Morphological features of microglial cells in a 5xFAD mouse model of Alzheimer's disease
Alexandr D. Okhalnikov , Maria S. Gavrish , Alexey A. Babaev
Genes & Cells ›› 2023, Vol. 18 ›› Issue (4) : 369 -379.
Morphological features of microglial cells in a 5xFAD mouse model of Alzheimer's disease
BACKGROUND: Aging is an inevitable and irreversible process associated with increased risk of developing various neurodegenerative diseases, one of which is Alzheimer's disease. Currently, the role of glial cells, in particular microglia, in the pathogenesis of Alzheimer's disease is being actively studied. However, only a few studies have correlated the morphological features of microglia and their spatial arrangement in relation to β-amyloid plaques.
AIM: Describe the main morphological parameters of microglia in the 5xFAD mouse model of Alzheimer's disease at a late stage of pathology development.
METHODS: As the studied object, mice were chosen by the age of 15–16 months of the 5xFAD line, as a model of acceleid amyloidosis. The immunohistochemical staining of the study of the morphological diversity of microglia was carried out on the cuts of the cortex of the mouse brain. The obtained confocal images performed an immunogystological analysis of the cuts of the cerebral cortex when analyzed using the Imagej application using the plugins of Skeleton, AnalyzeSkeleton (2D/3D) and FracLac.
RESULTS: During the study, 5xFAD mice were divided into two groups (n=3 each). Carriers of the app and psen1 transgenes were assigned to the “FAD” group, and wild-type mice were assigned to the “Wt” group (control). We analyzed 3–4 sagittal sections (50 µm) of the brain from each mouse. The results showed that microglial cells from mice with signs of Alzheimer's disease have smaller fractal dimension, lacunarity and branching.
CONCLUSION: The presence of β-amyloid plaques contributes to the migration of microglia to the focus of inflammation, its proliferation and transition to the phagocytic and dystrophic subtype. According to fractal analysis, there is a significant (p ≤0.05) decrease in the average branching of microglial processes, a decrease in fractal dimension and lacunarity.
Alzheimer's disease / microglia / cell morphology / immunohistochemistry / 5xFAD
| [1] |
Garaschuk O. Understanding normal brain aging. Pflugers Arch. 2021;473(5):711–712. doi: 10.1007/s00424-021-02567-6 |
| [2] |
Garaschuk O. Understanding normal brain aging // Pflugers Arch. 2021. Vol. 473, N 5. Р. 711–712. doi: 10.1007/s00424-021-02567-6 |
| [3] |
Salas IH, Burgado J, Allen NJ. Glia: victims or villains of the aging brain? Neurobiol Dis. 2020;143:105008. doi: 10.1016/j.nbd.2020.105008 |
| [4] |
Salas I.H., Burgado J., Allen N.J. Glia: victims or villains of the aging brain? // Neurobiol Dis. 2020. Vol. 143. P. 105008. doi: 10.1016/j.nbd.2020.105008 |
| [5] |
Hou Y, Dan X, Babbar M, et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019;15(10):565–581. doi: 10.1038/s41582-019-0244-7 |
| [6] |
Hou Y., Dan X., Babbar M., et al. Ageing as a risk factor for neurodegenerative disease // Nat Rev Neurol. 2019. Vol. 15, N 10. P. 565–581. doi: 10.1038/s41582-019-0244-7 |
| [7] |
Chen ZY, Zhang Y. Animal models of Alzheimer’s disease: applications, evaluation, and perspectives. Zool Res. 2022;43(6):1026–1040. doi: 10.24272/j.issn.2095-8137.2022.289 |
| [8] |
Chen Z.Y., Zhang Y. Animal models of Alzheimer’s disease: applications, evaluation, and perspectives // Zool Res. 2022. Vol. 43, N 6. P. 1026–1040. doi: 10.24272/j.issn.2095-8137.2022.289 |
| [9] |
Gurdona B and Kaczorowskia C. Pursuit of precision medicine: systems biology approaches in Alzheimer’s disease mouse models. Neurobiol Dis. 2021;161:105558. doi: 10.1016/j.nbd.2021.105558 |
| [10] |
Gurdona B., Kaczorowskia C. Pursuit of precision medicine: systems biology approaches in Alzheimer’s disease mouse models // Neurobiol Dis. 2021. Vol. 161. P. 105558. doi: 10.1016/j.nbd.2021.105558 |
| [11] |
Panza F, Lozupone M, Logroscino G, Imbimbo B.P. A critical appraisal of amyloid–β–targeting therapies for Alzheimer disease. Nat Rev Neurol. 2019;15(2):73–88. doi: 10.1038/s41582-018-0116-6 |
| [12] |
Panza F., Lozupone M., Logroscino G., Imbimbo B.P. A critical appraisal of amyloid–β–targeting therapies for Alzheimer disease // Nat Rev Neurol. 2019. Vol. 15, N 2. P. 73–88. doi: 10.1038/s41582-018-0116-6 |
| [13] |
Nakai T, Yamada K, Mizoguchi H. Alzheimer’s disease animal models: elucidation of biomarkers and therapeutic approaches for cognitive impairment. Int J Mol Sci. 2021;22(11):5549. doi: 10.3390/IJMS22115549 |
| [14] |
Nakai T., Yamada K., Mizoguchi H. Alzheimer’s disease animal models: elucidation of biomarkers and therapeutic approaches for cognitive impairment // Int J Mol Sci. 2021. Vol. 22, N 11. P. 5549. doi: 10.3390/IJMS22115549 |
| [15] |
Augusto-Oliveira M, Arrifano G, Delage CI, et al. Plasticity of microglia. Biol Rev Camb Philos Soc. 2022;97(1):217–250. doi: 10.1111/brv.12797 |
| [16] |
Augusto-Oliveira M., Arrifano G.P., Delage C.I., et al. Plasticity of microglia // Biol Rev Camb Philos Soc. 2022. Vol. 97, N 1. P. 217–250. doi: 10.1111/brv.12797 |
| [17] |
Xu Y, Jin MZ, Yang ZY, Jin WL. Microglia in neurodegenerative diseases. Neural Regen Res. 2021;16(2):270–280. doi: 10.4103/1673–5374.290881 |
| [18] |
Xu Y., Jin M.Z., Yang Z.Y., Jin W.L. Microglia in neurodegenerative diseases // Neural Regen Res. 2021. Vol. 16, N 2. P. 270–280. doi: 10.4103/1673-5374.290881 |
| [19] |
Zhang L, Cao Y, Zhang X, et al. The origin and repopulation of microglia. Dev Neurobiol. 2021;2(1):112–124. doi: 10.1002/dneu.22862 |
| [20] |
Zhang L., Cao Y., Zhang X., et al. The origin and repopulation of microglia // Dev Neurobiol. 2021. Vol. 82, N 1. P. 112–124. doi: 10.1002/dneu.22862 |
| [21] |
Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener. 2020;9(1):42. doi: 10.1186/s40035-020-00221-2 |
| [22] |
Kwon H.S., Koh S.H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes // Transl Neurodegener. 2020. Vol. 9, N 1. P. 42. doi: 10.1186/s40035-020-00221-2 |
| [23] |
Miedema A, Wijering MHC, Eggen BJL, Kooistra SM. High-resolution transcriptomic and proteomic profiling of heterogeneity of brain-derived microglia in multiple sclerosis. Front Mol Neurosci. 2020;13:583811. doi: 10.3389/fnmol.2020.583811 |
| [24] |
Miedema A., Wijering M.H.C., Eggen B.J.L., Kooistra S.M. High-resolution transcriptomic and proteomic profiling of heterogeneity of brain-derived microglia in multiple sclerosis // Front Mol Neurosci. 2020. Vol. 13. P. 583811. doi: 10.3389/fnmol.2020.583811 |
| [25] |
Tan YL, Yuan Y, Tian L. Microglial regional heterogeneity and its role in the brain. Mol Psychiatry. 2020;25(2):351–367. doi: 10.1038/s41380-019-0609-8 |
| [26] |
Tan Y.L., Yuan Y., Tian L. Microglial regional heterogeneity and its role in the brain // Mol Psychiatry. 2020. Vol. 25, N 2. P. 351–367. doi: 10.1038/s41380-019-0609-8 |
| [27] |
Farland K, Chakrabarty P. Microglia in Alzheimer’s disease: a key player in the transition between homeostasis and pathogenesis. Neurotherapeutics. 2022;9(1):186–208. doi: 10.1007/s13311-021-01179-3 |
| [28] |
Farland K., Chakrabarty P. Microglia in Alzheimer’s disease: a key player in the transition between homeostasis and pathogenesis // Neurotherapeutics. 2022. Vol. 19, N 1. P. 186–208. doi: 10.1007/s13311-021-01179-3 |
| [29] |
Takata K, Ginhoux F, Shimohama S. Roles of microglia in Alzheimer’s disease and impact of new findings on microglial heterogeneity as a target for therapeutic intervention. Biochem Pharmacol. 2021;192:114754. doi: 10.1016/j.bcp.2021.114754 |
| [30] |
Takata K., Ginhoux F., Shimohama S. Roles of microglia in Alzheimer’s disease and impact of new findings on microglial heterogeneity as a target for therapeutic intervention // Biochem Pharmacol. 2021. Vol. 192. P. 114754. doi: 10.1016/j.bcp.2021.114754 |
| [31] |
Streit WJ, Khoshbouei H, Bechmann I. Dystrophic microglia in late-onset Alzheimer’s disease. Glia. 2020;68(4):845–854. doi: 10.1002/glia.23782 |
| [32] |
Streit W.J., Khoshbouei H., Bechmann I. Dystrophic microglia in late-onset Alzheimer’s disease // Glia. 2020. Vol. 68, N 4. P. 845–854. doi: 10.1002/glia.23782 |
| [33] |
Verkhratsky A, Sun D, Tanaka J. Snapshot of microglial physiological functions. Neurochem Int. 2021;144:104960. doi: 10.1016/j.neuint.2021.104960 |
| [34] |
Verkhratsky A., Sun D., Tanaka J. Snapshot of microglial physiological functions // Neurochem Int. 2021. Vol. 144. P. 104960. doi: 10.1016/j.neuint.2021.104960 |
| [35] |
Qin Q, Teng Z, Liu C, et al. TREM2, microglia, and Alzheimer’s disease. Mech Ageing Dev. 2021;195:111438. doi: 10.1016/j.mad.2021.111438 |
| [36] |
Qin Q., Teng Z., Liu C., et al. TREM2, microglia, and Alzheimer’s disease // Mech Ageing Dev. 2021. Vol. 195. P. 111438. doi: 10.1016/j.mad.2021.111438 |
| [37] |
Chen Y, Colonna M. Microglia in Alzheimer’s disease at single–cell level. Are there common patterns in humans and mice? J Exp Med. 2021;218(9):e20202717. doi: 10.1084/jem.20202717 |
| [38] |
Chen Y., Colonna M. Microglia in Alzheimer’s disease at single-cell level. Are there common patterns in humans and mice? // J Exp Med. 2021. Vol. 218, N 9. P. e20202717. doi: 10.1084/jem.20202717 |
| [39] |
Parakalan R, Jiang B, Nimmi B, et al. Transcriptome analysis of amoeboid and ramified microglia isolated from the corpus callosum of rat brain. BMC Neurosci. 2012;13:64. doi: 10.1186/1471-2202-13-64 |
| [40] |
Parakalan R., Jiang B., Nimmi B., et al. Transcriptome analysis of amoeboid and ramified microglia isolated from the corpus callosum of rat brain // BMC Neurosci. 2012. Vol. 13. P. 64. doi: 10.1186/1471-2202-13-64 |
Eco-Vector
/
| 〈 |
|
〉 |