Transspinal direct current stimulation with an intensity of 2.5 mA does not affect the corticospinal system excitability and motor skills
Ekaterina D. Pomelova , Alyona V. Popyvanova , Dmitry O. Bredikhin , Maria M. Koriakina , Anna N. Shestakova , Evgeny D. Blagovechtchenski
Genes & Cells ›› 2023, Vol. 18 ›› Issue (4) : 381 -388.
Transspinal direct current stimulation with an intensity of 2.5 mA does not affect the corticospinal system excitability and motor skills
BACKGROUND: Noninvasive brain stimulation effectively affects movements, including the spinal cord level. Stimulation effects are very sensitive to montage and protocols of applied stimulation because they can involve different neuronal mechanisms.
AIM: This study aimed to estimate the effect of anodal transspinal direct current stimulation (tsDCS) with an intensity of 2.5 mA applied at the spinal cord level (C7–Th1 segments) with cervical enlargement on the corticospinal system excitability and motor skills.
METHODS: The study involved 54 healthy adults aged 21.19±3.20 years. The effect of tsDCS was assessed using motorevoked potentials from the first dorsal interosseous (FDI) muscle by transcranial magnetic stimulation in the primary motor cortex before stimulation, immediately after stimulation, and after 15 min.
RESULTS: The application of an 11-min anodal tsDCS with a current value of 2.5 mA at the C7–Th1 level did not affect the motorevoked potentials of FDI. Statistically, changes in motorevoked potentials amplitudes did not differ between groups receiving anodal tsDCS and sham stimulation. In addition, anodal tsDCS did not affect motor skills. An individual’s ability to coordinate fingers and manipulate objects effectively (a measure of dexterity) in the nine-hole peg test and pressing a key in response to a visual stimulus in the serial reaction time task did not differ from that with sham stimulation.
CONCLUSION: 2.5 mA anodal tsDCS on cervical enlargement does not affect the corticospinal system excitability or change motor skills associated with precise hand movements.
transspinal direct current stimulation / transcranial magnetic stimulation / motor evoked potentials
| [1] |
Popyvanova AV, Koriakina MA, Pomelova ED, et al. The possibility of increasing the effectiveness of correcting motor skills and cognitive functions using noninvasive brain stimulation in humans. Neurosci Behav Physiol. 2023;53:230–241. doi: 10.1007/s11055-023-01412-w |
| [2] |
Popyvanova A.V., Koriakina M.A., Pomelova E.D., et al. The possibility of increasing the effectiveness of correcting motor skills and cognitive functions using noninvasive brain stimulation in humans // Neurosci Behav Physiol. 2023. Vol. 53, P. 230–241. doi: 10.1007/s11055-023-01412-w |
| [3] |
Solopova IA, Sukhotina IA, Zhvansky DS, et al. Effects of spinal cord stimulation on motor functions in children with cerebral palsy. Neurosci Lett. 2017;639:192–198. doi: 10.1016/j.neulet.2017.01.003 |
| [4] |
Solopova I.A., Sukhotina I.A., Zhvansky D.S., et al. Effects of spinal cord stimulation on motor functions in children with cerebral palsy // Neurosci Lett. 2017. Vol. 639. P. 192–198. doi: 10.1016/j.neulet.2017.01.003 |
| [5] |
Lemon RN, Griffiths J. Comparing the function of the corticospinal system in different species: organizational differences for motor specialization? Muscle Nerve. 2005;32(3):261–279. doi: 10.1002/mus.20333 |
| [6] |
Lemon R.N., Griffiths J. Comparing the function of the corticospinal system in different species: organizational differences for motor specialization? // Muscle Nerve. 2005. Vol. 32, N 3. P. 261–279. doi: 10.1002/mus.20333 |
| [7] |
Martin JH. The corticospinal system: from development to motor control. Neuroscientist. 2005;11(2):161–173. doi: 10.1177/1073858404270843 |
| [8] |
Martin J.H. The corticospinal system: from development to motor control // Neuroscientist. 2005. Vol. 11, N 2. P. 161–173. doi: 10.1177/1073858404270843 |
| [9] |
Derosiere G, Duque J. Tuning the corticospinal system: how distributed brain circuits shape human actions. Neuroscientist. 2020;26(4):359–379. doi: 10.1177/1073858419896751 |
| [10] |
Derosiere G., Duque J. Tuning the corticospinal system: how distributed brain circuits shape human action // Neuroscientist. 2020. Vol. 26, N 4. P. 359–379. doi: 10.1177/1073858419896751 |
| [11] |
Williams PTJA, Truong DQ, Seifert AC, et al. Selective augmentation of corticospinal motor drive with trans-spinal direct current stimulation in the cat. Brain Stimul. 2022;15(3):624–634. doi: 10.1016/j.brs.2022.03.007 |
| [12] |
Williams P.T.J.A., Truong D.Q., Seifert A.C., et al. Selective augmentation of corticospinal motor drive with trans-spinal direct current stimulation in the cat // Brain Stimul. 2022. Vol. 15, N 3. P. 624–634. doi: 10.1016/j.brs.2022.03.007 |
| [13] |
Bestmann S, Krakauer JW. The uses and interpretations of the motor-evoked potential for understanding behaviour. Exp Brain Res. 2015;233(3):679–689. doi: 10.1007/s00221-014-4183-7 |
| [14] |
Bestmann S., Krakauer J.W. The uses and interpretations of the motor-evoked potential for understanding behaviour // Exp Brain Res. 2015. Vol. 233, N 3. P. 679–689. doi: 10.1007/s00221-014-4183-7 |
| [15] |
Hannah R. Transcranial magnetic stimulation: a non-invasive window into the excitatory circuits involved in human motor behavior. Exp Brain Res. 2020;238(7-8):1637–1644. doi: 10.1007/s00221-020-05803-0 |
| [16] |
Hannah R. Transcranial magnetic stimulation: a non-invasive window into the excitatory circuits involved in human motor behavior // Exp Brain Res. 2020. Vol. 238, N 7-8. P. 1637–1644. doi: 10.1007/s00221-020-05803-0 |
| [17] |
Lim CY, Shin HI. Noninvasive DC stimulation on neck changes MEP. Neuroreport. 2011;22(16):819–823. doi: 10.1097/WNR.0b013e32834b939d |
| [18] |
Lim C.Y., Shin H.I. Noninvasive DC stimulation on neck changes MEP // Neuroreport. 2011. Vol. 22, N 16. P. 819–823. doi: 10.1097/WNR.0b013e32834b939d |
| [19] |
Dongés SC, D’Amico JM, Butler JE, Taylor JL. The effects of cervical transcutaneous spinal direct current stimulation on motor pathways supplying the upper limb in humans. PLoS One. 2017;12(2):0172333. doi: 10.1371/journal.pone.0172333 |
| [20] |
Dongés S.C., D’Amico J.M., Butler J.E., Taylor J.L. The effects of cervical transcutaneous spinal direct current stimulation on motor pathways supplying the upper limb in humans // PLoS One. 2017. Vol. 12, N 2. P. e0172333. doi: 10.1371/journal.pone.0172333 |
| [21] |
Fernandes SR, Pereira M, Salvador R, et al. Cervical trans-spinal direct current stimulation: a modelling-experimental approach. Neuroeng Rehabil. 2019;16(1):123. doi: 10.1186/s12984-019-0589-6 |
| [22] |
Fernandes S.R., Pereira M., Salvador R., et al. Cervical trans-spinal direct current stimulation: a modelling-experimental approach // Neuroeng Rehabil. 2019. Vol. 16, N 1. P. 123. doi: 10.1186/s12984-019-0589-6 |
| [23] |
Jack AS, Hurd C, Martin J, Fouad K. Electrical stimulation as a tool to promote plasticity of the injured spinal cord. Neurotrauma. 2020;37(18):1933–1953. doi: 10.1089/neu.2020.7033 |
| [24] |
Jack A.S., Hurd C., Martin J., Fouad K. Electrical stimulation as a tool to promote plasticity of the injured spinal cord // Neurotrauma. 2020. Vol. 37, N 18. P. 1933–1953. doi: 10.1089/neu.2020.7033 |
| [25] |
Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: tests in linear mixed effects models. Journal of Statistical Software. 2017;82(13):1–26. doi: 10.18637/jss.v082.i13 |
| [26] |
Kuznetsova A., Brockhoff P.B., Christensen R.H.B. Imer test package: tests in linear mixed effects models // Journal of Statistical Software. 2017. Vol. 82, N 13. P. 1–26. doi: 10.18637/jss.v082.i13 |
| [27] |
Luke SG. Evaluating significance in linear mixed-effects models in R. Behav Res Methods. 2017;49(4):1494–1502. doi: 10.3758/s13428-016-0809-y |
| [28] |
Luke S.G. Evaluating significance in linear mixed-effects models in R // Behav Res Methods. 2017. Vol. 49, N 4. P. 1494–1502. doi: 10.3758/s13428-016-0809-y |
| [29] |
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological). 1995;57:289–300. doi: 10.2307/2346101 |
| [30] |
Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing // Journal of the Royal Statistical Society Series B (Methodological). 1995. Vol. 57. P. 289–300. doi: 10.2307/2346101 |
| [31] |
Ranck JB Jr. Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 1975;98(3):417–440. doi: 10.1016/0006-8993(75)90364-9 |
| [32] |
Ranck J.B. Jr. Which elements are excited in electrical stimulation of mammalian central nervous system: a review // Brain Res. 1975. Vol. 98, N 3. P. 417–440. doi: 10.1016/0006-8993(75)90364-9 |
| [33] |
Fernandes SR, Salvador R, Wenger C, et al. Transcutaneous spinal direct current stimulation of the lumbar and sacral spinal cord: a modelling study. Neural Eng. 2018;15(3):036008. doi: 10.1088/1741-2552/aaac38 |
| [34] |
Fernandes S.R., Salvador R., Wenger C., et al. Transcutaneous spinal direct current stimulation of the lumbar and sacral spinal cord: a modelling study // Neural Eng. 2018. Vol. 15, N 3. P. 036008. doi: 10.1088/1741-2552/aaac38 |
| [35] |
Kuck A, Stegeman DF, van Asseldonk EHF. Modeling trans-spinal direct current stimulation for the modulation of the lumbar spinal motor pathways. Neural Eng. 2017;14(5):056014. doi: 10.1088/1741-2552/aa7960 |
| [36] |
Kuck A., Stegeman D.F., van Asseldonk E.H.F. Modeling trans-spinal direct current stimulation for the modulation of the lumbar spinal motor pathways // Neural Eng. 2017. Vol. 14, N 5. P. 056014. doi: 10.1088/1741-2552/aa7960 |
| [37] |
Salvador R, Wenger C, Nitsche MA, Miranda PC. How electrode montage affects transcranial direct current stimulation of the human motor cortex. Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:6924–6927. doi: 10.1109/EMBC.2015.7319985 |
| [38] |
Salvador R., Wenger C., Nitsche M.A., Miranda P.C. How electrode montage affects transcranial direct current stimulation of the human motor cortex // Annu Int Conf IEEE Eng Med Biol Soc. 2015. Vol. 2015. P. 6924–6927. doi: 10.1109/EMBC.2015.7319985 |
| [39] |
Cogiamanian F, Ardolino G, Vergari M, et al. Transcutaneous spinal direct current stimulation. Front Psychiatry. 2012;3:63. doi: 10.3389/fpsyt.2012.00063 |
| [40] |
Cogiamanian F., Ardolino G., Vergari M., et al. Transcutaneous spinal direct current stimulation // Front Psychiatry. 2012. Vol. 4, N 3. P. 63. doi: 10.3389/fpsyt.2012.00063 |
| [41] |
Aguilar J, Pulecchi F, Dilena R, et al. Spinal direct current stimulation modulates the activity of gracile nucleus and primary somatosensory cortex in anaesthetized rats. Physiol. 2011;589(Pt 20):4981–4996. doi: 10.1113/jphysiol.2011.214189 |
| [42] |
Aguilar J., Pulecchi F., Dilena R., et al. Spinal direct current stimulation modulates the activity of gracile nucleus and primary somatosensory cortex in anaesthetized rats // Physiol. 2011. Vol. 589(Pt 20). P. 4981–4996. doi: 10.1113/jphysiol.2011.214189 |
| [43] |
Truini A, Panuccio G, Galeotti F, et al. Laser-evoked potentials as a tool for assessing the efficacy of antinociceptive drugs. Eur J Pain. 2010;14(2):222–225. doi: 10.1016/j.ejpain.2009.05.001 |
| [44] |
Truini A., Panuccio G., Galeotti F., et al. Laser-evoked potentials as a tool for assessing the efficacy of antinociceptive drugs // Eur J Pain. 2010. Vol. 14, N 2. P. 222–225. doi: 10.1016/j.ejpain.2009.05.001 |
| [45] |
Schlaier JR, Eichhammer P, Langguth B, et al. Effects of spinal cord stimulation on cortical excitability in patients with chronic neuropathic pain: a pilot study. Eur J Pain. 2007;11(8):863–868. doi: 10.1016/j.ejpain.2007.01.004 |
| [46] |
Schlaier J.R., Eichhammer P., Langguth B., et al. Effects of spinal cord stimulation on cortical excitability in patients with chronic neuropathic pain: a pilot study // Eur J Pain. 2007. Vol. 11, N 8. P. 863–868. doi: 10.1016/j.ejpain.2007.01.004 |
| [47] |
Ahmed Z, Wieraszko A. Trans-spinal direct current enhances corticospinal output and stimulation-evoked release of glutamate analog, D-2,3-³H-aspartic acid. Appl Physiol (1985). 2012;112(9):1576–1592. doi: 10.1152/japplphysiol.00967.2011 |
| [48] |
Ahmed Z., Wieraszko A. Trans-spinal direct current enhances corticospinal output and stimulation-evoked release of glutamate analog, D-2,3-³H-aspartic acid // Appl Physiol (1985). 2012. Vol. 112, N 9. P. 1576–1592. doi: 10.1152/japplphysiol.00967.2011 |
Eco-Vector
/
| 〈 |
|
〉 |