Glymphatic dysfunction in the pathogenesis of neurodegenerative diseases and pathological aging

Igor V. Shirolapov , Alexander V. Zakharov , Svetlana V. Bulgakova , Elena V. Khivintseva , Mariya S. Sergeeva , Natalia P. Romanchuk , Olga N. Pavlova , Victor B. Kazantsev

Genes & Cells ›› 2023, Vol. 18 ›› Issue (4) : 309 -322.

PDF
Genes & Cells ›› 2023, Vol. 18 ›› Issue (4) : 309 -322. DOI: 10.23868/gc546022
Reviews
review-article

Glymphatic dysfunction in the pathogenesis of neurodegenerative diseases and pathological aging

Author information +
History +
PDF

Abstract

Recently, the concept of the glymphatic system as a highly organized perivascular network has been formed, which by hydrodynamic approach, with the key participation of aquaporin-4 as a central molecule, connects the cerebrospinal fluid with the lymphatic vessels of the meninges through the brain interstitium. The latest scientific works demonstrates the potential role of glymphatic dysfunction in the development of neurodegeneration and pathological aging. Although the precise molecular mechanisms of glymphatic pathway function have not yet been fully characterized, the critical processes underlying cerebral solute transport and clearance of amyloid and metabolites have been largely elucidated. The complex interaction between a number of age-associated factors, including cellular aging, disturbances in the sleep-wake cycle with changes in sleep architecture and quality, low-grade systemic inflammation, and the development of concomitant diseases, determines not only life expectancy in general, but also forms the basis of healthy and unhealthy aging the brain in particular. Imbalances in homeostatic functions, changes in the activity of glymphatic clearance and the blood-brain barrier that support the exchange of fluid and solutes in cerebral tissue, which can be observed both normally with physiological aging and with the development of neuropathology, have longitudinal consequences ranging from disruption of synaptic signal transmission to onset of neurodegenerative processes.

This review analyzes the current scientific information in this area of research, details the features of the perivascular glial-mediated transport system, and discusses how its dysfunction plays a fundamental role in the pathological accumulation of metabolites during aging, the development of age-associated changes in the brain, and the progression of neurodegenerative diseases.

Keywords

glymphatic pathway, aquaporin-4, dysfunction, clearance, neurodegeneration, amyloid, blood-brain barrier

Cite this article

Download citation ▾
Igor V. Shirolapov, Alexander V. Zakharov, Svetlana V. Bulgakova, Elena V. Khivintseva, Mariya S. Sergeeva, Natalia P. Romanchuk, Olga N. Pavlova, Victor B. Kazantsev. Glymphatic dysfunction in the pathogenesis of neurodegenerative diseases and pathological aging. Genes & Cells, 2023, 18(4): 309-322 DOI:10.23868/gc546022

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bah TM, Siler DA, Ibrahim AH, et al. Fluid dynamics in aging-related dementias. Neurobiol Dis. 2023;177:105986. doi: 10.1016/j.nbd.2022.105986

[2]

Bah T.M., Siler D.A., Ibrahim A.H., et al. Fluid dynamics in aging-related dementias // Neurobiol Dis. 2023. Vol. 177. P. 105986. doi: 10.1016/j.nbd.2022.105986

[3]

Ivanisevic J, Stauch K, Petrascheck M, et al. Metabolic drift in the aging brain. Aging (Albany NY). 2016;8(5):1000–1020. doi: 10.18632/aging.100961

[4]

Ivanisevic J., Stauch K., Petrascheck M., et al. Metabolic drift in the aging brain // Aging (Albany NY). 2016. Vol. 8, N 5. P. 1000–1020. doi: 10.18632/aging.100961

[5]

Iliff JJ, Lee H, Yu M, et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest. 2013;123(3):1299–1309. doi: 10.1172/JCI67677

[6]

Iliff J.J., Lee H., Yu M., et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI // J Clin Invest. 2013. Vol. 123, N 3, P. 1299–1309. doi: 10.1172/JCI67677

[7]

Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol. 2018;17(11):1016–1024. doi: 10.1016/S1474-4422(18)30318-1

[8]

Rasmussen M.K., Mestre H., Nedergaard M. The glymphatic pathway in neurological disorders // Lancet Neurol. 2018. Vol. 17, N 11. P. 1016–1024. doi: 10.1016/S1474-4422(18)30318-1

[9]

Bohr T, Hjorth PG, Holst SC, et al. The glymphatic system: current understanding and modeling. iScience. 2022;25(9):104987. doi: 10.1016/j.isci.2022.104987

[10]

Bohr T., Hjorth P.G., Holst S.C., et al. The glymphatic system: current understanding and modeling // iScience. 2022. Vol. 25, N 9. P. 104987. doi: 10.1016/j.isci.2022.104987

[11]

Gordleeva S, Kanakov O, Ivanchenko M, et al. Modelling the role of sleep, glymphatic system, and microglia senescence in the propagation of inflammaging. Semin Immunopathol. 2020;42(5):647–665. doi: 10.1007/s00281-020-00816-x

[12]

Gordleeva S., Kanakov O., Ivanchenko M., et al. Modelling the role of sleep, glymphatic system, and microglia senescence in the propagation of inflammaging // Semin Immunopathol. 2020. Vol. 42, N 5. P. 647–665. doi: 10.1007/s00281-020-00816-x

[13]

Jessen N, Munk A, Lundgaard I, Nedergaard M. The glymphatic system: a beginner’s guide. Neurochem Res. 2015;40(12):2583–2599. doi: 10.1007/s11064-015-1581-6

[14]

Jessen N.A., Munk A.S., Lundgaard I., Nedergaard M. The glymphatic system: a beginner’s guide // Neurochem Res. 2015. Vol. 40, N 12. P. 2583–2599. doi: 10.1007/s11064-015-1581-6

[15]

Kress BT, Iliff JJ, Xia M, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014;76(6):845–861. doi: 10.1002/ana.24271

[16]

Kress B., Iliff J., Xia M., et al. Impairment of paravascular clearance pathways in the aging brain // Ann Neurol. 2014. Vol. 76, N 6. P. 845–861. doi: 10.1002/ana.24271

[17]

Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373–377. doi: 10.1126/science.1241224

[18]

Xie L., Kang H., Xu Q., et al. Sleep drives metabolite clearance from the adult brain // Science. 2013. Vol. 342, N 6156. P. 373–377. doi: 10.1126/science.1241224

[19]

Salman MM, Kitchen P, Iliff JJ, Bill RM. Aquaporin 4 and glymphatic flow have central roles in brain fluid homeostasis. Nat Rev Neurosci. 2021;22(10):650–651. doi: 10.1038/s41583-021-00514-z

[20]

Salman M.M., Kitchen P., Iliff J.J., Bill R.M. Aquaporin 4 and glymphatic flow have central roles in brain fluid homeostasis // Nat Rev Neurosci. 2021. Vol. 22, N 10. P. 650–651. doi: 10.1038/s41583-021-00514-z

[21]

Shirolapov I, Zakharov A, Smirnova D, et al. Aging brain, dementia and impaired glymphatic pathway: causal relationships. Psychiatr Danub. 2023;35 Suppl 2:236–244. PMID: 37800234

[22]

Shirolapov I., Zakharov A., Smirnova D., et al. Aging brain, dementia and impaired glymphatic pathway: causal relationships // Psychiatr Danub. 2023. Vol. 35, Suppl. 2. P. 236–244. PMID: 37800234

[23]

Fang YC, Hsieh YC, Hu CJ, et al. Endothelial dysfunction in neurodegenerative diseases. Int J Mol Sci. 2023;24(3):2909. doi: 10.3390/ijms24032909

[24]

Fang Y.C., Hsieh Y.C., Hu C.J., Tu Y.K. Endothelial dysfunction in neurodegenerative diseases // Int J Mol Sci. 2023. Vol. 24, N 3. P. 2909. doi: 10.3390/ijms24032909

[25]

Mehta NH, Suss RA, Dyke JP, et al. Quantifying cerebrospinal fluid dynamics: a review of human neuroimaging contributions to CSF physiology and neurodegenerative disease. Neurobiol Dis. 2022;170:105776. doi: 10.1016/j.nbd.2022.105776

[26]

Mehta N.H., Suss R.A., Dyke J.P., et al. Quantifying cerebrospinal fluid dynamics: a review of human neuroimaging contributions to CSF physiology and neurodegenerative disease // Neurobiol Dis. 2022. Vol. 170. P. 105776. doi: 10.1016/j.nbd.2022.105776

[27]

Zhou Y, Cai J, Zhang W, et al. Impairment of the glymphatic pathway and putative meningeal lymphatic vessels in the aging human. Ann Neurol. 2020;87(3):357–369. doi: 10.1002/ana.25670

[28]

Zhou Y., Cai J., Zhang W., et al. Impairment of the glymphatic pathway and putative meningeal lymphatic vessels in the aging human // Ann Neurol. 2020. Vol. 87, N 3. P. 357–369. doi: 10.1002/ana.25670

[29]

Shirolapov IV, Zakharov AV, Smirnova DA, et al. The significance of the glymphatic pathway in the relationship between the sleep-wake cycle and neurodegenerative diseases. S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(9):31–36. doi: 10.17116/jnevro202312309131

[30]

Широлапов И.В., Захаров А.В., Смирнова Д.А., и др. Роль глимфатического клиренса в механизмах взаимосвязи цикла сон-бодрствование и развития нейродегенеративных процессов // Журнал неврологии и психиатрии им. С.С. Корсакова. 2023. Т. 123, № 9. С. 31–36. doi: 10.17116/jnevro202312309131

[31]

Diack AB, Alibhai JD, Barron R, et al. Insights into mechanisms of chronic neurodegeneration. Int J Mol Sci. 2016;17(1):82. doi: 10.3390/ijms17010082

[32]

Diack A.B., Alibhai J.D., Barron R., et al. Insights into mechanisms of chronic neurodegeneration // Int J Mol Sc. 2016. Vol. 17, N 1. P. 82. doi: 10.3390/ijms17010082

[33]

Abubakar MB, Sanusi KO, Ugusman A, et al. Alzheimer’s disease: an update and insights into pathophysiology. Front Aging Neurosci. 2022;14:742408. doi: 10.3389/fnagi.2022.742408

[34]

Abubakar M.B., Sanusi K.O., Ugusman A., et al. Alzheimer’s disease: an update and insights into pathophysiology // Front Aging Neurosci. 2022. Vol. 14. P. 742408. doi: 10.3389/fnagi.2022.742408

[35]

Chen HL, Chen PC, Lu CH, et al. Associations among cognitive functions, plasma DNA, and Diffusion Tensor Image along the Perivascular Space (DTI-ALPS) in patients with Parkinson’s disease. Oxid Med Cell Longev. 2021;2021:4034509. doi: 10.1155/2021/4034509

[36]

Chen H.L., Chen P.C., Lu C.H., et al. Associations among cognitive functions, plasma DNA, and Diffusion Tensor Image along the Perivascular Space (DTI-ALPS) in patients with Parkinson’s disease // Oxid Med Cell Longev. 2021. Vol. 2021. P. 4034509. doi: 10.1155/2021/4034509

[37]

Tarutani A, Adachi T, Akatsu H, et al. Ultrastructural and biochemical classification of pathogenic tau, α-synuclein and TDP-43. Acta Neuropathol. 2022;143(6):613–640. Corrected and republished from: Acta Neuropathol. 2022;144(1):165. doi: 10.1007/s00401-022-02426-3

[38]

Tarutani A., Adachi T., Akatsu H., et al. Ultrastructural and biochemical classification of pathogenic tau, α-synuclein and TDP-43 // Acta Neuropathol. 2022. Vol. 143. N 6. P. 613–640. Corrected and republished from: Acta Neuropathol. 2022. Vol. 144. P. 165. doi: 10.1007/s00401-022-02426-3

[39]

Aramadaka S, Mannam R, Sankara Narayanan R, et al. Neuroimaging in Alzheimer’s disease for early diagnosis: a comprehensive review. Cureus. 2023;15(5):e38544. doi: 10.7759/cureus.38544

[40]

Aramadaka S., Mannam R., Sankara Narayanan R., et al. Neuroimaging in Alzheimer’s disease for early diagnosis: a comprehensive review // Cureus. 2023. Vol. 15, N 5. P. e38544. doi: 10.7759/cureus.38544

[41]

Sengupta U, Kayed R. Amyloid β, Tau, and α-Synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases. Prog Neurobiol. 2022;214:102270. doi: 10.1016/j.pneurobio.2022.102270

[42]

Sengupta U., Kayed R. Amyloid β, Tau, and α-Synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases // Prog Neurobiol. 2022. Vol. 214. P. 102270. doi: 10.1016/j.pneurobio.2022.102270

[43]

Hernaiz A, Toivonen JM, Bolea R, Martín-Burriel I. Epigenetic changes in prion and prion-like neurodegenerative diseases: recent advances, potential as biomarkers and future perspectives. Int J Mol Sci. 2022;23(20):12609. doi: 10.3390/ijms232012609

[44]

Hernaiz A., Toivonen J.M., Bolea R., et al. Epigenetic changes in prion and prion-like neurodegenerative diseases: recent advances, potential as biomarkers and future perspectives // Int J Mol Sci. 2022. Vol. 23, N 20. P. 12609. doi: 10.3390/ijms232012609

[45]

Marin-Moreno A, Canoyra S, Fernández-Borges N, et al. Transgenic mouse models for the study of neurodegenerative diseases. Front Biosci. 2023;28(1):21. doi: 10.31083/j.fbl2801021

[46]

Marin-Moreno A., Canoyra S., Fernández-Borges N., et al. Transgenic mouse models for the study of neurodegenerative diseases // Front Biosci (Landmark Ed). 2023. Vol. 28, N 1. P. 21. doi: 10.31083/j.fbl2801021

[47]

Li K, Wang Z. lncRNA NEAT1: key player in neurodegenerative diseases. Ageing Res Rev. 2023;86:101878. doi: 10.1016/j.arr.2023.101878

[48]

Li K., Wang Z. lncRNA NEAT1: key player in neurodegenerative diseases // Ageing Res Rev. 2023. Vol. 86. P. 101878. doi: 10.1016/j.arr.2023.101878

[49]

Huang M, Chen S. DJ-1 in neurodegenerative diseases: pathogenesis and clinical application. Prog Neurobiol. 2021;204:102114. doi: 10.1016/j.pneurobio.2021.102114

[50]

Huang M., Chen S. DJ-1 in neurodegenerative diseases: pathogenesis and clinical application // Prog Neurobiol. 2021. Vol. 204. P. 102114. doi: 10.1016/j.pneurobio.2021.102114

[51]

Jack CR Jr, Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):207–216. doi: 10.1016/S1474-4422(12)70291-0

[52]

Jack C.R. Jr., Knopman D.S., Jagust W.J., et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers // Lancet Neurol. 2013. Vol. 12, N 2. P. 207–216. doi: 10.1016/S1474-4422(12)70291-0

[53]

Jack CR Jr, Wiste HJ, Weigand SD, et al. Age, sex, and APOE ε4 effects on memory, brain structure, and beta-amyloid across the adult life span. JAMA Neurol. 2015;72(5):511–519. doi: 10.1001/jamaneurol.2014.4821

[54]

Jack C.R. Jr., Wiste H.J., Weigand S.D., et al. Age, sex, and APOE ε4 effects on memory, brain structure, and beta-amyloid across the adult life span // JAMA Neurol. 2015. Vol. 72, N 5. P. 511–519. doi: 10.1001/jamaneurol.2014.4821

[55]

Carare RO, Aldea R, Agarwal N, et al. Clearance of interstitial fluid and CSF group — part of vascular Professional Interest Area (PIA): сerebrovascular disease and the failure of elimination of amyloid-β from the brain and retina with age and Alzheimer’s disease-opportunities for therapy. Alzheimers Dement (Amst). 2020;12(1):e12053. doi: 10.1002/dad2.12053

[56]

Carare R.O., Aldea R., Agarwal N., et al. Clearance of interstitial fluid and CSF group — part of vascular Professional Interest Area (PIA): cerebrovascular disease and the failure of elimination of Amyloid-β from the brain and retina with age and Alzheimer’s disease-opportunities for therapy // Alzheimers Dement (Amst). 2020. Vol. 12, N 1. P. e12053. doi: 10.1002/dad2.12053

[57]

Jansen WJ, Ossenkoppele R, Knol DL, et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA. 2015;313(19):1924–1938. doi: 10.1001/jama.2015.4668

[58]

Jansen W.J., Ossenkoppele R., Knol D.L., et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis // JAMA. 2015. Vol. 313, N 19. P. 1924–1938. doi: 10.1001/jama.2015.4668

[59]

Shirolapov I, Zakharov A, Bulgakova S, et al. Alzheimer dementia as a consequence of the brain glymphatic system dysfunction. Psychiatry, Psychotherapy and Clinical Psychology. 2023;14(3):291–300. doi: 10.34883/PI.2023.14.3.004

[60]

Широлапов И.В., Захаров И.В., Булгакова С.В., и др. Деменция альцгеймеровского типа как следствие нарушений в глимфатической системе мозга // Психиатрия, психотерапия и клиническая психология. 2023. Т. 14, № 3. С. 291–300. doi: 10.34883/PI.2023.14.3.004

[61]

Carrera-González MDP, Cantón-Habas V, Rich-Ruiz M. Aging, depression and dementia: the inflammatory process. Adv Clin Exp Med. 2022;31(5):469–473. doi: 10.17219/acem/149897

[62]

Carrera-González M.D.P., Cantón-Habas V., Rich-Ruiz M. Aging, depression and dementia: the inflammatory process // Adv Clin Exp Med. 2022. Vol. 31, N 5. P. 469–473. doi: 10.17219/acem/149897

[63]

Vargas-Sanchez K, Losada-Barragán M, Mogilevskaya M, et al. Screening for interacting proteins with peptide biomarker of blood-brain barrier alteration under inflammatory conditions. Int J Mol Sci. 2021;22(9):4725. doi: 10.3390/ijms22094725

[64]

Vargas-Sanchez K., Losada-Barragán M., Mogilevskaya M., et al. Screening for interacting proteins with peptide biomarker of blood-brain barrier alteration under inflammatory conditions // Int J Mol Sci. 2021. Vol. 22, N 9. P. 4725. doi: 10.3390/ijms22094725

[65]

Feng W, Zhang Y, Wang Z, et al. Microglia prevent beta-amyloid plaque formation in the early stage of an Alzheimer’s disease mouse model with suppression of glymphatic clearance. Alzheimers Res Ther. 2020;12(1):125. doi: 10.1186/s13195-020-00688-1

[66]

Feng W., Zhang Y., Wang Z., et al. Microglia prevent beta-amyloid plaque formation in the early stage of an Alzheimer’s disease mouse model with suppression of glymphatic clearance // Alzheimers Res Ther. 2020. Vol. 12, N 1. P. 125. doi: 10.1186/s13195-020-00688-1

[67]

Hablitz LM, Nedergaard M. The glymphatic system: a novel component of fundamental neurobiology. J Neurosci. 2021;41(37):7698–7711. doi: 10.1523/JNEUROSCI.0619-21.2021

[68]

Hablitz L.M., Nedergaard M. The glymphatic system: a novel component of fundamental neurobiology // J Neurosci. 2021. Vol. 41, N 37. P. 7698–7711. doi: 10.1523/JNEUROSCI.0619-21.2021

[69]

Albargothy NJ, Johnston DA, MacGregor-Sharp M, et al. Convective influx/glymphatic system: tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways. Acta Neuropathol. 2018;136(1):139–152. doi: 10.1007/s00401-018-1862-7

[70]

Albargothy N.J., Johnston D.A., MacGregor-Sharp M., et al. Convective influx/glymphatic system: tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways // Acta Neuropathol. 2018. Vol. 136, N 1. P. 139–152. doi: 10.1007/s00401-018-1862-7

[71]

Eide PR, Vatnehol SAS, Emblem KE, Ringstad G. Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes. Sci Rep. 2018;8(1):7194. doi: 10.1038/s41598-018-25666-4

[72]

Eide P.R., Vatnehol S.A.S., Emblem K., et al. Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes // Sci Rep. 2018. Vol. 8, N 1. P. 7194. doi: 10.1038/s41598-018-25666-4

[73]

Keil SA, Braun M, O’Boyle R, et al. Dynamic infrared imaging of cerebrospinal fluid tracer influx into the brain. Neurophotonics. 2022;9(3):031915. doi: 10.1117/1.NPh.9.3.031915

[74]

Keil S.A., Braun M., O’Boyle R., et al. Dynamic infrared imaging of cerebrospinal fluid tracer influx into the brain // Neurophotonics. 2022. Vol. 9, N 3. P. 031915. doi: 10.1117/1.NPh.9.3.031915

[75]

Gouveia-Freitas K, Bastos-Leite AJ. Perivascular spaces and brain waste clearance systems: relevance for neurodegenerative and cerebrovascular pathology. Neuroradiology. 2021;63(10):1581–1597. doi: 10.1007/s00234-021-02718-7

[76]

Gouveia-Freitas K., Bastos-Leite A.J. Perivascular spaces and brain waste clearance systems: relevance for neurodegenerative and cerebrovascular pathology // Neuroradiology. 2021. Vol. 63, N 10. P. 1581–1597. doi: 10.1007/s00234-021-02718-7

[77]

Wu CH, Lirng JF, Ling YH, et al. Noninvasive characterization of human glymphatics and meningeal lymphatics in an in vivo model of blood-brain barrier leakage. Ann Neurol. 2021;89(1):111–124. doi: 10.1002/ana.25928

[78]

Wu C.H., Lirng J.F., Ling Y.H., et al. Noninvasive characterization of human glymphatics and meningeal lymphatics in an in vivo model of blood-brain barrier leakage // Ann Neurol. 2021. Vol. 89, N 1. P. 111–124. doi: 10.1002/ana.25928

[79]

Nauen DW, Troncoso JC. Amyloid-beta is present in human lymph nodes and greatly enriched in those of the cervical region. Alzheimers Dement. 2022;18(2):205–210. doi: 10.1002/alz.12385

[80]

Nauen D.W., Troncoso J.C. Amyloid-beta is present in human lymph nodes and greatly enriched in those of the cervical region // Alzheimers Dement. 2022. Vol. 18, N 2. P. 205–210. doi: 10.1002/alz.12385

[81]

Ishida K, Yamada K, Nishiyama R, et al. Glymphatic system clears extracellular tau and protects from tau aggregation and neurodegeneration. J Exp Med. 2022;219(3):e20211275. doi: 10.1084/jem.20211275

[82]

Ishida K., Yamada K., Nishiyama R., et al. Glymphatic system clears extracellular tau and protects from tau aggregation and neurodegeneration // J Exp Med. 2022. Vol. 219, N 3. P. e20211275. doi: 10.1084/jem.20211275

[83]

Harrison I, Ismail O, Machhada A, et al. Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain. 2020;143(8):2576–2593. doi: 10.1093/brain/awaa179

[84]

Harrison I.F., Ismail O., Machhada A., et al. Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model // Brain. 2020. Vol. 143, N 8. P. 2576–2593. doi: 10.1093/brain/awaa179

[85]

Klostranec JM, Vucevic D, Bhatia KD, et al. Current concepts in intracranial interstitial fluid transport and the glymphatic system: part II — imaging techniques and clinical applications. Radiology. 2021;301:516–532. doi: 10.1148/radiol.2021204088

[86]

Klostranec J.M., Vucevic D., Bhatia K.D., et al. Current concepts in intracranial interstitial fluid transport and the glymphatic system: part II — imaging techniques and clinical applications // Radiology. 2021. Vol. 301, N 3. P. 516–532. doi: 10.1148/radiol.2021204088

[87]

Nedergaard M, Goldman SA. Glymphatic failure as a final common pathway to dementia. Science. 2020;370(6512):50–56. doi: 10.1126/science.abb8739

[88]

Nedergaard M., Goldman S.A. Glymphatic failure as a final common pathway to dementia // Science. 2020. Vol. 370, N 6512. P. 50–56. doi: 10.1126/science.abb8739

[89]

Hladky SB, Barrand MA. The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS. 2022;19(1):9. doi: 10.1186/s12987-021-00282-z

[90]

Hladky S.B., Barrand M.A. The glymphatic hypothesis: the theory and the evidence // Fluids Barriers CNS. 2022. Vol. 19, N 1. P. 9. doi: 10.1186/s12987-021-00282-z

[91]

Mestre H, Hablitz LM, Xavier AL, et al. Aquaporin-4-dependent glymphatic solute transport in the rodent brain. Elife. 2018;7:e40070. doi: 10.7554/eLife.40070

[92]

Mestre H., Hablitz L.M., Xavier A.L., et al. Aquaporin-4-dependent glymphatic solute transport in the rodent brain // Elife. 2018. Vol. 7. P. 40070. doi: 10.7554/eLife.40070

[93]

Zhang J, Zhao H, Xue Y, et al. Impaired glymphatic transport kinetics following induced acute ischemic brain edema in a mouse pMCAO model. Front Neurol. 2022;13:860255. Corrected and republished from: Front Neurol. 2022;13:929798. doi: 10.3389/fneur.2022.860255

[94]

Zhang J., Zhao H., Xue Y., et al. Impaired glymphatic transport kinetics following induced acute ischemic brain edema in a mouse pMCAO model // Front Neurol. 2022. Vol. 13. P. 860255. Corrected and republished from: Front Neurol. 2022. Vol. 13. P. 929798. doi: 10.3389/fneur.2022.860255

[95]

Tithof J, Boster KAS, Bork PAR, et al. Network model of glymphatic flow under different experimentally-motivated parametric scenarios. iScience. 2022;25(5):104258. doi: 10.1016/j.isci.2022.104258

[96]

Tithof J., Boster K.A.S., Bork P.A.R., et al. Network model of glymphatic flow under different experimentally-motivated parametric scenarios // iScience. 2022. Vol. 25, N 5. P. 104258. doi: 10.1016/j.isci.2022.104258

[97]

Shirolapov I, Zakharov A, Gochhait S, et al. Aquaporin-4 as the main element of the glymphatic system for clearance of abnormal proteins and prevention of neurodegeneration: a review. WSEAS Transactions on Biology and Biomedicine. 2023;20:110–118. doi: 10.37394/23208.2023.20.11

[98]

Shirolapov I., Zakharov A., Gochhait S., et al. Aquaporin-4 as the main element of the glymphatic system for clearance of abnormal proteins and prevention of neurodegeneration: a review // WSEAS Transactions on Biology and Biomedicine. 2023. Vol. 20. P. 110–118. doi: 10.37394/23208.2023.20.11

[99]

Yamada K. Multifaceted roles of aquaporins in the pathogenesis of Alzheimer’s disease. Int J Mol Sci. 2023;24(7):6528. doi: 10.3390/ijms24076528

[100]

Yamada K. Multifaceted roles of aquaporins in the pathogenesis of Alzheimer’s disease // Int J Mol Sci. 2023. Vol. 24, N 7. P. 6528. doi: 10.3390/ijms24076528

[101]

Simon M, Wang MX, Ismail O, et al. Loss of perivascular aquaporin-4 localization impairs glymphatic exchange and promotes amyloid beta plaque formation in mice. Alzheimers Res Ther. 2022;14(1):59. doi: 10.1186/s13195-022-00999-5

[102]

Simon M., Wang M.X., Ismail O., et al. Loss of perivascular aquaporin-4 localization impairs glymphatic exchange and promotes amyloid beta plaque formation in mice // Alzheimers Res Ther. 2022. Vol. 14, N 1. P. 59. doi: 10.1186/s13195-022-00999-5

[103]

Wang MX, Ray L, Tanaka KF, et al. Varying perivascular astroglial endfoot dimensions along the vascular tree maintain perivascular-interstitial flux through the cortical mantle. Glia. 2021;69(3):715–728. doi: 10.1002/glia.23923

[104]

Wang M.X., Ray L., Tanaka K.F., et al. Varying perivascular astroglial endfoot dimensions along the vascular tree maintain perivascular-interstitial flux through the cortical mantle // Glia. 2021. Vol. 69, N 3. P. 715–728. doi: 10.1002/glia.23923

[105]

Soden PA, Henderson AR, Lee E. A microfluidic model of AQP4 polarization dynamics and fluid transport in the healthy and inflamed human brain: the first step towards glymphatics-on-a-chip. Adv Biol (Weinh). 2022;6(12):e2200027. doi: 10.1002/adbi.202200027

[106]

Soden P.A., Henderson A.R., Lee E. A microfluidic model of AQP4 polarization dynamics and fluid transport in the healthy and inflamed human brain: the first step towards glymphatics-on-a-chip // Adv Biol (Weinh). 2022. Vol. 6, N 12. P. e2200027. doi: 10.1002/adbi.202200027

[107]

Hajal C, Offeddu GS, Shin Y, et al. Engineered human blood–brain barrier microfluidic model for vascular permeability analyses. Nat Protoc. 2022;17:95–128. doi: 10.1038/s41596-021-00635-w

[108]

Hajal C., Offeddu G.S., Shin Y., et al. Engineered human blood–brain barrier microfluidic model for vascular permeability analyses // Nat Protoc. 2022. Vol. 17, N 1. P. 95–128. doi: 10.1038/s41596-021-00635-w

[109]

Chandra A, Farrell C, Wilson H, et al. Aquaporin-4 polymorphisms predict amyloid burden and clinical outcome in the Alzheimer’s disease spectrum. Neurobiol Aging. 2021;97:1–9. doi: 10.1016/j.neurobiolaging.2020.06.007.

[110]

Chandra A., Farrell C., Wilson H., et al. Aquaporin-4 polymorphisms predict amyloid burden and clinical outcome in the Alzheimer’s disease spectrum // Neurobiol Aging. 2021. Vol. 97. P. 1–9. doi: 10.1016/j.neurobiolaging.2020.06.007

[111]

Kamagata K, Andica C, Takabayashi K, et al. Association of MRI indices of glymphatic system with amyloid deposition and cognition in mild cognitive impairment and Alzheimer disease. Neurology. 2022;99(24):e2648–e2660. doi: 10.1212/WNL.0000000000201300

[112]

Kamagata K., Andica C., Takabayashi K., et al. Association of MRI indices of glymphatic system with amyloid deposition and cognition in mild cognitive impairment and Alzheimer disease // Neurology. 2022. Vol. 99, N 24. P. e2648–e2660. doi: 10.1212/WNL.0000000000201300

[113]

Patterson BW, Elbert DL, Mawuenyega KG, et al. Age and amyloid effects on human central nervous system amyloid-beta kinetics. Ann Neurol. 2015;78:439–453. doi: 10.1002/ana.24454

[114]

Patterson B.W., Elbert D.L., Mawuenyega K.G., et al. Age and amyloid effects on human central nervous system amyloid-beta kinetics // Ann Neurol. 2015. Vol. 78, N 3. P. 439–453. doi: 10.1002/ana.24454

[115]

Peng S, Liu J, Liang C, et al. Aquaporin-4 in glymphatic system, and its implication for central nervous system disorders. Neurobiol Dis. 2023;179:106035. doi: 10.1016/j.nbd.2023.106035

[116]

Peng S., Liu J., Liang C., et al. Aquaporin-4 in glymphatic system, and its implication for central nervous system disorders // Neurobiol Dis. 2023. Vol. 179. P. 106035. doi: 10.1016/j.nbd.2023.106035

[117]

Xu Z, Xiao N, Chen Y, et al. Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Aβ accumulation and memory deficits. Mol Neurodegener. 2015;10:58. doi: 10.1186/s13024-015-0056-1

[118]

Xu Z., Xiao N., Chen Y., et al. Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Aβ accumulation and memory deficits // Mol Neurodegener. 2015. Vol. 10. P. 58. doi: 10.1186/s13024-015-0056-1

[119]

Peng W, Achariyar TM, Li B, et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2016;93:215–225. doi: 10.1016/j.nbd.2016.05.015

[120]

Peng W., Achariyar T.M., Li B., et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease // Neurobiol Dis. 2016. Vol. 93. P. 215–225. doi: 10.1016/j.nbd.2016.05.015

[121]

Zeppenfeld DM, Simon M, Haswell JD, et al. Association of perivascular localization of aquaporin-4 with cognition and alzheimer disease in aging brains. JAMA Neurol. 2017;74(1):91–99. doi: 10.1001/jamaneurol.2016.4370

[122]

Zeppenfeld D.M., Simon M., Haswell J.D., et al. Association of perivascular localization of aquaporin-4 with cognition and alzheimer disease in aging brains // JAMA Neurology. 2017. Vol. 74, N 1. P. 91–99. doi: 10.1001/jamaneurol.2016.4370

[123]

Burfeind KG, Murchison CF, Westaway SK, et al. The effects of noncoding aquaporin-4 single-nucleotide polymorphisms on cognition and functional progression of Alzheimer’s disease. Alzheimers Dement (N Y). 2017;3(3):348–359. doi: 10.1016/j.trci.2017.05.001

[124]

Burfeind K.G., Murchison C.F., Westaway S.K., et al. The effects of noncoding aquaporin-4 single-nucleotide polymorphisms on cognition and functional progression of Alzheimer’s disease // Alzheimers Dement (N Y). 2017. Vol. 3, N 3. P. 348–359. doi: 10.1016/j.trci.2017.05.001

[125]

Arighi A, Arcaro M, Fumagalli GG, et al. Aquaporin-4 cerebrospinal fluid levels are higher in neurodegenerative dementia: looking at glymphatic system dysregulation. Alzheimers Res Ther. 2022;14(1):135. doi: 10.1186/s13195-022-01077-6

[126]

Arighi A., Arcaro M., Fumagalli G.G., et al. Aquaporin-4 cerebrospinal fluid levels are higher in neurodegenerative dementia: looking at glymphatic system dysregulation // Alzheimers Res Ther. 2022. Vol. 14, N 1. P. 135. doi: 10.1186/s13195-022-01077-6

[127]

Mogensen FL, Delle C, Nedergaard M. The glymphatic system (En)during inflammation. Int J Mol Sci. 2021;22(14):7491. doi: 10.3390/ijms22147491

[128]

Mogensen F.L., Delle C., Nedergaard M. The glymphatic system (En)during inflammation // Int J Mol Sci. 2021. Vol. 22, N 14. P. 7491. doi: 10.3390/ijms22147491

[129]

Verghese JP, Terry A, de Natale ER, Politis M. Research evidence of the role of the glymphatic system and its potential pharmacological modulation in neurodegenerative diseases. J Clin Med. 2022;11(23):6964. doi: 10.3390/jcm11236964

[130]

Verghese J.P., Terry A., de Natale E.R., Politis M. Research evidence of the role of the glymphatic system and its potential pharmacological modulation in neurodegenerative diseases // J Clin Med. 2022. Vol. 11, N 23. P. 6964. doi: 10.3390/jcm11236964

[131]

Alghanimy A, Martin C, Gallagher L, Holmes WM. The effect of a novel AQP4 facilitator, TGN-073, on glymphatic transport captured by diffusion MRI and DCE-MRI. PLoS One. 2023;18(3):e0282955. doi: 10.1371/journal.pone.0282955

[132]

Alghanimy A., Martin C., Gallagher L., Holmes W.M. The effect of a novel AQP4 facilitator, TGN-073, on glymphatic transport captured by diffusion MRI and DCE-MRI // PLoS One. 2023. Vol. 18, N 3. P. 282955. doi: 10.1371/journal.pone.0282955

[133]

Achariyar TM, Li B, Peng W, et al. Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation. Mol Neurodegener. 2016;11(1):74. Corrected and republished from: Mol Neurodegener. 2017;12(1):3. doi: 10.1186/s13024-016-0138-8

[134]

Achariyar T.M., Li B., Peng W., et al. Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation // Mol Neurodegener. 2016. Vol. 11, N 1. P. 74. Corrected and republished from: Mol Neurodegener. 2017. Vol. 12. P. 3. doi: 10.1186/s13024-016-0138-8

[135]

Ju YS, Ooms SJ, Sutphen C, et al. Slow wave sleep disruption increases cerebrospinal fluid amyloid-beta levels. Brain. 2017;140(8):2104–2111. doi: 10.1093/brain/awx148

[136]

Ju Y.S., Ooms S.J., Sutphen C., et al. Slow wave sleep disruption increases cerebrospinal fluid amyloid-beta levels // Brain. 2017. Vol. 140, N 8. P. 2104–2111. doi: 10.1093/brain/awx148

[137]

Holth JK, Fritschi SK, Wang C, et al. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science. 2019;363(6429):880–884. doi: 10.1126/science.aav2546

[138]

Holth J.K., Fritschi S.K., Wang C., et al. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans // Science. 2019. Vol. 363, N 6429. P. 880–884. doi: 10.1126/science.aav2546

[139]

Vasciaveo V, Iadarola A, Casile A, et al. Sleep fragmentation affects glymphatic system through the different expression of AQP4 in wild type and 5xFAD mouse models. Acta Neuropathol Commun. 2023;11(1):16. doi: 10.1186/s40478-022-01498-2

[140]

Vasciaveo V., Iadarola A., Casile A., et al. Sleep fragmentation affects glymphatic system through the different expression of AQP4 in wild type and 5xFAD mouse models // Acta Neuropathol Commun. 2023. Vol. 11, N 1. P. 16. doi: 10.1186/s40478-022-01498-2

[141]

Zakharov AV, Kalinin VA, Khivintseva EV. Sleep disorders in synucleinopathy. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(4 issue 2):98–102. doi: 10.17116/jnevro202112104298

[142]

Захаров А.В., Калинин В.А., Хивинцева Е.В. Нарушение сна при синуклеинопатиях // Журнал неврологии и психиатрии им. С.С. Корсакова. 2021. Т. 121, № 4, вып. 2. С. 98–102. doi: 10.17116/jnevro202112104298

[143]

Zou W, Pu T, Feng W, et al. Blocking meningeal lymphatic drainage aggravates Parkinson’s disease-like pathology in mice overexpressing mutated α-synuclein. Transl Neurodegener. 2019;8:7. doi: 10.1186/s40035-019-0147-y

[144]

Zou W., Pu T., Feng W., et al. Blocking meningeal lymphatic drainage aggravates Parkinson’s disease-like pathology in mice overexpressing mutated α-synuclein // Transl Neurodegener. 2019. Vol. 8. P. 7. doi: 10.1186/s40035-019-0147-y

[145]

Morawska MM, Moreira CG, Ginde VR, et al. Slow-wave sleep affects synucleinopathy and regulates proteostatic processes in mouse models of Parkinson’s disease. Sci Transl Med. 2021;13(623):eabe7099. doi: 10.1126/scitranslmed.abe7099

[146]

Morawska M.M., Moreira C.G., Ginde V.R., et al. Slow-wave sleep affects synucleinopathy and regulates proteostatic processes in mouse models of Parkinson’s disease // Sci Transl Med. 2021. Vol. 13, N 623. P. eabe7099. doi: 10.1126/scitranslmed.abe7099

[147]

Fultz NE, Bonmassar G, Setsompop K, et al. Coupled electrophysiological, hemodynamic and cerebrospinal fluid oscillations in human sleep. Science. 2019;366(6465):628–631. doi: 10.1126/science.aax5440

[148]

Fultz N.E., Bonmassar G., Setsompop K., et al. Coupled electrophysiological, hemodynamic and cerebrospinal fluid oscillations in human sleep // Science. 2019. Vol. 366, N 6465. P. 628–631. doi: 10.1126/science.aax5440

[149]

Zakharov AV, Khivintseva EV, Pyatin VF, et al. Melatonin — known and novel areas of clinical application. Neuroscience and Behavioral Physiology. 2019;49(1):60–63. doi: 10.1007/s11055-018-0692-3

[150]

Zakharov A.V., Khivintseva E.V., Pyatin V.F., et al. Melatonin — known and novel areas of clinical application // Neuroscience and Behavioral Physiology. 2019. Vol. 49, N 1. P. 60–63. doi: 10.1007/s11055-018-0692-3

[151]

Dudchenko NG, Chimagomedova ASh, Vasenina EE, Levin OS. Glymphatic system. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(7):20–26. doi: 10.17116/jnevro202212207120

[152]

Дудченко Н.Г., Чимагомедова А.Ш., Васенина Е.Е., Левин О.С. Глимфатическая система // Журнал неврологии и психиатрии им. С.С. Корсакова. 2022. Т. 122, № 7. С. 20–26. doi: 10.17116/jnevro202212207120

[153]

Buccellato FR, D’Anca M, Serpente M, et al. The role of glymphatic system in Alzheimer’s and Parkinson’s disease pathogenesis. Biomedicines. 2022;10(9):2261. doi: 10.3390/biomedicines10092261

[154]

Buccellato F.R., D’Anca M., Serpente M., et al. The role of glymphatic system in Alzheimer’s and Parkinson’s disease pathogenesis // Biomedicines. 2022. Vol. 10, N 9. P. 2261. doi: 10.3390/biomedicines10092261

[155]

Frolov N, Pitsik E, Grubov V, et al. Perceptual integration compensates for attention deficit in elderly during repetitive auditory-based sensorimotor task. Sensors (Basel). 2023;23(14):6420. doi: 10.3390/s23146420

[156]

Frolov N., Pitsik E., Grubov V., et al. Perceptual integration compensates for attention deficit in elderly during repetitive auditory-based sensorimotor task // Sensors (Basel). 2023. Vol. 23, N 14. P. 6420. doi: 10.3390/s23146420

[157]

Abe Y, Ikegawa N, Yoshida K, et al. Behavioral and electrophysiological evidence for a neuroprotective role of aquaporin-4 in the 5xFAD transgenic mice model. Acta Neuropathol Commun. 2020;8(1):67. doi: 10.1186/s40478-020-00936-3

[158]

Abe Y., Ikegawa N., Yoshida K., et al. Behavioral and electrophysiological evidence for a neuroprotective role of aquaporin-4 in the 5xFAD transgenic mice model // Acta Neuropathol Commun. 2020. Vol. 8, N 1. P. 67. doi: 10.1186/s40478-020-00936-3

[159]

Silva I, Silva J, Ferreira R, Trigo D. Glymphatic system, AQP4, and their implications in Alzheimer’s disease. Neurol Res Pract. 2021;3(1):5. doi: 10.1186/s42466-021-00102-7

[160]

Silva I., Silva J., Ferreira R., Trigo D. Glymphatic system, AQP4, and their implications in Alzheimer’s disease // Neurol Res Pract. 2021. Vol. 3, N 1. P. 5. doi: 10.1186/s42466-021-00102-7

[161]

Zhang R, Liu Y, Chen Y, et al. Aquaporin 4 deletion exacerbates brain impairments in a mouse model of chronic sleep disruption. CNS Neurosci Ther. 2020;26(2):228–239. doi: 10.1111/cns.13194

[162]

Zhang R., Liu Y., Chen Y., et al. Aquaporin 4 deletion exacerbates brain impairments in a mouse model of chronic sleep disruption // CNS Neurosci Ther. 2020. Vol. 26, N 2. P. 228–239. doi: 10.1111/cns.13194

[163]

Ding Z, Fan X, Zhang Y, et al. The glymphatic system: a new perspective on brain diseases. Front Aging Neurosci. 2023;15:1179988. doi: 10.3389/fnagi.2023.1179988

[164]

Ding Z., Fan X., Zhang Y., et al. The glymphatic system: a new perspective on brain diseases // Front Aging Neurosci. 2023. Vol. 15. P. 1179988. doi: 10.3389/fnagi.2023.1179988

[165]

Lohela TJ, Lilius TO, Nedergaard M. The glymphatic system: implications for drugs for central nervous system diseases. Nat Rev Drug Discov. 2022;21(10):763–779. doi: 10.1038/s41573-022-00500-9

[166]

Lohela T.J., Lilius T.O., Nedergaard M. The glymphatic system: implications for drugs for central nervous system diseases // Nat Rev Drug Discov. 2022. Vol. 21, N 10. P. 763–779. doi: 10.1038/s41573-022-00500-9

[167]

Spitz S, Ko E, Ertl P, Kamm RD. How organ-on-a-chip technology can assist in studying the role of the glymphatic system in neurodegenerative diseases. Int J Mol Sci. 2023;24(3):2171. doi: 10.3390/ijms24032171

[168]

Spitz S., Ko E., Ertl P., Kamm R.D. How organ-on-a-chip technology can assist in studying the role of the glymphatic system in neurodegenerative diseases // Int J Mol Sci. 2023. Vol. 24, N 3. P. 2171. doi: 10.3390/ijms24032171

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

203

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/