-01999-7 |
| [37] |
Kumar A, Kumar S. Inhibition of extracellular vesicle pathway using neutral sphingomyelinase inhibitors as a neuroprotective treatment for brain injury. Neural Regen Res. 2021;16(12):2349–2352. doi: 10.4103/1673-5374.313014 |
| [38] |
Kumar A., Kumar S. Inhibition of extracellular vesicle pathway using neutral sphingomyelinase inhibitors as a neuroprotective treatment for brain injury // Neural Regen Res. 2021. Vol. 16, N 12. P. 2349–2352. doi: 10.4103/1673-5374.313014 |
| [39] |
Mohamud Yusuf A, Hagemann N, Hermann DM. The acid sphingomyelinase/ceramide system as target for ischemic stroke therapies. Neurosignals. 2019;27(S1):32–43. doi: 10.33594/000000184 |
| [40] |
Mohamud Yusuf A., Hagemann N., Hermann D.M. The acid sphingomyelinase/ceramide system as target for ischemic stroke therapies // Neurosignals. 2019. Vol. 27, N S1. P. 32–43. doi: 10.33594/000000184 |
| [41] |
Bryndina IG, Shalagina MN, Protopopov VA, et al. Early lipid raft-related changes: interplay between unilateral denervation and hindlimb suspension. Int J Mol Sci. 2021;22(5):2239. doi: 10.3390/ijms22052239 |
| [42] |
Bryndina I.G., Shalagina M.N., Protopopov V.A., et al. Early lipid raft-related changes: interplay between unilateral denervation and hindlimb suspension // Int J Mol Sci. 2021. Vol. 22, N 5. P. 2239. doi: 10.3390/ijms22052239 |
| [43] |
Olsson K, Cheng AJ, Al-Ameri M, et al. Sphingomyelinase activity promotes atrophy and attenuates force in human muscle fibres and is elevated in heart failure patients. J Cachexia Sarcopenia Muscle. 2022;13(5):2551–2561. doi: 10.1002/jcsm.13029 |
| [44] |
Olsson K., Cheng A.J., Al-Ameri M., et al. Sphingomyelinase activity promotes atrophy and attenuates force in human muscle fibres and is elevated in heart failure patients // J Cachexia Sarcopenia Muscle. 2022. Vol. 13, N 5. P. 2551–2561. doi: 10.1002/jcsm.13029 |
| [45] |
Petrov AM, Shalagina MN, Protopopov VA, et al. Changes in membrane ceramide pools in rat soleus muscle in response to short-term disuse. Int J Mol Sci. 2019;20(19):4860. doi: 10.3390/ijms20194860 |
| [46] |
Petrov A.M., Shalagina M.N., Protopopov V.A., et al. Changes in membrane ceramide pools in rat soleus muscle in response to short-term disuse // Int J Mol Sci. 2019. Vol. 20, N 19. P. 4860. doi: 10.3390/ijms20194860 |
| [47] |
Goni FM. Sphingomyelin: what is it good for? Biochem Biophys Res Commun. 2022;633:23–25. doi: 10.1016/j.bbrc.2022.08.074 |
| [48] |
Goni F.M. Sphingomyelin: what is it good for? // Biochem Biophys Res Commun. 2022. Vol. 633. P. 23–25. doi: 10.1016/j.bbrc.2022.08.074 |
| [49] |
Custodia A, Romaus-Sanjurjo D, Aramburu-Nunez M, et al. Ceramide/sphingosine 1-phosphate axis as a key target for diagnosis and treatment in Alzheimer’s disease and other neurodegenerative diseases. Int J Mol Sci. 2022;23(15):8082. doi: 10.3390/ijms23158082 |
| [50] |
Custodia A., Romaus-Sanjurjo D., Aramburu-Nunez M., et al. Ceramide/sphingosine 1-phosphate axis as a key target for diagnosis and treatment in Alzheimer’s disease and other neurodegenerative diseases // Int J Mol Sci. 2022. Vol. 23, N 15. P. 8082. doi: 10.3390/ijms23158082 |
| [51] |
Chan JP, Sieburth D. Localized sphingolipid signaling at presynaptic terminals is regulated by calcium influx and promotes recruitment of priming factors. J Neurosci. 2012;32(49):17909–17920. doi: 10.1523/JNEUROSCI.2808-12.2012 |
| [52] |
Chan J.P., Sieburth D. Localized sphingolipid signaling at presynaptic terminals is regulated by calcium influx and promotes recruitment of priming factors // J Neurosci. 2012. Vol. 32, N 49. P. 17909–17920. doi: 10.1523/JNEUROSCI.2808-12.2012 |
| [53] |
Rohrbough J, Rushton E, Palanker L, et al. Ceramidase regulates synaptic vesicle exocytosis and trafficking. J Neurosci. 2004;24(36):7789–7803. doi: 10.1523/JNEUROSCI.1146-04.2004 |
| [54] |
Rohrbough J., Rushton E., Palanker L., et al. Ceramidase regulates synaptic vesicle exocytosis and trafficking // J Neurosci. 2004. Vol. 24, N 36. P. 7789–7803. doi: 10.1523/JNEUROSCI.1146-04.2004 |
| [55] |
Riganti L, Antonucci F, Gabrielli M, et al. Sphingosine-1-phosphate (S1P) impacts presynaptic functions by regulating synapsin i localization in the presynaptic compartment. J Neurosci. 2016;36(16):4624–4634. doi: 10.1523/JNEUROSCI.3588-15.2016 |
| [56] |
Riganti L., Antonucci F., Gabrielli M., et al. Sphingosine-1-phosphate (S1P) impacts presynaptic functions by regulating synapsin I localization in the presynaptic compartment // J Neurosci. 2016. Vol. 36, N 16. P. 4624–4634. doi: 10.1523/JNEUROSCI.3588-15.2016 |
| [57] |
Darios F, Wasser C, Shakirzyanova A, et al. Sphingosine facilitates SNARE complex assembly and activates synaptic vesicle exocytosis. Neuron. 2009;62(5):683–694. doi: 10.1016/j.neuron.2009.04.024 |
| [58] |
Darios F., Wasser C., Shakirzyanova A., et al. Sphingosine facilitates SNARE complex assembly and activates synaptic vesicle exocytosis // Neuron. 2009. Vol. 62, N 5. P. 683–694. doi: 10.1016/j.neuron.2009.04.024 |
| [59] |
Lepeta K, Lourenco MV, Schweitzer BC, et al. Synaptopathies: synaptic dysfunction in neurological disorders — a review from students to students. J Neurochem. 2016;138(6):785–805. doi: 10.1111/jnc.13713 |
| [60] |
Lepeta K., Lourenco M.V., Schweitzer B.C., et al. Synaptopathies: synaptic dysfunction in neurological disorders — a review from students to students // J Neurochem. 2016. Vol. 138, N 6. P. 785–805. doi: 10.1111/jnc.13713 |
| [61] |
Ginzburg L, Futerman AH. Defective calcium homeostasis in the cerebellum in a mouse model of Niemann–Pick A disease. J Neurochem. 2005;95(6):1619–1628. doi: 10.1111/j.1471-4159.2005.03534.x |
| [62] |
Ginzburg L., Futerman A.H. Defective calcium homeostasis in the cerebellum in a mouse model of Niemann–Pick A disease // J Neurochem. 2005. Vol. 95, N 6. P. 1619–1628. doi: 10.1111/j.1471-4159.2005.03534.x |
| [63] |
de Wit NM, den Hoedt S, Martinez-Martinez P, et al. Astrocytic ceramide as possible indicator of neuroinflammation. J Neuroinflammation. 2019;16(1):48. doi: 10.1186/s12974-019-1436-1 |
| [64] |
de Wit N.M., den Hoedt S., Martinez-Martinez P., et al. Astrocytic ceramide as possible indicator of neuroinflammation // J Neuroinflammation. 2019. Vol. 16, N 1. P. 48. doi: 10.1186/s12974-019-1436-1 |
| [65] |
Zhu Z, Quadri Z, Crivelli SM, et al. Neutral sphingomyelinase 2 mediates oxidative stress effects on astrocyte senescence and synaptic plasticity transcripts. Mol Neurobiol. 2022;59(5):3233–3253. doi: 10.1007/s12035-022-02747-0 |
| [66] |
Zhu Z., Quadri Z., Crivelli S.M., et al. Neutral sphingomyelinase 2 mediates oxidative stress effects on astrocyte senescence and synaptic plasticity transcripts // Mol Neurobiol. 2022. Vol. 59, N 5. P. 3233–3253. doi: 10.1007/s12035-022-02747-0 |
| [67] |
Breiden B, Sandhoff K. Acid sphingomyelinase, a lysosomal and secretory phospholipase C, is key for cellular phospholipid catabolism. Int J Mol Sci. 2021;22(16):9001. doi: 10.3390/ijms22169001 |
| [68] |
Breiden B., Sandhoff K. Acid sphingomyelinase, a lysosomal and secretory phospholipase C, is key for cellular phospholipid catabolism // Int J Mol Sci. 2021. Vol. 22, N 16. P. 9001. doi: 10.3390/ijms22169001 |
| [69] |
Shamseddine AA, Airola MV, Hannun YA. Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes. Adv Biol Regul. 2015;57:24–41. doi: 10.1016/j.jbior.2014.10.002 |
| [70] |
Shamseddine A.A., Airola M.V., Hannun Y.A. Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes // Adv Biol Regul. 2015. Vol. 57. P. 24–41. doi: 10.1016/j.jbior.2014.10.002 |
| [71] |
Levental I, Lingwood D, Grzybek M, et al. Palmitoylation regulates raft affinity for the majority of integral raft proteins. Proc Natl Acad Sci U S A. 2010;107(51):22050–22054. doi: 10.1073/pnas.1016184107 |
| [72] |
Levental I., Lingwood D., Grzybek M., et al. Palmitoylation regulates raft affinity for the majority of integral raft proteins // Proc Natl Acad Sci U S A. 2010. Vol. 107, N 51. P. 22050–22054. doi: 10.1073/pnas.1016184107 |
| [73] |
Sudhof TC. The synaptic vesicle cycle. Annu Rev Neurosci. 2004;27:509–547. doi: 10.1146/annurev.neuro.26.041002.131412 |
| [74] |
Sudhof T.C. The synaptic vesicle cycle // Annu Rev Neurosci. 2004. Vol. 27. P. 509–547. doi: 10.1146/annurev.neuro.26.041002.131412 |
| [75] |
Yan X, 严 喜, Weng HR, 翁 汉. Endogenous interleukin-1beta in neuropathic rats enhances glutamate release from the primary afferents in the spinal dorsal horn through coupling with presynaptic N-methyl-D-aspartic acid receptors. J Biol Chem. 2013;288(42):30544–30557. doi: 10.1074/jbc.M113.495465 |
| [76] |
Yan X., 严 喜, Weng H.R., 翁 汉. Endogenous interleukin-1beta in neuropathic rats enhances glutamate release from the primary afferents in the spinal dorsal horn through coupling with presynaptic N-methyl-D-aspartic acid receptors // J Biol Chem. 2013. Vol. 288, N 42. P. 30544–30557. doi: 10.1074/jbc.M113.495465 |
| [77] |
Rao AM, Igbavboa U, Semotuk M, et al. Kinetics and size of cholesterol lateral domains in synaptosomal membranes: modification by sphingomyelinase and effects on membrane enzyme activity. Neurochem Int. 1993;23(1):45–52. doi: 10.1016/0197-0186(93)90142-r |
| [78] |
Rao A.M., Igbavboa U., Semotuk M., et al. Kinetics and size of cholesterol lateral domains in synaptosomal membranes: modification by sphingomyelinase and effects on membrane enzyme activity // Neurochem Int. 1993. Vol. 23, N 1. P. 45–52. doi: 10.1016/0197-0186(93)90142-r |
| [79] |
Tabarean IV, Korn H, Bartfai T. Interleukin-1beta induces hyperpolarization and modulates synaptic inhibition in preoptic and anterior hypothalamic neurons. Neuroscience. 2006;141(4):1685–1695. doi: 10.1016/j.neuroscience.2006.05.007 |
| [80] |
Tabarean I.V., Korn H., Bartfai T. Interleukin-1beta induces hyperpolarization and modulates synaptic inhibition in preoptic and anterior hypothalamic neurons // Neuroscience. 2006. Vol. 141, N 4. P. 1685–1695. doi: 10.1016/j.neuroscience.2006.05.007 |
| [81] |
Garcia-Martinez V, Montes MA, Villanueva J, et al. Sphingomyelin derivatives increase the frequency of microvesicle and granule fusion in chromaffin cells. Neuroscience. 2015;295:117–125. doi: 10.1016/j.neuroscience.2015.03.036 |
| [82] |
Garcia-Martinez V., Montes M.A., Villanueva J., et al. Sphingomyelin derivatives increase the frequency of microvesicle and granule fusion in chromaffin cells // Neuroscience. 2015. Vol. 295. P. 117–125. doi: 10.1016/j.neuroscience.2015.03.036 |
| [83] |
Jeon HJ, Lee DH, Kang MS, et al. Dopamine release in PC12 cells is mediated by Ca(2+)-dependent production of ceramide via sphingomyelin pathway. J Neurochem. 2005;95(3):811–820. doi: 10.1111/j.1471-4159.2005.03403.x |
| [84] |
Jeon H.J., Lee D.H., Kang M.S., et al. Dopamine release in PC12 cells is mediated by Ca(2+)-dependent production of ceramide via sphingomyelin pathway // J Neurochem. 2005. Vol. 95, N 3. P. 811–820. doi: 10.1111/j.1471-4159.2005.03403.x |
| [85] |
Won JH, Kim SK, Shin IC, et al. Dopamine transporter trafficking is regulated by neutral sphingomyelinase 2/ceramide kinase. Cell Signal. 2018;44:171–187. doi: 10.1016/j.cellsig.2018.01.006 |
| [86] |
Won J.H., Kim S.K., Shin I.C., et al. Dopamine transporter trafficking is regulated by neutral sphingomyelinase 2/ceramide kinase // Cell Signal. 2018. Vol. 44. P. 171–187. doi: 10.1016/j.cellsig.2018.01.006 |
| [87] |
Odnoshivkina JG, Sibgatullina GV, Petrov AM. Lipid-dependent regulation of neurotransmitter release from sympathetic nerve endings in mice atria. Biochim Biophys Acta Biomembr. 2023;1865(7):184197. doi: 10.1016/j.bbamem.2023.184197 |
| [88] |
Odnoshivkina J.G., Sibgatullina G.V., Petrov A.M. Lipid-dependent regulation of neurotransmitter release from sympathetic nerve endings in mice atria // Biochim Biophys Acta Biomembr. 2023. Vol. 1865, N 7. P. 184197. doi: 10.1016/j.bbamem.2023.184197 |
| [89] |
Odnoshivkina YG, Petrov AM. The role of neuro-cardiac junctions in sympathetic regulation of the heart. Journal of Evolutionary Biochemistry and Physiology. 2021;57(3):527–541. doi: 10.1134/s0022093021030078 |
| [90] |
Odnoshivkina Y.G., Petrov A.M. The role of neuro-cardiac junctions in sympathetic regulation of the heart // Journal of Evolutionary Biochemistry and Physiology. 2021. Vol. 57, N 3. P. 527–541. doi: 10.1134/s0022093021030078 |
| [91] |
Empinado HM, Deevska GM, Nikolova-Karakashian M, et al. Diaphragm dysfunction in heart failure is accompanied by increases in neutral sphingomyelinase activity and ceramide content. Eur J Heart Fail. 2014;16(5):519–525. doi: 10.1002/ejhf.73 |
| [92] |
Empinado H.M., Deevska G.M., Nikolova-Karakashian M., et al. Diaphragm dysfunction in heart failure is accompanied by increases in neutral sphingomyelinase activity and ceramide content // Eur J Heart Fail. 2014. Vol. 16, N 5. P. 519–525. doi: 10.1002/ejhf.73 |
| [93] |
Xiang H, Jin S, Tan F, et al. Physiological functions and therapeutic applications of neutral sphingomyelinase and acid sphingomyelinase. Biomed Pharmacother. 2021;139:111610. doi: 10.1016/j.biopha.2021.111610 |
| [94] |
Xiang H., Jin S., Tan F., et al. Physiological functions and therapeutic applications of neutral sphingomyelinase and acid sphingomyelinase // Biomed Pharmacother. 2021. Vol. 139. P. 111610. doi: 10.1016/j.biopha.2021.111610 |
| [95] |
Choi BJ, Park KH, Park MH, et al. Acid sphingomyelinase inhibition improves motor behavioral deficits and neuronal loss in an amyotrophic lateral sclerosis mouse model. BMB Rep. 2022;55(12):621–626. doi: 10.5483/BMBRep.2022.55.12.142 |
| [96] |
Choi B.J., Park K.H., Park M.H., et al. Acid sphingomyelinase inhibition improves motor behavioral deficits and neuronal loss in an amyotrophic lateral sclerosis mouse model // BMB Rep. 2022. Vol. 55, N 12. P. 621–626. doi: 10.5483/BMBRep.2022.55.12.142 |
| [97] |
Zakyrjanova GF, Giniatullin AR, Mukhutdinova KA, et al. Early differences in membrane properties at the neuromuscular junctions of ALS model mice: effects of 25-hydroxycholesterol. Life Sci. 2021;273:119300. doi: 10.1016/j.lfs.2021.119300 |
| [98] |
Zakyrjanova G.F., Giniatullin A.R., Mukhutdinova K.A., et al. Early differences in membrane properties at the neuromuscular junctions of ALS model mice: effects of 25-hydroxycholesterol // Life Sci. 2021. Vol. 273. P. 119300. doi: 10.1016/j.lfs.2021.119300 |
| [99] |
Andrews NW, Almeida PE, Corrotte M. Damage control: cellular mechanisms of plasma membrane repair. Trends Cell Biol. 2014;24(12):734–742. doi: 10.1016/j.tcb.2014.07.008 |
| [100] |
Andrews N.W., Almeida P.E., Corrotte M. Damage control: cellular mechanisms of plasma membrane repair // Trends Cell Biol. 2014. Vol. 24, N 12. P. 734–742. doi: 10.1016/j.tcb.2014.07.008 |
| [101] |
Yue HY, Bieberich E, Xu J. Promotion of endocytosis efficiency through an ATP-independent mechanism at rat calyx of Held terminals. J Physiol. 2017;595(15):5265–5284. doi: 10.1113/JP274275 |
| [102] |
Yue H.Y., Bieberich E., Xu J. Promotion of endocytosis efficiency through an ATP-independent mechanism at rat calyx of Held terminals // J Physiol. 2017. Vol. 595, N 15. P. 5265–5284. doi: 10.1113/JP274275 |
| [103] |
Gruber-Schoffnegger D, Drdla-Schutting R, Hönigsperger C, et al. Induction of thermal hyperalgesia and synaptic long-term potentiation in the spinal cord lamina I by TNF-alpha and IL-1beta is mediated by glial cells. J Neurosci. 2013;33(15):6540–6551. doi: 10.1523/JNEUROSCI.5087-12.2013 |
| [104] |
Gruber-Schoffnegger D., Drdla-Schutting R., Hönigsperger C., et al. Induction of thermal hyperalgesia and synaptic long-term potentiation in the spinal cord lamina I by TNF-alpha and IL-1beta is mediated by glial cells // J Neurosci. 2013. Vol. 33, N 15. P. 6540–6551. doi: 10.1523/JNEUROSCI.5087-12.2013 |
| [105] |
Norman E, Cutler RG, Flannery R, et al. Plasma membrane sphingomyelin hydrolysis increases hippocampal neuron excitability by sphingosine-1-phosphate mediated mechanisms. J Neurochem. 2010;114(2):430–439. doi: 10.1111/j.1471-4159.2010.06779.x |
| [106] |
Norman E., Cutler R.G., Flannery R., et al. Plasma membrane sphingomyelin hydrolysis increases hippocampal neuron excitability by sphingosine-1-phosphate mediated mechanisms // J Neurochem. 2010. Vol. 114, N 2. P. 430–439. doi: 10.1111/j.1471-4159.2010.06779.x |
| [107] |
Lin CH, Kornhuber J, Zheng F, Alzheimer C. Tonic control of secretory acid sphingomyelinase over ventral hippocampal synaptic transmission and neuron excitability. Front Cell Neurosci. 2021;15:660561. doi: 10.3389/fncel.2021.660561 |
| [108] |
Lin C.H., Kornhuber J., Zheng F., Alzheimer C. Tonic control of secretory acid sphingomyelinase over ventral hippocampal synaptic transmission and neuron excitability // Front Cell Neurosci. 2021. Vol. 15. P. 660561. doi: 10.3389/fncel.2021.660561 |
| [109] |
Franco-Villanueva A, Fernández-López E, Gabandé-Rodríguez E, et al. WIP modulates dendritic spine actin cytoskeleton by transcriptional control of lipid metabolic enzymes. Hum Mol Genet. 2014;23(16):4383–4395. doi: 10.1093/hmg/ddu155 |
| [110] |
Franco-Villanueva A., Fernández-López E., Gabandé-Rodríguez E., et al. WIP modulates dendritic spine actin cytoskeleton by transcriptional control of lipid metabolic enzymes // Hum Mol Genet. 2014. Vol. 23, N 16. P. 4383–4395. doi: 10.1093/hmg/ddu155 |
| [111] |
Pfrieger FW. The Niemann–Pick type diseases — a synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res. 2023;90:101225. doi: 10.1016/j.plipres.2023.101225 |
| [112] |
Pfrieger F.W. The Niemann–Pick type diseases — a synopsis of inborn errors in sphingolipid and cholesterol metabolism // Prog Lipid Res. 2023. Vol. 90. P. 101225. doi: 10.1016/j.plipres.2023.101225 |
| [113] |
Galvan C, Camoletto PG, Cristofani F, et al. Anomalous surface distribution of glycosyl phosphatidyl inositol-anchored proteins in neurons lacking acid sphingomyelinase. Mol Biol Cell. 2008;19(2):509–522. doi: 10.1091/mbc.e07-05-0439 |
| [114] |
Galvan C., Camoletto P.G., Cristofani F., et al. Anomalous surface distribution of glycosyl phosphatidyl inositol-anchored proteins in neurons lacking acid sphingomyelinase // Mol Biol Cell. 2008. Vol. 19, N 2. P. 509–522. doi: 10.1091/mbc.e07-05-0439 |
| [115] |
Macauley SL, Sidman RL, Schuchman EH, et al. Neuropathology of the acid sphingomyelinase knockout mouse model of Niemann–Pick A disease including structure-function studies associated with cerebellar Purkinje cell degeneration. Exp Neurol. 2008;214(2):181–192. doi: 10.1016/j.expneurol.2008.07.026 |
| [116] |
Macauley S.L., Sidman R.L., Schuchman E.H., et al. Neuropathology of the acid sphingomyelinase knockout mouse model of Niemann–Pick A disease including structure-function studies associated with cerebellar Purkinje cell degeneration // Exp Neurol. 2008. Vol. 214, N 2. P. 181–192. doi: 10.1016/j.expneurol.2008.07.026 |
| [117] |
Robak LA, Jansen IE, van Rooij J, et al. Excessive burden of lysosomal storage disorder gene variants in Parkinson’s disease. Brain. 2017;140(12):3191–3203. doi: 10.1093/brain/awx285 |
| [118] |
Robak L.A., Jansen I.E., van Rooij J., et al. Excessive burden of lysosomal storage disorder gene variants in Parkinson’s disease // Brain. 2017. Vol. 140, N 12. P. 3191–3203. doi: 10.1093/brain/awx285 |
| [119] |
Alcalay RN, Mallett V, Vanderperre B, et al. SMPD1 mutations, activity, and alpha-synuclein accumulation in Parkinson’s disease. Mov Disord. 2019;34(4):526–535. doi: 10.1002/mds.27642 |
| [120] |
Alcalay R.N., Mallett V., Vanderperre B., et al. SMPD1 mutations, activity, and alpha-synuclein accumulation in Parkinson’s disease // Mov Disord. 2019. Vol. 34, N 4. P. 526–535. doi: 10.1002/mds.27642 |
| [121] |
Conte C, Arcuri C, Cataldi S, et al. Niemann–Pick type A disease: behavior of neutral sphingomyelinase and vitamin D receptor. Int J Mol Sci. 2019;20(9):2365. doi: 10.3390/ijms20092365 |
| [122] |
Conte C., Arcuri C., Cataldi S., et al. Niemann–Pick type A disease: behavior of neutral sphingomyelinase and vitamin D receptor // Int J Mol Sci. 2019. Vol. 20, N 9. P. 2365. doi: 10.3390/ijms20092365 |
| [123] |
Kornhuber J, Medlin A, Bleich S, et al. High activity of acid sphingomyelinase in major depression. J Neural Transm (Vienna). 2005;112(11):1583–1590. doi: 10.1007/s00702-005-0374-5 |
| [124] |
Kornhuber J., Medlin A., Bleich S., et al. High activity of acid sphingomyelinase in major depression // J Neural Transm (Vienna). 2005. Vol. 112, N 11. P. 1583–1590. doi: 10.1007/s00702-005-0374-5 |
| [125] |
Kornhuber J, Tripal P, Reichel M, et al. Identification of new functional inhibitors of acid sphingomyelinase using a structure-property-activity relation model. J Med Chem. 2008;51(2):219–237. doi: 10.1021/jm070524a |
| [126] |
Kornhuber J., Tripal P., Reichel M., et al. Identification of new functional inhibitors of acid sphingomyelinase using a structure-property-activity relation model // J Med Chem. 2008. Vol. 51, N 2. P. 219–237. doi: 10.1021/jm070524a |
| [127] |
Kornhuber J, Gulbins E. New molecular targets for antidepressant drugs. Pharmaceuticals (Basel). 2021;14(9):894. doi: 10.3390/ph14090894 |
| [128] |
Kornhuber J., Gulbins E. New molecular targets for antidepressant drugs // Pharmaceuticals (Basel). 2021. Vol. 14, N 9. P. 894. doi: 10.3390/ph14090894 |
| [129] |
Gulbins E, Palmada M, Reichel M, et al. Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs. Nat Med. 2013;19(7):934–938. doi: 10.1038/nm.3214 |
| [130] |
Gulbins E., Palmada M., Reichel M., et al. Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs // Nat Med. 2013. Vol. 19, N 7. P. 934–938. doi: 10.1038/nm.3214 |
| [131] |
Kalinichenko LS, Hammad L, Reichel M, et al. Acid sphingomyelinase controls dopamine activity and responses to appetitive stimuli in mice. Brain Res Bull. 2019;146:310–319. doi: 10.1016/j.brainresbull.2019.01.026 |
| [132] |
Kalinichenko L.S., Hammad L., Reichel M., et al. Acid sphingomyelinase controls dopamine activity and responses to appetitive stimuli in mice // Brain Res Bull. 2019. Vol. 146. P. 310–319. doi: 10.1016/j.brainresbull.2019.01.026 |
| [133] |
Zoicas I, Schumacher F, Kleuser B, et al. The forebrain-specific overexpression of acid sphingomyelinase induces depressive-like symptoms in mice. Cells. 2020;9(5):1244. doi: 10.3390/cells9051244 |
| [134] |
Zoicas I., Schumacher F., Kleuser B., et al. The forebrain-specific overexpression of acid sphingomyelinase induces depressive-like symptoms in mice // Cells. 2020. Vol. 9, N 5. P. 1244. doi: 10.3390/cells9051244 |
| [135] |
Zeitler S, Schumacher F, Monti J, et al. Acid sphingomyelinase impacts canonical transient receptor potential channels 6 (TRPC6) activity in primary neuronal systems. Cells. 2020;9(11):2502. doi: 10.3390/cells9112502 |
| [136] |
Zeitler S., Schumacher F., Monti J., et al. Acid sphingomyelinase impacts canonical transient receptor potential channels 6 (TRPC6) activity in primary neuronal systems // Cells. 2020. Vol. 9, N 11. P. 2502. doi: 10.3390/cells9112502 |
| [137] |
Yu Z, Cheng G, Wen X, et al. Tumor necrosis factor alpha increases neuronal vulnerability to excitotoxic necrosis by inducing expression of the AMPA-glutamate receptor subunit GluR1 via an acid sphingomyelinase- and NF-kappaB-dependent mechanism. Neurobiol Dis. 2002;11(1):199–213. doi: 10.1006/nbdi.2002.0530 |
| [138] |
Yu Z., Cheng G., Wen X., et al. Tumor necrosis factor alpha increases neuronal vulnerability to excitotoxic necrosis by inducing expression of the AMPA-glutamate receptor subunit GluR1 via an acid sphingomyelinase- and NF-kappaB-dependent mechanism // Neurobiol Dis. 2002. Vol. 11, N 1. P. 199–213. doi: 10.1006/nbdi.2002.0530 |
| [139] |
Yu ZF, Nikolova-Karakashian M, Zhou D, et al. Pivotal role for acidic sphingomyelinase in cerebral ischemia-induced ceramide and cytokine production, and neuronal apoptosis. J Mol Neurosci. 2000;15(2):85–97. doi: 10.1385/JMN:15:2:85 |
| [140] |
Yu Z.F., Nikolova-Karakashian M., Zhou D., et al. Pivotal role for acidic sphingomyelinase in cerebral ischemia-induced ceramide and cytokine production, and neuronal apoptosis // J Mol Neurosci. 2000. Vol. 15, N 2. P. 85–97. doi: 10.1385/JMN:15:2:85 |
| [141] |
Gu L, Huang B, Shen W, et al. Early activation of nSMase2/ceramide pathway in astrocytes is involved in ischemia-associated neuronal damage via inflammation in rat hippocampi. J Neuroinflammation. 2013;10:109. doi: 10.1186/1742-2094-10-109 |
| [142] |
Gu L., Huang B., Shen W., et al. Early activation of nSMase2/ceramide pathway in astrocytes is involved in ischemia-associated neuronal damage via inflammation in rat hippocampi // J Neuroinflammation. 2013. Vol. 10. P. 109. doi: 10.1186/1742-2094-10-109 |
| [143] |
Lee SH, Kho AR, Lee SH, et al. Acid sphingomyelinase inhibitor, imipramine, reduces hippocampal neuronal death after traumatic brain injury. Int J Mol Sci. 2022;23(23):14749. doi: 10.3390/ijms232314749 |
| [144] |
Lee S.H., Kho A.R., Lee S.H., et al. Acid sphingomyelinase inhibitor, imipramine, reduces hippocampal neuronal death after traumatic brain injury // Int J Mol Sci. 2022. Vol. 23, N 23. P. 14749. doi: 10.3390/ijms232314749 |
| [145] |
Novgorodov SA, Voltin JR, Wang W, et al. Acid sphingomyelinase deficiency protects mitochondria and improves function recovery after brain injury. J Lipid Res. 2019;60(3):609–623. doi: 10.1194/jlr.M091132 |
| [146] |
Novgorodov S.A., Voltin J.R., Wang W., et al. Acid sphingomyelinase deficiency protects mitochondria and improves function recovery after brain injury // J Lipid Res. 2019. Vol. 60, N 3. P. 609–623. doi: 10.1194/jlr.M091132 |
| [147] |
Balosso S, Liu J, Bianchi ME, Vezzani A. Disulfide-containing high mobility group box-1 promotes N-methyl-D-aspartate receptor function and excitotoxicity by activating Toll-like receptor 4-dependent signaling in hippocampal neurons. Antioxid Redox Signal. 2014;21(12):1726–1740. doi: 10.1089/ars.2013.5349 |
| [148] |
Balosso S., Liu J., Bianchi M.E., Vezzani A. Disulfide-containing high mobility group box-1 promotes N-methyl-D-aspartate receptor function and excitotoxicity by activating Toll-like receptor 4-dependent signaling in hippocampal neurons // Antioxid Redox Signal. 2014. Vol. 21, N 12. P. 1726–1740. doi: 10.1089/ars.2013.5349 |
| [149] |
Zhu X, Hollinger KR, Huang Y, et al. Neutral sphingomyelinase 2 inhibition attenuates extracellular vesicle release and improves neurobehavioral deficits in murine HIV. Neurobiol Dis. 2022;169:105734. doi: 10.1016/j.nbd.2022.105734 |
| [150] |
Zhu X., Hollinger K.R., Huang Y., et al. Neutral sphingomyelinase 2 inhibition attenuates extracellular vesicle release and improves neurobehavioral deficits in murine HIV // Neurobiol Dis. 2022. Vol. 169. P. 105734. doi: 10.1016/j.nbd.2022.105734 |
Eco-Vector
/
| 〈 |
|
〉 |