Specificity of frequency-spatial organization of brain activity in coronary heart disease associated with self-assessment of emotion control in men and women
Olga M. Razumnikova , Irina V. Tarasova , Olga A. Trubnikova
Genes & Cells ›› 2023, Vol. 18 ›› Issue (4) : 397 -407.
Specificity of frequency-spatial organization of brain activity in coronary heart disease associated with self-assessment of emotion control in men and women
BACKGROUND: Deficit in the regulation of emotional stress is considered as an important factor in the development of coronary heart disease (CHD). The functions of assessment and regulation of emotions are performed by the structures of the prefrontal cortex and amygdala, the activation and interaction of which differs in men and women. In this regard, the question of the gender specificity of the cortical mechanisms of emotional regulation associated with coronary artery disease is relevant.
AIM: To find out the significance of self-assessment of emotional control of behavior (EC) in the frequency-spatial organization of brain activity in men and women with CHD.
METHODS: The study was performed in a cardiology clinic involving 56 men (61.2±8.5 years) and 19 women (67.4±4.8 years) diagnosed with CHD. To analyze the frequency-spatial organization of the resting EEG, we used 64-channel EEG recording and calculation of the power of rhythms in six frequency ranges from 4 to 30 Hz using a fast Fourier transform. Spearman's non-parametric correlation analysis was used to determine the correlation of EC as a personality trait according to the questionnaire of emotional intelligence and EEG power indicators.
RESULTS: Correlation analysis of EC and average EEG power indicators revealed positive relationships in the range of 4–13 Hz in the group of men and negative in the group of women (0.19 <rs <0.28 and –0.20 <rs <–0.40, respectively; p <0.030). The regional specificity of the detected effect was characterized by a significant relationship between EC and the power of theta 2, alpha 1, 2, presented in the anterior part of the cortex with the dominance of the left hemisphere in men, but in the posterior part of both hemispheres — in women, and the latter effect was limited by theta 2 and alpha 1 frequency.
CONCLUSION: The results of the performed analysis of the relationship of EC and regional indicators of resting EEG power in the 6–13 Hz range indicate different forms of control of the emotional state in women and men with CHD.
emotional state control / gender differences / ischemic heart disease / EEG / prefrontal cortex
| [1] |
Davidson KW, Mostofsky E, Whang W. Don’t worry, be happy: positive affect and reduced 10-year incident coronary heart disease: the Canadian Nova Scotia Health Survey. Europ Heart J. 2010;31(9):1065–1070. doi: 10.1093/eurheartj/ehp603 |
| [2] |
Davidson K.W., Mostofsky E., Whang W. Don’t worry, be happy: positive affect and reduced 10-year incident coronary heart disease: the Canadian Nova Scotia Health Survey // Europ Heart J. 2010. Vol. 31, N 9. P. 1065–1070. doi: 10.1093/eurheartj/ehp603 |
| [3] |
Kravvariti E, Maridaki-Kassotaki K, Eleftherios K. Emotional intelligence and coronary heart disease: how close is the link? Global J Health Sci. 2010;2(1):127–137. |
| [4] |
Kravvariti E., Maridaki-Kassotaki K., Eleftherios K. Emotional intelligence and coronary heart disease: how close is the link? // Global J Health Sci. 2010. Vol. 2, N 1. P. 127–137. |
| [5] |
Vlachaki C, Maridaki-Kassotaki K. Coronary heart disease and emotional intelligence. Glob J Health Sci. 2013;5(6):156–165. doi: 10.5539/gjhs.v5n6p156 |
| [6] |
Vlachaki C., Maridaki-Kassotaki K. Coronary heart disease and emotional intelligence // Glob J Health Sci. 2013. Vol. 5, N 6. P. 156–165. doi: 10.5539/gjhs.v5n6p156 |
| [7] |
Petrides KV, Mikolajczak M, Mavroveli S, et al. Developments in trait emotional intelligence research. Emot Rev. 2016;8:335–341. doi: 10.1177/1754073916650493 |
| [8] |
Petrides K.V., Mikolajczak M., Mavroveli S., et al. Developments in trait emotional intelligence research // Emot Rev. 2016. Vol. 8, N 4. P. 335–341. doi: 10.1177/1754073916650493 |
| [9] |
Razumnikova OM, Tarasova IV, Trubnikova OA. Patterns of the relationship of indicators of emotional status and selfassessment of quality of life in coronary heart disease. Voprosy Psychologii. 2022;68(3):104–112. (In Russ). |
| [10] |
Разумникова О.М., Тарасова И.В., Трубникова О.А. Особенности связи показателей эмоционального статуса и самооценки качества жизни при ишемической болезни сердца // Вопросы психологии. 2022. Т. 68, № 3. С. 104–112. |
| [11] |
Elise B, Eynde SV, Egée N, et al. Are trait emotional competencies and heart rate variability linked to mental health of coronary heart disease patients? Psychol Rep. 2021;124(1):23–38. doi: 10.1177/0033294119898116 |
| [12] |
Elise B., Eynde S.V., Egée N., et al. Are trait emotional competencies and heart rate variability linked to mental health of coronary heart disease patients? // Psychol Rep. 2021. Vol. 124, N 1. P. 23–38. doi: 10.1177/0033294119898116 |
| [13] |
Nashiro K, Sakaki M, Mather M. Age differences in brain activity during emotion processing: reflections of age-related decline or increased emotion regulation? Gerontology. 2012;58(2):156–163. doi: 10.1159/000328465 |
| [14] |
Nashiro K., Sakaki M., Mather M. Age differences in brain activity during emotion processing: reflections of age-related decline or increased emotion regulation? // Gerontology. 2012. Vol. 58, N 2. P. 156–163. doi: 10.1159/000328465 |
| [15] |
Ochsner KN, Silvers JA, Buhle JT. Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Ann N Y Acad Sci. 2012;1251:E1–E24. doi: 10.1111/j.1749-6632.2012.06751.x |
| [16] |
Ochsner K.N., Silvers J.A., Buhle J.T. Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion // Ann N Y Acad Sci. 2012. Vol. 1251. P. E1–E24. doi: 10.1111/j.1749-6632.2012.06751.x |
| [17] |
Paschke LM, Dörfel D, Steimke R, et al. Individual differences in self-reported self-control predict successful emotion regulation. Soc Cogn Affect Neurosci. 2016;11(8):1193–1204. doi: 10.1093/scan/nsw036 |
| [18] |
Paschke L.M., Dörfel D., Steimke R., et al. Individual differences in self-reported self-control predict successful emotion regulation // Soc Cogn Affect Neurosci. 2016. Vol. 11, N 8. P. 1193–1204. doi: 10.1093/scan/nsw036 |
| [19] |
Bürger Z, Müller VI, Hoffstaedter F, Habel U, et al. Stressor-specific sex differences in amygdala-frontal cortex networks. J Clin Med. 2023;12(3):865. doi: 10.3390/jcm12030865 |
| [20] |
Bürger Z., Müller V.I., Hoffstaedter F., et al. Stressor-specific sex differences in amygdala-frontal cortex networks // J Clin Med. 2023. Vol. 12, N 3. P. 865. doi: 10.3390/jcm12030865 |
| [21] |
Dark HE, Harnett NG, Goodman AM, et al. Violence exposure, affective style, and stress-induced changes in resting state functional connectivity. Cogn Affect Behav Neurosci. 2020;20(6):1261–1277. doi: 10.3758/s13415-020-00833-1 |
| [22] |
Dark H.E., Harnett N.G., Goodman A.M., et al. Violence exposure, affective style, and stress-induced changes in resting state functional connectivity // Cogn Affect Behav Neurosci. 2020. Vol. 20, N 6. P. 1261–1277. doi: 10.3758/s13415-020-00833-1 |
| [23] |
Engman J, Linnman C, Van Dijk KR, Milad MR. Amygdala subnuclei resting-state functional connectivity sex and estrogen differences. Psychoneuroendocrinology. 2016;63:34–42. doi: 10.1016/j.psyneuen.2015.09.012 |
| [24] |
Engman J., Linnman C., Van Dijk K.R., Milad M.R. Amygdala subnuclei resting-state functional connectivity sex and estrogen differences // Psychoneuroendocrinology. 2016. Vol. 63. P. 34–42. doi: 10.1016/j.psyneuen.2015.09.012 |
| [25] |
Balconi M, Grippa E, Vanutelli ME. Resting lateralized activity predicts the cortical response and appraisal of emotions: an fNIRS study. Soc Cogn Affect Neurosci. 2015;10(12):1607–1614. doi: 10.1093/scan/nsv041 |
| [26] |
Balconi M., Grippa E., Vanutelli M.E. Resting lateralized activity predicts the cortical response and appraisal of emotions: an fNIRS study // Soc Cogn Affect Neurosci. 2015. Vol. 10, N 12. P. 1607–1614. doi: 10.1093/scan/nsv041 |
| [27] |
Kim SH, Cornwell B, Kim SE. Individual differences in emotion regulation and hemispheric metabolic asymmetry. Biol Psychol. 2012;89(2):382–386. doi: 10.1016/j.biopsycho.2011.11.013 |
| [28] |
Kim S.H., Cornwell B., Kim S.E. Individual differences in emotion regulation and hemispheric metabolic asymmetry // Biol Psychol. 2012. Vol. 89, N 2. P. 382–386. doi: 10.1016/j.biopsycho.2011.11.013 |
| [29] |
Attar ET, Balasubramanian V, Subasi E, Kaya M. Stress analysis based on simultaneous heart rate variability and EEG monitoring. IEEE J Transl Eng Health Med. 2021;9:2700607. doi: 10.1109/JTEHM.2021.3106803 |
| [30] |
Attar E.T., Balasubramanian V., Subasi E., Kaya M. Stress analysis based on simultaneous heart rate variability and EEG monitoring // IEEE J Transl Eng Health Med. 2021. Vol. 9. P. 2700607. doi: 10.1109/JTEHM.2021.3106803 |
| [31] |
Berretz G, Packheiser J, Wolf OT, Ocklenburg S. Acute stress increases left hemispheric activity measured via changes in frontal alpha asymmetries. iScience. 2022;25(2):103841. doi: 10.1016/j.isci.2022.103841 |
| [32] |
Berretz G., Packheiser J., Wolf O.T., Ocklenburg S. Acute stress increases left hemispheric activity measured via changes in frontal alpha asymmetries // iScience. 2022. Vol. 25, N 2. P. 103841. doi: 10.1016/j.isci.2022.103841 |
| [33] |
Ehrhardt NM, Fietz J, Kopf-Beck J, et al. Separating EEG correlates of stress: cognitive effort, time pressure, and social-evaluative threat. Eur J Neurosci. 2022;55(9-10):2464–2473. doi: 10.1111/ejn.15211 |
| [34] |
Ehrhardt N.M., Fietz J., Kopf-Beck J., et al. Separating EEG correlates of stress: cognitive effort, time pressure, and social-evaluative threat // Eur J Neurosci. 2022. Vol. 55, N 9-10. P. 2464–2473. doi: 10.1111/ejn.15211 |
| [35] |
Gainotti G. A historical review of investigations on laterality of emotions in the human brain. J Hist Neurosci. 2019;28(1):23–41. doi: 10.1080/0964704X.2018.1524683 |
| [36] |
Gainotti G. A historical review of investigations on laterality of emotions in the human brain // J Hist Neurosci. 2019. Vol. 28, N 1. P. 23–41. doi: 10.1080/0964704X.2018.1524683 |
| [37] |
Ross ED. Differential hemispheric lateralization of emotions and related display behaviors: emotion-type hypothesis. Brain Sci. 2021;11(8):1034. doi: 10.3390/brainsci11081034 |
| [38] |
Ross E.D. Differential hemispheric lateralization of emotions and related display behaviors: еmotion-type hypothesis // Brain Sci. 2021. Vol. 11, N 8. P. 1034. doi: 10.3390/brainsci11081034 |
| [39] |
Vancheri F, Longo G, Vancheri E, Henein MY. Mental stress and cardiovascular health — part I. J Clin Med. 2022;11(12):3353. doi: 10.3390/jcm11123353 |
| [40] |
Vancheri F., Longo G., Vancheri E., Henein M.Y. Mental stress and cardiovascular health — part I // J Clin Med. 2022. Vol. 11, N 12. P. 3353. doi: 10.3390/jcm11123353 |
| [41] |
Henein MY, Vancheri S, Longo G, Vancheri F. The impact of mental stress on cardiovascular health — part II. J Clin Med. 2022;11(15):4405. doi: 10.3390/jcm11154405 |
| [42] |
Henein M.Y., Vancheri S., Longo G., Vancheri F. The impact of mental stress on cardiovascular health — part II // J Clin Med. 2022. Vol. 11, N 15. P. 4405. doi: 10.3390/jcm11154405 |
| [43] |
Tarasova IV, Trubnikova OA, Kukhareva IN, et al. The influence of preoperative cognitive impairment on the changes in the brain’s electrical activity in patients 1 year after coronary artery bypass grafting. Creative Cardiology. 2018;12(4):304–315. (In Russ). doi: 10.24022/1997-3187-2018-12-4-304-315 |
| [44] |
Тарасова И.В., Трубникова О.А., Кухарева И.Н., и др. Влияние предоперационных когнитивных нарушений на изменения электрической активности мозга у пациентов через 1 год после коронарного шунтирования // Креативная кардиология. 2018. Т. 12, № 4. С. 304–315. doi: 10.24022/1997-3187-2018-12-4-304-315 |
| [45] |
Tarasova IV, Trubnikova OA, Barbarash OL. EEG and clinical factors associated with mild cognitive impairment in coronary artery disease patients. Dement Geriatr Cogn Disord. 2019;46(5-6): 275–284. doi: 10.1159/000493787 |
| [46] |
Tarasova I.V., Trubnikova O.A., Barbarash O.L. EEG and clinical factors associated with mild cognitive impairment in coronary artery disease patients // Dement Geriatr Cogn Disord. 2019. Vol. 46, N 5-6. P. 275–284. doi: 10.1159/000493787 |
| [47] |
Knyazev GG, Mitrofanova LG, Razumnikova OM, Barchard K. Adaptation of the Russian version of the Emotional Intelligence Questionnaire by K. Barchard. Psikhologicheskii zhurnal. 2012;33(4):112–112. (In Russ). |
| [48] |
Князев Г.Г., Митрофанова Л.Г., Разумникова О.М., Барчард К. Адаптация русскоязычной версии Опросника эмоционального интеллекта К. Барчард // Психологический журнал. 2012. Т. 33, № 4. С. 112–120. |
| [49] |
Checa P, Fernández-Berrocal P. Cognitive control and emotional intelligence: effect of the emotional content of the task. Brief reports. Front Psychol. 2019;10:195. doi: 10.3389/fpsyg.2019.00195 |
| [50] |
Checa P., Fernández-Berrocal P. Cognitive control and emotional intelligence: effect of the emotional content of the task. Brief reports // Front Psychol. 2019. Vol. 10. P. 195. doi: 10.3389/fpsyg.2019.00195 |
| [51] |
Cavanagh JF, Frank MJ. Frontal theta as a mechanism for cognitive control. Trends Cogn Sci. 2014;18(8):414–421. doi: 10.1016/j.tics.2014.04.012 |
| [52] |
Cavanagh J.F., Frank M.J. Frontal theta as a mechanism for cognitive control // Trends Cogn Sci. 2014. Vol. 18, N 8. P. 414–421. doi: 10.1016/j.tics.2014.04.012 |
| [53] |
Misselhorn J, Friese U, Engel AK. Frontal and parietal alpha oscillations reflect attentional modulation of cross-modal matching. Sci Rep. 2019;9(1):5030. doi: 10.1038/s41598-019-41636-w |
| [54] |
Misselhorn J., Friese U., Engel A.K. Frontal and parietal alpha oscillations reflect attentional modulation of cross-modal matching // Sci Rep. 2019. Vol. 9, N 1. P. 5030. doi: 10.1038/s41598-019-41636-w |
| [55] |
So WKY, Wong SWH, Mak JN, Chan RHM. An evaluation of mental workload with frontal EEG. PLoS One. 2017;12(4):e0174949. doi: 10.1371/journal.pone.0174949 |
| [56] |
So W.K.Y., Wong S.W.H., Mak J.N., Chan R.H.M. An evaluation of mental workload with frontal EEG // PLoS One. 2017. Vol. 12, N 4. P. e0174949. doi: 10.1371/journal.pone.0174949 |
| [57] |
Friedman NP, Robbins TW. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology. 2022;47(1):72–89. doi: 10.1038/s41386-021-01132-0 |
| [58] |
Friedman N.P., Robbins T.W. The role of prefrontal cortex in cognitive control and executive function // Neuropsychopharmacology. 2022. Vol. 47, N 1. P. 72–89. doi: 10.1038/s41386-021-01132-0 |
| [59] |
Kret ME, De Gelder B. A review on sex differences in processing emotional signals. Neuropsychologia. 2012;50(7):1211–1221. doi: 10.1016/j.neuropsychologia.2011.12.022 |
| [60] |
Kret M.E., De Gelder B. A review on sex differences in processing emotional signals // Neuropsychologia. 2012. Vol. 50, N 7. P. 1211–1221. doi: 10.1016/j.neuropsychologia.2011.12.022 |
| [61] |
Li W, Yang P, Ngetich RK, et al. Differential involvement of frontoparietal network and insula cortex in emotion regulation. Neuropsychologia. 2021;161:107991. doi: 10.1016/j.neuropsychologia.2021.107991 |
| [62] |
Li W., Yang P., Ngetich R.K., et al. Differential involvement of frontoparietal network and insula cortex in emotion regulation // Neuropsychologia. 2021. Vol. 161. P. 107991. doi: 10.1016/j.neuropsychologia.2021.107991 |
| [63] |
Perchtold CM, Papousek I, Fink A, et al. Gender differences in generating cognitive reappraisals for threatening situations: reappraisal capacity shields against depressive symptoms in men, but not women. Front Psychol. 2019;10:553. doi: 10.3389/fpsyg.2019.00553 |
| [64] |
Perchtold C.M., Papousek I., Fink A., et al. Gender differences in generating cognitive reappraisals for threatening situations: reappraisal capacity shields against depressive symptoms in men, but not women // Front Psychol. 2019. V. 10. P. 553. doi: 10.3389/fpsyg.2019.00553 |
| [65] |
Schimmelpfennig J, Topczewski J, Zajkowski W, Jankowiak-Siuda K. The role of the salience network in cognitive and affective deficits. Front Hum Neurosci. 2023;17:1133367. doi: 10.3389/fnhum.2023.1133367 |
| [66] |
Schimmelpfennig J., Topczewski J., Zajkowski W., Jankowiak-Siuda K. The role of the salience network in cognitive and affective deficits // Front Hum Neurosci. 2023. V. 17. P. 1133367. doi: 10.3389/fnhum.2023.1133367 |
| [67] |
Nayak S, Tsai AC. Fronto-parietal regions predict transient emotional states in emotion modulated response inhibition via low frequency and beta oscillations. Symmetry. 2022;14(6):1244. doi: 10.3390/sym14061244 |
| [68] |
Nayak S., Tsai A.C. Fronto-parietal regions predict transient emotional states in emotion modulated response inhibition via low frequency and beta oscillations // Symmetry. 2022. Vol. 14, N 6. P. 1244. doi: 10.3390/sym14061244 |
| [69] |
Palomero-Gallagher N, Amunts K. A short review on emotion processing: a lateralized network of neuronal networks. Brain Struct Funct. 2022;227(2):673–684. doi: 10.1007/s00429-021-02331-7 |
| [70] |
Palomero-Gallagher N., Amunts K. A short review on emotion processing: a lateralized network of neuronal networks // Brain Struct Funct. 2022. Vol. 227, N 2. P. 673–684. doi: 10.1007/s00429-021-02331-7 |
| [71] |
Bourne VJ. Lateralised processing of positive facial emotion: sex differences in strength of hemispheric dominance. Neuropsychologia. 2005;43(6):953–956. doi: 10.1016/j.neuropsychologia.2004.08.007 |
| [72] |
Bourne V.J. Lateralised processing of positive facial emotion: sex differences in strength of hemispheric dominance // Neuropsychologia. 2005. Vol. 43, N 6. P. 953–956. doi: 10.1016/j.neuropsychologia.2004.08.007 |
| [73] |
Castro-Schilo L, Kee DW. Gender differences in the relationship between emotional intelligence and right hemisphere lateralization for facial processing. Brain Cogn. 2010;73(1):62–67. doi: 10.1016/j.bandc.2010.03.003 |
| [74] |
Castro-Schilo L., Kee D.W. Gender differences in the relationship between emotional intelligence and right hemisphere lateralization for facial processing // Brain Cogn. 2010. Vol. 73, N 1. P. 62–67. doi: 10.1016/j.bandc.2010.03.003 |
| [75] |
Hirnstein M, Hugdahl K, Hausmann M. Cognitive sex differences and hemispheric asymmetry: a critical review of 40 years of research. Laterality. 2019;24(2):204–252. doi: 10.1080/1357650X.2018.1497044 |
| [76] |
Hirnstein M., Hugdahl K., Hausmann M. Cognitive sex differences and hemispheric asymmetry: a critical review of 40 years of research // Laterality. 2019. Vol. 24, N 2. P. 204–252. doi: 10.1080/1357650X.2018.1497044 |
Eco-Vector
/
| 〈 |
|
〉 |