Modern approaches to the treatment of spinal muscular atrophy

Evgeny M. Rodenkov , Natalya V. Kozhemyakina , Yulia A. Zonis , Pavel M. Gershovich , Boris Yu. Lalaev

Genes & Cells ›› 2023, Vol. 18 ›› Issue (3) : 189 -204.

PDF
Genes & Cells ›› 2023, Vol. 18 ›› Issue (3) : 189 -204. DOI: 10.23868/gc437467
Reviews
review-article

Modern approaches to the treatment of spinal muscular atrophy

Author information +
History +
PDF

Abstract

Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease. The cause of the disease is the presence of mutations in the SMN1 gene, which leads to a decrease in the expression of the SMN protein. Decreased functional activity of the SMN protein contributes to the degeneration of motor neurons. Understanding the molecular genetic cause of spinal muscular atrophy made it possible to develop and start using Nusinersen, Onasemnogene Abeparvovec and Risdiplam drugs in clinical practice for the treatment of this disease. The main approaches to the treatment of SMA are either modifying the splicing of the SMN2 gene, which, due to a point mutation in exon 7, is unable to express the full-length SMN protein, or viral delivery of a functional copy of the SMN1 gene.

Approved drugs differ in peculiarities of use, which are associated, in particular, with the route of administration, adverse reactions and restrictions of use, including restrictions associated with the socio-economic burden of patients with SMA.

The development and use of domestic products for the treatment of SMA with a comparable clinical effect and at a lower price would reduce the cost of drug therapy for severe forms of the disease.

Keywords

spinal muscular atrophy / SMA / SMN1 / SMN2 / Nusinersen / Risdiplam / Onasemnogene Abeparvovec

Cite this article

Download citation ▾
Evgeny M. Rodenkov, Natalya V. Kozhemyakina, Yulia A. Zonis, Pavel M. Gershovich, Boris Yu. Lalaev. Modern approaches to the treatment of spinal muscular atrophy. Genes & Cells, 2023, 18(3): 189-204 DOI:10.23868/gc437467

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

www.omim.org [Internet]. Survival of motor neuron 1; SMN1 [cited 8 July 2023]. Available from: https://www.omim.org/entry/600354

[2]

www.omim.org [Internet]. Survival of motor neuron 1; SMN1 [дата обращения: 08.07.2023]. Доступ по ссылке: https://www.omim.org/entry/600354

[3]

Butchbach MER. Genomic variability in the survival motor neuron genes (SMN1 and SMN2): implications for spinal muscular atrophy phenotype and therapeutics development. Int J Mol Sci. 2021;22(15):7896. doi: 10.3390/ijms22157896

[4]

Butchbach M.E.R. Genomic variability in the survival motor neuron genes (SMN1 and SMN2): implications for spinal muscular atrophy phenotype and therapeutics development // Int J Mol Sci. 2021. Vol. 22, N 15. P. 7896. doi: 10.3390/ijms22157896

[5]

Talbot K, Tizzano EF. The clinical landscape for SMA in a new therapeutic era. Gene Ther. 2017;24(9):529–533. doi: 10.1038/gt.2017.52

[6]

Talbot K., Tizzano E.F. The clinical landscape for SMA in a new therapeutic era // Gene Ther. 2017. Vol. 24, N 9. P. 529–533. doi: 10.1038/gt.2017.52

[7]

Al-Zaidy SA, Mendell JR. From clinical trials to clinical practice: practical considerations for gene replacement therapy in SMA type1. Pediatr Neurol. 2013;100:3–11. doi: 10.1016/j.pediatrneurol.2019.06.007

[8]

Al-Zaidy S.A., Mendell J.R. From clinical trials to clinical practice: practical considerations for gene replacement therapy in SMA type1 // Pediatr Neurol. 2013. Vol. 100. P. 3–11. doi: 10.1016/j.pediatrneurol.2019.06.007

[9]

Brooks AN, Aspden JL, Podgornaia AI, et al. Identification and experimental validation of splicing regulatory elements in Drosophila melanogaster reveals functionally conserved splicing enhancers in metazoans. RNA. 2011;17(10):1884–1894. doi: 10.1261/rna.2696311

[10]

Coque E., Raoul C., Bowerman M. ROCK inhibition as a therapy for spinal muscular atrophy: understanding the repercussions on multiple cellular targets // Front Neurosci. 2014. Vol. 8. P. 271. doi: 10.3389/fnins.2014.00271

[11]

Singh NN, Howell MD, Androphy EJ, Singh RN. How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy. Gene Ther. 2017;24(9):520–526. doi: 10.1038/gt.2017.34

[12]

Walter L.M., Franz P., Lindner R., et al. Profilin2a-phosphorylation as a regulatory mechanism for actin dynamics // FASEB J. 2020. Vol. 34, N 2. P. 2147–2160. doi: 10.1096/fj.201901883R

[13]

Cho S, Dreyfuss G. A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity. Genes Dev. 2010;24(5):438–442. doi: 10.1101/gad.1884910

[14]

Cho S., Dreyfuss G. A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity // Genes Dev. 2010. Vol. 24, N 5. P. 438–442. doi: 10.1101/gad.1884910

[15]

http://www.dnalab.ru/ [Internet]. Center for Molecular Genetics [cited 19 April 2023]. Available from: http://www.dnalab.ru/diseases-diagnostics/spinal-muscular-atrophy (In Russ).

[16]

http://www.dnalab.ru/ [интернет]. Центр молекулярной генетики [дата обращения: 19.04.2023]. Доступ по ссылке: http://www.dnalab.ru/diseases-diagnostics/spinal-muscular-atrophy

[17]

Rodriguez-Muela N, Litterman NK, Norabuena EM, et al. Single-cell analysis of SMN reveals its broader role in neuromuscular disease. Cell Rep. 2017;18(6):1484–1498. doi: 10.1016/j.celrep.2017.01.035

[18]

Rodriguez-Muela N., Litterman N.K., Norabuena E.M., et al. Single-cell analysis of SMN reveals its broader role in neuromuscular disease // Cell Rep. 2017. Vol. 18, N 6. P. 1484–1498. doi: 10.1016/j.celrep.2017.01.035

[19]

Chaytow H, Huang YT, Gillingwater TH, Faller KME. The role of survival motor neuron protein (SMN) in protein homeostasis. Cell Mol Life Sci. 2018;75(21):3877–3894. doi: 10.1007/s00018-018-2849-1

[20]

Chaytow H., Huang Y.T., Gillingwater T.H., Faller K.M.E. The role of survival motor neuron protein (SMN) in protein homeostasis // Cell Mol Life Sci. 2018. Vol. 75, N 21. P. 3877–3894. doi: 10.1007/s00018-018-2849-1

[21]

Li DK, Tisdale S, Lotti F, Pellizzoni L. SMN control of RNP assembly: from post-transcriptional gene regulation to motor neuron disease. Semin Cell Dev Biol. 2014;32:22–29. doi: 10.1016/j.semcdb.2014.04.026

[22]

Li D.K., Tisdale S., Lotti F., Pellizzoni L. SMN control of RNP assembly: from post-transcriptional gene regulation to motor neuron disease // Semin Cell Dev Biol. 2014. Vol. 32. P. 22–29. doi: 10.1016/j.semcdb.2014.04.026

[23]

Stewart M. Nuclear export of mRNA. Trends Biochem Sci. 2010;35(11):609–617. doi: 10.1016/j.tibs.2010.07.001

[24]

Stewart M. Nuclear export of mRNA // Trends Biochem Sci. 2010. Vol. 35, N 11. P. 609–617. doi: 10.1016/j.tibs.2010.07.001

[25]

Raker VA, Plessel G, Lührmann R. The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro. EMBO J. 1996;15(9):2256–2269.

[26]

Raker V.A., Plessel G., Lührmann R. The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro // EMBO J. 1996. Vol. 15, N 9. P. 2256–2269.

[27]

Yi H, Mu L, Shen C, et al. Negative cooperativity between Gemin2 and RNA provides insights into RNA selection and the SMN complex’s release in snRNP assembly. Nucleic Acids Res. 2020;48(2):895–911. doi: 10.1093/nar/gkz1135

[28]

Yi H., Mu L., Shen C., et al. Negative cooperativity between Gemin2 and RNA provides insights into RNA selection and the SMN complex’s release in snRNP assembly // Nucleic Acids Res. 2020. Vol. 48, N 2. P. 895–911. doi: 10.1093/nar/gkz1135

[29]

Neuenkirchen N, Englbrecht C, Ohmer J, et al. Reconstitution of the human U snRNP assembly machinery reveals stepwise Sm protein organizatioN EMBO J. 2015;34(14):1925–1941. doi: 10.15252/embj.201490350

[30]

Neuenkirchen N., Englbrecht C., Ohmer J., et al. Reconstitution of the human U snRNP assembly machinery reveals stepwise Sm protein organization // EMBO J. 2015. Vol. 34, N 14. P. 1925–1941. doi: 10.15252/embj.201490350

[31]

Raker VA, Hartmuth K, Kastner B, Lührmann R. Spliceosomal U snRNP core assembly: Sm proteins assemble onto an Sm site RNA nonanucleotide in a specific and thermodynamically stable manner. Mol Cell Biol. 1999;19(10):6554–6565. doi: 10.1128/MCB.19.10.6554

[32]

Raker V.A., Hartmuth K., Kastner B., Lührmann R. Spliceosomal U snRNP core assembly: Sm proteins assemble onto an Sm site RNA nonanucleotide in a specific and thermodynamically stable manner // Mol Cell Biol. 1999. Vol. 19, N 10. P. 6554–6565. doi: 10.1128/MCB.19.10.6554

[33]

Pellizzoni L, Yong J, Dreyfuss G. Essential role for the SMN complex in the specificity of snRNP assembly. Science. 2002;298(5599):1775–1779. doi: 10.1126/science.1074962

[34]

Pellizzoni L., Yong J., Dreyfuss G. Essential role for the SMN complex in the specificity of snRNP assembly // Science. 2002. Vol. 298, N 5599. P. 1775–1779. doi: 10.1126/science.1074962

[35]

Zhang R, So BR, Li P, et al. Structure of a key intermediate of the SMN complex reveals Gemin2’s crucial function in snRNP assembly. Cell. 2011;146(3):384–395. doi: 10.1016/j.cell.2011.06.043

[36]

Zhang R., So B.R., Li P., et al. Structure of a key intermediate of the SMN complex reveals Gemin2’s crucial function in snRNP assembly // Cell. 2011. Vol. 146, N 3. P. 384–395. doi: 10.1016/j.cell.2011.06.043

[37]

Weber G, Trowitzsch S, Kastner B, et al. Functional organization of the Sm core in the crystal structure of human U1 snRNP. EMBO J. 2010;29(24):4172–4184. doi: 10.1038/emboj.2010.295

[38]

Weber G., Trowitzsch S., Kastner B., et al. Functional organization of the Sm core in the crystal structure of human U1 snRNP // EMBO J. 2010. Vol. 29, N 24. P. 4172–4184. doi: 10.1038/emboj.2010.295

[39]

Rage F, Boulisfane N, Rihan K, et al. Genome-wide identification of mRNAs associated with the protein SMN whose depletion decreases their axonal localization. RNA. 2013;19(12):1755–1766. doi: 10.1261/rna.040204.113

[40]

Rage F., Boulisfane N., Rihan K., et al. Genome-wide identification of mRNAs associated with the protein SMN whose depletion decreases their axonal localization // RNA. 2013. Vol. 19, N 12. P. 1755–1766. doi: 10.1261/rna.040204.113

[41]

Lafarga M, Tapia O, Romero AM, Berciano MT. Cajal bodies in neurons. RNA Biol. 2017;14(6):712–725. doi: 10.1080/15476286.2016.1231360

[42]

Lafarga M., Tapia O., Romero A.M., Berciano M.T. Cajal bodies in neurons // RNA Biol. 2017. Vol. 14, N 6. P. 712–725. doi: 10.1080/15476286.2016.1231360

[43]

Meier UT. RNA modification in Cajal bodies. RNA Biol. 2017;14(6):693–700. doi: 10.1080/15476286.2016.1249091

[44]

Meier U.T. RNA modification in Cajal bodies // RNA Biol. 2017. Vol. 14, N 6. P. 693–700. doi: 10.1080/15476286.2016.1249091

[45]

Hebert MD, Szymczyk PW, Shpargel KB, Matera AG. Coilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein. Genes Dev. 2001;15(20):2720–2729. doi: 10.1101/gad.908401

[46]

Hebert M.D., Szymczyk P.W., Shpargel K.B., Matera A.G. Coilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein // Genes Dev. 2001. Vol. 15, N 20. P. 2720–2729. doi: 10.1101/gad.908401

[47]

Toyota CG, Davis MD, Cosman AM, Hebert MD. Coilin phosphorylation mediates interaction with SMN and SmB’. Chromosoma. 2010;119(2):205–215. doi: 10.1007/s00412-009-0249-x

[48]

Toyota C.G., Davis M.D., Cosman A.M., Hebert M.D. Coilin phosphorylation mediates interaction with SMN and SmB’ // Chromosoma. 2010. Vol. 119, N 2. P. 205–215. doi: 10.1007/s00412-009-0249-x

[49]

Kannan A, Bhatia K, Branzei D, Gangwani L. Combined deficiency of Senataxin and DNA-PKcs causes DNA damage accumulation and neurodegeneration in spinal muscular atrophy. Nucleic Acids Res. 2018;46(16):8326–8346. doi: 10.1093/nar/gky641

[50]

Kannan A., Bhatia K., Branzei D., Gangwani L. Combined deficiency of Senataxin and DNA-PKcs causes DNA damage accumulation and neurodegeneration in spinal muscular atrophy // Nucleic Acids Res. 2018. Vol. 46, N 16. P. 8326–8346. doi: 10.1093/nar/gky641

[51]

Sharma A, Singh K, Almasan A. Histone H2AX phosphorylation: a marker for DNA damage. Methods Mol Biol. 2012;920:613–626. doi: 10.1007/978-1-61779-998-3_40

[52]

Sharma A., Singh K., Almasan A. Histone H2AX phosphorylation: a marker for DNA damage // Methods Mol Biol. 2012. Vol. 920. P. 613–626. doi: 10.1007/978-1-61779-998-3_40

[53]

Kye MJ, Niederst ED, Wertz MH, et al. SMN regulates axonal local translation via miR-183/mTOR pathway. Hum Mol Genet. 2014;23(23):6318–6331. doi: 10.1093/hmg/ddu350

[54]

Kye M.J., Niederst E.D., Wertz M.H., et al. SMN regulates axonal local translation via miR-183/mTOR pathway // Hum Mol Genet. 2014. Vol. 23, N 23. P. 6318–6331. doi: 10.1093/hmg/ddu350

[55]

Querfurth H, Lee HK. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener. 2021;16(1):44. doi: 10.1186/s13024-021-00428-5

[56]

Querfurth H., Lee H.K. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration // Mol Neurodegener. 2021. Vol. 16, N 1. P. 44. doi: 10.1186/s13024-021-00428-5

[57]

Nölle A, Zeug A, van Bergeijk J, et al. The spinal muscular atrophy disease protein SMN is linked to the Rho-kinase pathway via profiling. Hum Mol Genet. 2011;20(24):4865–4878. doi: 10.1093/hmg/ddr425

[58]

Nölle A., Zeug A., van Bergeijk J., et al. The spinal muscular atrophy disease protein SMN is linked to the Rho-kinase pathway via profilin // Hum Mol Genet. 2011. Vol. 20, N 24. P. 4865–4878. doi: 10.1093/hmg/ddr425

[59]

Caraballo-Miralles V, Cardona-Rossinyol A, Garcera A, et al. SMN deficiency attenuates migration of U87MG astroglioma cells through the activation of RhoA. Mol Cell Neurosci. 2012;49(3):282–289. doi: 10.1016/j.mcN2011.12.003

[60]

Caraballo-Miralles V., Cardona-Rossinyol A., Garcera A., et al. SMN deficiency attenuates migration of U87MG astroglioma cells through the activation of RhoA // Mol Cell Neurosci. 2012. Vol. 49, N 3. P. 282–289. doi: 10.1016/j.mcn.2011.12.003

[61]

Hensel N, Claus P. The actin cytoskeleton in SMA and ALS: how does it contribute to motoneuron degeneration? Neuroscientist. 2018;24(1):54–72. doi: 10.1177/1073858417705059

[62]

Hensel N., Claus P. The actin cytoskeleton in SMA and ALS: how does it contribute to motoneuron degeneration? // Neuroscientist. 2018. Vol. 24, N 1. P. 54–72. doi: 10.1177/1073858417705059

[63]

Tanna AP, Johnson M. Rho kinase inhibitors as a novel treatment for glaucoma and ocular hypertension. Ophthalmology. 2018;125(11):1741–1756. doi: 10.1016/j.ophtha.2018.04.040

[64]

Tanna A.P., Johnson M. Rho kinase inhibitors as a novel treatment for glaucoma and ocular hypertension // Ophthalmology. 2018. Vol. 125, N 11. P. 1741–1756. doi: 10.1016/j.ophtha.2018.04.040

[65]

Coque E, Raoul C, Bowerman M. ROCK inhibition as a therapy for spinal muscular atrophy: understanding the repercussions on multiple cellular targets. Front Neurosci. 2014;8:271. doi: 10.3389/fnins.2014.00271

[66]

Coque E., Raoul C., Bowerman M. ROCK inhibition as a therapy for spinal muscular atrophy: understanding the repercussions on multiple cellular targets // Front Neurosci. 2014. Vol. 8. P. 271. doi: 10.3389/fnins.2014.00271

[67]

Walter LM, Franz P, Lindner R, et al. Profilin2a-phosphorylation as a regulatory mechanism for actin dynamics. FASEB J. 2020;34(2):2147–2160. doi: 10.1096/fj.201901883R

[68]

Walter L.M., Franz P., Lindner R., et al. Profilin2a-phosphorylation as a regulatory mechanism for actin dynamics // FASEB J. 2020. Vol. 34, N 2. P. 2147–2160. doi: 10.1096/fj.201901883R

[69]

Godin SK, Sullivan MR, Bernstein KA. Novel insights into RAD51 activity and regulation during homologous recombination and DNA replication. Biochem Cell Biol. 2016;94(5):407–418. doi: 10.1139/bcb-2016-0012

[70]

Godin S.K., Sullivan M.R., Bernstein K.A. Novel insights into RAD51 activity and regulation during homologous recombination and DNA replication // Biochem Cell Biol. 2016. Vol. 94, N 5. P. 407–418. doi: 10.1139/bcb-2016-0012

[71]

Ripolone M, Ronchi D, Violano R, et al. Impaired muscle mitochondrial biogenesis and myogenesis in spinal muscular atrophy. JAMA Neurol. 2015;72(6):666–675. doi: 10.1001/jamaneurol.2015.0178

[72]

Ripolone M., Ronchi D., Violano R., et al. Impaired muscle mitochondrial biogenesis and myogenesis in spinal muscular atrophy // JAMA Neurol. 2015. Vol. 72, N 6. P. 666–675. doi: 10.1001/jamaneurol.2015.0178

[73]

Wishart TM, Mutsaers CA, Riessland M, et al. Dysregulation of ubiquitin homeostasis and β-catenin signaling promote spinal muscular atrophy. J Clin Invest. 2014;124(4):1821–1834. doi: 10.1172/JCI71318

[74]

Wishart T.M., Mutsaers C.A., Riessland M., et al. Dysregulation of ubiquitin homeostasis and β-catenin signaling promote spinal muscular atrophy // J Clin Invest. 2014. Vol. 124, N 4. P. 1821–1834. doi: 10.1172/JCI71318

[75]

Powis RA, Karyka E, Boyd P, et al. Systemic restoration of UBA1 ameliorates disease in spinal muscular atrophy. JCI Insight. 2016;1(11):87908. doi: 10.1172/jci.insight.87908

[76]

Powis R.A., Karyka E., Boyd P., et al. Systemic restoration of UBA1 ameliorates disease in spinal muscular atrophy // JCI Insight. 2016. Vol. 1, N 11. P. 87908. doi: 10.1172/jci.insight.87908

[77]

Shababi M, Lorson CL, Rudnik-Schöneborn SS. Spinal muscular atrophy: a motor neuron disorder or a multi-organ disease? J Anat. 2014;224(1):15–28. doi: 10.1111/joa.12083

[78]

Shababi M., Lorson C.L., Rudnik-Schöneborn S.S. Spinal muscular atrophy: a motor neuron disorder or a multi-organ disease? // J Anat. 2014. Vol. 224, N 1. P. 15–28. doi: 10.1111/joa.12083

[79]

Reilly A, Chehade L, Kothary R. Curing SMA: are we there yet? Gene Ther. 2023;30(1-2):8–17. doi: 10.1038/s41434-022-00349-y

[80]

Reilly A., Chehade L., Kothary R. Curing SMA: are we there yet? // Gene Ther. 2023. Vol. 30, N 1-2. P. 8–17. doi: 10.1038/s41434-022-00349-y

[81]

Campagne S, Boigner S, Rüdisser S, et al. Structural basis of a small molecule targeting RNA for a specific splicing correction. Nat Chem Biol. 2019;15(12):1191–1198. doi: 10.1038/s41589-019-0384-5

[82]

Campagne S., Boigner S., Rüdisser S., et al. Structural basis of a small molecule targeting RNA for a specific splicing correction // Nat Chem Biol. 2019. Vol. 15, N 12. P. 1191–1198. doi: 10.1038/s41589-019-0384-5

[83]

Singh RN, Singh NN. Mechanism of splicing regulation of spinal muscular atrophy genes. Adv Neurobiol. 2018;20:31–61. doi: 10.1007/978-3-319-89689-2_2

[84]

Singh R.N., Singh N.N. Mechanism of splicing regulation of spinal muscular atrophy genes // Adv Neurobiol. 2018. Vol. 20. P. 31–61. doi: 10.1007/978-3-319-89689-2_2

[85]

Sivaramakrishnan M, McCarthy KD, Campagne S, et al. Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers. Nat Commun. 2017;8(1):1476. doi: 10.1038/s41467-017-01559-4

[86]

Sivaramakrishnan M., McCarthy K.D., Campagne S., et al. Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers // Nat Commun. 2017. Vol. 8, N 1. P. 1476. doi: 10.1038/s41467-017-01559-4

[87]

Haché M, Swoboda KJ, Sethna N, et al. Intrathecal injections in children with spinal muscular atrophy: nusinersen clinical trial experience. J Child Neurol. 2016;31(7):899–906. doi: 10.1177/0883073815627882

[88]

Haché M., Swoboda K.J., Sethna N., et al. Intrathecal injections in children with spinal muscular atrophy: nusinersen clinical trial experience // J Child Neurol. 2016. Vol. 31, N 7. P. 899–906. doi: 10.1177/0883073815627882

[89]

Darras BT, Chiriboga CA, Iannaccone ST, et al. Nusinersen in later-onset spinal muscular atrophy: long-term results from the phase 1/2 studies. Neurology. 2019;92(21):e2492–e2506. doi: 10.1212/WNL.0000000000007527

[90]

Darras B.T., Chiriboga C.A., Iannaccone S.T., et al. Nusinersen in later-onset spinal muscular atrophy: long-term results from the phase 1/2 studies // Neurology. 2019. Vol. 92, N 21. P. e2492–e2506. doi: 10.1212/WNL.0000000000007527

[91]

Finkel RS, Chiriboga CA, Vajsar J, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet. 2016;388(10063):3017–3026. doi: 10.1016/S0140-6736(16)31408-8

[92]

Finkel R.S., Chiriboga C.A., Vajsar J., et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study // Lancet. 2016. Vol. 388, N 10063. P. 3017–3026. doi: 10.1016/S0140-6736(16)31408-8

[93]

Finkel RS, Chiriboga CA, Vajsar J, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: final report of a phase 2, open-label, multicentre, dose-escalation study. Lancet Child Adolesc Health. 2021;5(7):491–500. doi: 10.1016/S2352-4642(21)00100-0

[94]

Finkel R.S., Chiriboga C.A., Vajsar J., et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: final report of a phase 2, open-label, multicentre, dose-escalation study // Lancet Child Adolesc Health. 2021. Vol. 5, N 7. P. 491–500. doi: 10.1016/S2352-4642(21)00100-0

[95]

Finkel RS, Mercuri E, Darras BT, et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med. 2017;377(18):1723–1732. doi: 10.1056/NEJMoa1702752

[96]

Finkel R.S., Mercuri E., Darras B.T., et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy // N Engl J Med. 2017. Vol. 377, N 18. P. 1723–1732. doi: 10.1056/NEJMoa1702752

[97]

Mercuri E, Darras BT, Chiriboga CA, et al. Nusinersen versus sham control in later-onset spinal muscular atrophy. N Engl J Med. 2018;378(7):625–635. doi: 10.1056/NEJMoa1710504

[98]

Mercuri E., Darras B.T., Chiriboga C.A. et al. Nusinersen versus sham control in later-onset spinal muscular atrophy // N Engl J Med. 2018. Vol. 378, N 7. P. 625–635. doi: 10.1056/NEJMoa1710504

[99]

De Vivo DC, Bertini E, Swoboda KJ, et al. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: Interim efficacy and safety results from the Phase 2 NURTURE study. Neuromuscul Disord. 2019;29(11):842–856. doi: 10.1016/j.nmd.2019.09.007

[100]

De Vivo D.C., Bertini E., Swoboda K.J., et al. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: interim efficacy and safety results from the Phase 2 NURTURE study // Neuromuscul Disord. 2019. Vol. 29, N 11. P. 842–856. doi: 10.1016/j.nmd.2019.09.007

[101]

Mendell JR, Al-Zaidy SA, Lehman KJ, et al. Five-year extension results of the phase 1 start trial of onasemnogene abeparvovec in spinal muscular atrophy. JAMA Neurol. 2021;78(7):834–841. doi: 10.1001/jamaneurol.2021.1272

[102]

Mendell J.R., Al-Zaidy S.A., Lehman K.J., et al. Five-year extension results of the phase 1 START trial of onasemnogene abeparvovec in spinal muscular atrophy // JAMA Neurol. 2021. Vol. 78, N 7. P. 834–841. doi: 10.1001/jamaneurol.2021.1272

[103]

Day JW, Finkel RS, Chiriboga CA, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 2021;20(4):284–293. doi: 10.1016/S1474-4422(21)00001-6

[104]

Day J.W., Finkel R.S., Chiriboga C.A., et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial // Lancet Neurol. 2021. Vol. 20, N 4. P. 284–293. doi: 10.1016/S1474-4422(21)00001-6

[105]

Mercuri E, Muntoni F, Baranello G, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 2021;20(10):832–841. doi: 10.1016/S1474-4422(21)00251-9

[106]

Mercuri E., Muntoni F., Baranello G., et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial // Lancet Neurol. 2021. Vol. 20, N 10. P. 832–841. doi: 10.1016/S1474-4422(21)00251-9

[107]

Strauss KA, Swoboda KJ, Farrar MA, et al. Onasemnogene abeparvovec gene-replacement therapy (GRT) in presymptomatic spinal muscular atrophy (SMA): SPR1NT study update. Neurological Sciences. 2019;405:268–269. doi: 10.1016/j.jns.2019.10.1317

[108]

Strauss K.A., Swoboda K.J., Farrar M.A., et al. Onasemnogene abeparvovec gene-replacement therapy (GRT) in presymptomatic spinal muscular atrophy (SMA): SPR1NT study update // Neurological Sciences. 2019. Vol. 405. P. 268–269. doi: 10.1016/j.jns.2019.10.1317

[109]

Darras BT, Masson R, Mazurkiewicz-Bełdzińska M, et al. Risdiplam-treated infants with type 1 spinal muscular atrophy versus historical controls. N Engl J Med. 2021;385(5):427–435. doi: 10.1056/NEJMoa2102047

[110]

Darras B.T., Masson R., Mazurkiewicz-Bełdzińska M., et al. Risdiplam-treated infants with type 1 spinal muscular atrophy versus historical controls // N Engl J Med. 2021. Vol. 385, N 5. P. 427–435. doi: 10.1056/NEJMoa2102047

[111]

Mercuri E, Deconinck N, Mazzone ES, et al. Safety and efficacy of once-daily risdiplam in type 2 and non-ambulant type 3 spinal muscular atrophy (SUNFISH part 2): a phase 3, double-blind, randomised, placebo-controlled trial. The Lancet Neurology. 2022;21(1):42–52. doi: 10.1016/S1474-4422(21)00367-7

[112]

Mercuri E., Deconinck N., Mazzone E.S., et al. Safety and efficacy of once-daily risdiplam in type 2 and non-ambulant type 3 spinal muscular atrophy (SUNFISH part 2): a phase 3, double-blind, randomised, placebo-controlled trial // Lancet Neurol. 2022. Vol. 21, N 1. P. 42–52. doi: 10.1016/S1474-4422(21)00367-7

[113]

Hua Y, Sahashi K, Rigo F, et al. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature. 2011;478(7367):123–126. doi: 10.1038/nature10485

[114]

Hua Y., Sahashi K., Rigo F., et al. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model // Nature. 2011. Vol. 478, N 7367. P. 123–126. doi: 10.1038/nature10485

[115]

Chaytow H, Faller KME, Huang YT, Gillingwater TH. Spinal muscular atrophy: from approved therapies to future therapeutic targets for personalized medicine. Cell Rep Med. 2021;2(7):100346. doi: 10.1016/j.xcrm.2021.100346

[116]

Chaytow H., Faller K.M.E., Huang Y.T., Gillingwater T.H. Spinal muscular atrophy: from approved therapies to future therapeutic targets for personalized medicine // Cell Rep Med. 2021. Vol. 2, N 7. P. 100346. doi: 10.1016/j.xcrm.2021.100346

[117]

Van Alstyne M, Tattoli I, Delestrée N, et al. Gain of toxic function by long-term AAV9-mediated SMN overexpression in the sensorimotor circuit. Nat Neurosci. 2021;24(7):930–940. doi: 10.1038/s41593-021-00827-3

[118]

Van Alstyne M., Tattoli I., Delestrée N., et al. Gain of toxic function by long-term AAV9-mediated SMN overexpression in the sensorimotor circuit // Nat Neurosci. 2021. Vol. 24, N 7. P. 930–940. doi: 10.1038/s41593-021-00827-3

[119]

Kolbin AS, Vlodavets DV, Kurylev AA, et al. The social-economic burden of spinal muscular atrophy in Russia. Farmakoekonomika. Modern Pharmacoeconomics and Pharmacoepidemiology. 2020;13(4):337–354. (In Russ). doi: 10.17749/2070-4909/farmakoekonomika.2020.068

[120]

Колбин А.С., Влодавец Д.В., Курылев А.А., и др. Анализ социально-экономического бремени спинальной мышечной атрофии в Российской Федерации // Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология. 2020. Т. 13, № 4. С. 337–354. doi: 10.17749/2070-4909/farmakoekonomika.2020.068

[121]

Kolbin AS, Kurylev AA, Balykina YuE. et al. Health economic evaluation of risdiplam in patients with spinal muscular atrophy. Farmakoekonomika. Modern Pharmacoeconomics and Pharmacoepidemiology. 2021;14(3):299–310. (In Russ). doi: 10.17749/2070-4909/farmakoekonomika.2021.101

[122]

Колбин А.С., Курылев А.А., Балыкина Ю.Е., и др. Фармакоэкономическая оценка лекарственного препарата рисдиплам у пациентов со спинальной мышечной атрофией // Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология. 2021. Т. 14, № 3. С. 299–310. doi: 10.17749/2070-4909/farmakoekonomika.2021.101

[123]

https://ct.biocad.ru/ [Internet]. BIOCAD clinical trials [cited 20 July 2023]. Available from: https://ct.biocad.ru/nozology/anb-004-1bluebell (In Russ).

[124]

https://ct.biocad.ru/ [интернет]. BIOCAD. Клинические исследования [дата обращения: 20.07.2023]. Доступ по ссылке: https://ct.biocad.ru/nozology/anb-004-1bluebell

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/