Autosomal recessive congenital ichthyosis: diagnosis, modeling and approaches to therapy
Alexey S. Ponomarev , Daria S. Chulpanova , Alisa A. Shaimardanova , Albert A. Rizvanov , Valeria V. Solovyeva
Genes & Cells ›› 2022, Vol. 17 ›› Issue (4) : 75 -90.
Autosomal recessive congenital ichthyosis: diagnosis, modeling and approaches to therapy
Autosomal recessive congenital ichthyosis (ARCI) is a heterogeneous group of diseases caused by mutations in at least ten genes. ARCI is characterized by varying degrees of hyperkeratosis and the presence of scales on the surface of the patients’ skin since birth. Despite the variety of mutations and phenotypic manifestations of ARCI, from 32 to 68% of cases are due to a mutation in the transglutaminase-1 gene.
Currently, ARCI therapy is aimed at reducing the symptoms of the disease. To alleviate clinical symptoms, symptomatic therapy with moisturizers, keratolytics, retinoids and other cosmetic substances that improve the condition of the patients' skin is used.
There is a great need for the development of therapy aimed at the root cause of the development of the ARCI. Graft transplantation is usually used to correct eyelid defects in ARCI. Gene and cell therapy are developing as promising methods for the treatment of ARCI, with the help of which it is possible to correct the functional activity of mutant genes, in particular, transglutaminase-1. The review discusses current research on gene and cell therapy approaches and their future prospects in the treatment of patients with various forms of ichthyosis.
autosomal recessive congenital ichthyosis / lamellar ichthyosis / transglutaminase-1 / gene therapy / cell therapy
| [1] |
Chulpanova DS, Shaimardanova AA, Ponomarev AS, et al. Current strategies for the gene therapy of autosomal recessive congenital ichthyosis and other types of inherited ichthyosis. Int J Mol Sci. 2022;23(5):2506. doi: 10.3390/ijms23052506 |
| [2] |
Chulpanova D.S., Shaimardanova A.A., Ponomarev A.S., et al. Current strategies for the gene therapy of autosomal recessive congenital ichthyosis and other types of inherited ichthyosis // Int J Mol Sci. 2022. Vol. 23, N 5. P. 2506. doi: 10.3390/ijms23052506 |
| [3] |
Oji V, Tadini G, Akiyama M, et al. Revised nomenclature and classification of inherited ichthyoses: results of the First Ichthyosis Consensus Conference in Soreze 2009. J Am Acad Dermatol. 2010;63(4):607–641. doi: 10.1016/j.jaad.2009.11.020 |
| [4] |
Oji V., Tadini G., Akiyama M., et al. Revised nomenclature and classification of inherited ichthyoses: results of the First Ichthyosis Consensus Conference in Soreze 2009 // J Am Acad Dermatol. 2010. Vol. 63, N 4. P. 607–641. doi: 10.1016/j.jaad.2009.11.020 |
| [5] |
Jobard F, Lefèvre C, Karaduman A, et al. Lipoxygenase-3 (ALOXE3) and 12(R)-lipoxygenase (ALOX12B) are mutated in non-bullous congenital ichthyosiform erythroderma (NCIE) linked to chromosome 17p13.1. Hum Mol Genet. 2002;11(1):107–113. doi: 10.1093/hmg/11.1.107 |
| [6] |
Jobard F., Lefèvre C., Karaduman A., et al. Lipoxygenase-3 (ALOXE3) and 12(R)-lipoxygenase (ALOX12B) are mutated in non-bullous congenital ichthyosiform erythroderma (NCIE) linked to chromosome 17p13.1 // Hum Mol Genet. 2002. Vol. 11, N 1. P. 107–113. doi: 10.1093/hmg/11.1.107 |
| [7] |
Lefèvre C, Bouadjar B, Ferrand V, et al. Mutations in a new cytochrome P450 gene in lamellar ichthyosis type 3. Hum Mol Genet. 2006;15(5):767–776. doi: 10.1093/hmg/ddi491 |
| [8] |
Lefèvre C., Bouadjar B., Ferrand V., et al. Mutations in a new cytochrome P450 gene in lamellar ichthyosis type 3 // Hum Mol Genet. 2006. Vol. 15, N 5. P. 767–776. doi: 10.1093/hmg/ddi491 |
| [9] |
Akiyama M, Sugiyama-Nakagiri Y, Sakai K, et al. Mutations in lipid transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer. J Clin Invest. 2005;115(7):1777–1784. doi: 10.1172/JCI24834 |
| [10] |
Akiyama M., Sugiyama-Nakagiri Y., Sakai K., et al. Mutations in lipid transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer // J Clin Invest. 2005. Vol. 115, N 7. P. 1777–1784. doi: 10.1172/JCI24834 |
| [11] |
Kelsell PD, Norgett EE, Unsworth H, et al. Mutations in ABCA12 underlie the severe congenital skin disease harlequin ichthyosis. Am J Hum Genet. 2005;76(5):794–803. doi: 10.1086/429844 |
| [12] |
Kelsell P.D., Norgett E.E., Unsworth H., et al. Mutations in ABCA12 underlie the severe congenital skin disease harlequin ichthyosis // Am J Hum Genet. 2005. Vol. 76, N 5. P. 794–803. doi: 10.1086/429844 |
| [13] |
Dahlqvist J, Klar J, Hausser I, et al. Congenital ichthyosis: mutations in ichthyin are associated with specific structural abnormalities in the granular layer of epidermis. J Med Genet. 2007;44(10):615–620. doi: 10.1136/jmg.2007.050542 |
| [14] |
Dahlqvist J., Klar J., Hausser I., et al. Congenital ichthyosis: mutations in ichthyin are associated with specific structural abnormalities in the granular layer of epidermis // J Med Genet. 2007. Vol. 44, N 10. P. 615–620. doi: 10.1136/jmg.2007.050542 |
| [15] |
Oji V, Hautier JM, Ahvazi B, et al. Bathing suit ichthyosis is caused by transglutaminase-1 deficiency: evidence for a temperature-sensitive phenotype. Hum Mol Genet. 2006;15(21):3083–3097. doi: 10.1093/hmg/ddl249 |
| [16] |
Oji V., Hautier J.M., Ahvazi B., et al. Bathing suit ichthyosis is caused by transglutaminase-1 deficiency: evidence for a temperature-sensitive phenotype // Hum Mol Genet. 2006. Vol. 15, N 21. P. 3083–3097. doi: 10.1093/hmg/ddl249 |
| [17] |
Vahlquist A, Bygum A, Gånemo A, et al. Genotypic and clinical spectrum of self-improving collodion ichthyosis: ALOX12B, ALOXE3, and TGM1 mutations in Scandinavian patients. J Invest Dermatol. 2010;130(2):438–443. doi: 10.1038/jid.2009.346 |
| [18] |
Vahlquist A., Bygum A., Gånemo A., et al. Genotypic and clinical spectrum of self-improving collodion ichthyosis: ALOX12B, ALOXE3, and TGM1 mutations in Scandinavian patients // J Invest Dermatol. 2010. Vol. 130, N 2. P. 438–443. doi: 10.1038/jid.2009.346 |
| [19] |
Pigg MH, Bygum A, Gånemo A, et al. Spectrum of autosomal recessive congenital ichthyosis in Scandinavia: clinical characteristics and novel and recurrent mutations in 132 patients. Acta Derm Venereol. 2016;96(7):932–937. doi: 10.2340/00015555-2418 |
| [20] |
Pigg M.H., Bygum A., Gånemo A., et al. Spectrum of autosomal recessive congenital ichthyosis in Scandinavia: clinical characteristics and novel and recurrent mutations in 132 patients // Acta Derm Venereol. 2016. Vol. 96, N 7. P. 932–937. doi: 10.2340/00015555-2418 |
| [21] |
Esperón-Moldes US, Pardo-Seco J, Montalván-Suárez M, et al. Biogeographical origin and timing of the founder ichthyosis TGM1 c.1187G > A mutation in an isolated Ecuadorian population. Sci Rep. 2019;9(1):7175. doi: 10.1038/s41598-019-43133-6 |
| [22] |
Esperón-Moldes U.S., Pardo-Seco J., Montalván-Suárez M., et al. Biogeographical origin and timing of the founder ichthyosis TGM1 c.1187G >A mutation in an isolated Ecuadorian population // Sci Rep. 2019. Vol. 9, N 1. P. 7175. doi: 10.1038/s41598-019-43133-6 |
| [23] |
Eckert RL, Kaartinen MT, Nurminskaya M, et al. Transglutaminase regulation of cell function. Physiol Rev. 2014;94(2):383–417. doi: 10.1152/physrev.00019.2013 |
| [24] |
Eckert R.L., Kaartinen M.T., Nurminskaya M., et al. Transglutaminase regulation of cell function // Physiol Rev. 2014. Vol. 94, N 2. P. 383–417. doi: 10.1152/physrev.00019.2013 |
| [25] |
Herman ML, Farasat S, Steinbach PJ, et al. Transglutaminase-1 gene mutations in autosomal recessive congenital ichthyosis: summary of mutations (including 23 novel) and modeling of TGase-1. Hum Mutat. 2009;30(4):537–547. doi: 10.1002/humu.20952 |
| [26] |
Herman M.L., Farasat S., Steinbach P.J., et al. Transglutaminase-1 gene mutations in autosomal recessive congenital ichthyosis: summary of mutations (including 23 novel) and modeling of TGase-1 // Hum Mutat. 2009. Vol. 30, N 4. P. 537–547. doi: 10.1002/humu.20952 |
| [27] |
Akiyama M. Updated molecular genetics and pathogenesis of ichthiyoses. Nagoya J Med Sci. 2011;73(3-4):79–90. |
| [28] |
Akiyama M. Updated molecular genetics and pathogenesis of ichthiyoses // Nagoya J Med Sci. 2011. Vol. 73, N 3-4. P. 79–90. |
| [29] |
Akiyama M, Takizawa Y, Suzuki Y, Shimizu H. A novel homozygous mutation 371delA in TGM1 leads to a classic lamellar ichthyosis phenotype. Br J Dermatol. 2003;148(1):149–153. doi: 10.1046/j.1365-2133.2003.05041.x |
| [30] |
Akiyama M., Takizawa Y., Suzuki Y., Shimizu H. A novel homozygous mutation 371delA in TGM1 leads to a classic lamellar ichthyosis phenotype // Br J Dermatol. 2003. Vol. 148, N 1. P. 149–153. doi: 10.1046/j.1365-2133.2003.05041.x |
| [31] |
Akiyama M, Takizawa Y, Suzuki Y, et al. Compound heterozygous TGM1 mutations including a novel missense mutation L204Q in a mild form of lamellar ichthyosis. J Invest Dermatol. 2001;116(6):992–995. doi: 10.1046/j.0022-202x.2001.01367.x |
| [32] |
Akiyama M., Takizawa Y., Suzuki Y., et al. Compound heterozygous TGM1 mutations including a novel missense mutation L204Q in a mild form of lamellar ichthyosis // J Invest Dermatol. 2001. Vol. 116, N 6. P. 992–995. doi: 10.1046/j.0022-202x.2001.01367.x |
| [33] |
Akiyama M, Takizawa Y, Kokaji T, Shimizu H. Novel mutations of TGM1 in a child with congenital ichthyosiform erythroderma. Br J Dermatol. 2001;144(2):401–407. doi: 10.1046/j.1365-2133.2001.04037.x |
| [34] |
Akiyama M., Takizawa Y., Kokaji T., Shimizu H. Novel mutations of TGM1 in a child with congenital ichthyosiform erythroderma // Br J Dermatol. 2001. Vol. 144, N 2. P. 401–407. doi: 10.1046/j.1365-2133.2001.04037.x |
| [35] |
Simpson JK, Martinez-Queipo M, Onoufriadis A, et al. Genotype-phenotype correlation in a large english cohort of patients with autosomal recessive ichthyosis. Br J Dermatol. 2020;182(3):729–737. doi: 10.1111/bjd.18211 |
| [36] |
Simpson J.K., Martinez-Queipo M., Onoufriadis A., et al. Genotype-phenotype correlation in a large english cohort of patients with autosomal recessive ichthyosis // Br J Dermatol. 2020. Vol. 182, N 3. P. 729–737. doi: 10.1111/bjd.18211 |
| [37] |
Wang T, Xu C, Zhou X, et al. Homozygous ALOXE3 nonsense variant identified in a patient with non-bullous congenital ichthyosiform erythroderma complicated by superimposed bullous Majocchi’s granuloma: the consequences of skin barrier dysfunction. Int J Mol Sci. 2015;16(9):21791–21801. doi: 10.3390/ijms160921791 |
| [38] |
Wang T., Xu C., Zhou X., et al. Homozygous ALOXE3 nonsense variant identified in a patient with non-bullous congenital ichthyosiform erythroderma complicated by superimposed bullous Majocchi’s granuloma: the consequences of skin barrier dysfunction // Int J Mol Sci. 2015. Vol. 16, N 9. P. 21791–21801. doi: 10.3390/ijms160921791 |
| [39] |
Akbar A, Bint-e-Farrakh M, Crosby AH, et al. Variants in NIPAL4 and ALOXE3 cause autosomal recessive congenital ichthyosis in Pakistani families. Congenit Anom. (Kyoto). 2020;60(5):149–150. doi: 10.1111/cga.12366 |
| [40] |
Akbar A., Bint-e-Farrakh M., Crosby A.H., et al. Variants in NIPAL4 and ALOXE3 cause autosomal recessive congenital ichthyosis in Pakistani families // Congenit Anom (Kyoto). 2020. Vol. 60, N 5. P. 149–150. doi: 10.1111/cga.12366 |
| [41] |
Zimmer AD, Kim GJ, Hotz A, et al. Sixteen novel mutations in PNPLA1 in patients with autosomal recessive congenital ichthyosis reveal the importance of an extended patatin domain in PNPLA1 that is essential for proper human skin barrier function. Br J Dermatol. 2017;177(2):445–455. doi: 10.1111/bjd.15308 |
| [42] |
Zimmer A.D., Kim G.J., Hotz A., et al. Sixteen novel mutations in PNPLA1 in patients with autosomal recessive congenital ichthyosis reveal the importance of an extended patatin domain in PNPLA1 that is essential for proper human skin barrier function // Br J Dermatol. 2017. Vol. 177, N 2. P. 445–455. doi: 10.1111/bjd.15308 |
| [43] |
Lefévre C, Audebert S, Jobard F, et al. Mutations in the transporter ABCA12 are associated with lamellar ichthyosis type 2. Hum Mol Genet. 2003;12(18):2369–2378. doi: 10.1093/hmg/ddg235 |
| [44] |
Lefévre C., Audebert S., Jobard F., et al. Mutations in the transporter ABCA12 are associated with lamellar ichthyosis type 2 // Hum Mol Genet. 2003. Vol. 12, N 18. P. 2369–2378. doi: 10.1093/hmg/ddg235 |
| [45] |
Radner FPW, Marrakchi S, Kirchmeier P, et al. Mutations in CERS3 cause autosomal recessive congenital ichthyosis in humans. PLoS Genet. 2013;9(6):e1003536. doi: 10.1371/journal.pgen.1003536 |
| [46] |
Radner F.P.W., Marrakchi S., Kirchmeier P., et al. Mutations in CERS3 cause autosomal recessive congenital ichthyosis in humans // PLoS Genet. 2013. Vol. 9, N 6. P. e1003536. doi: 10.1371/journal.pgen.1003536 |
| [47] |
Shigehara Y, Okuda S, Nemer G, et al. Mutations in SDR9C7 gene encoding an enzyme for vitamin A metabolism underlie autosomal recessive congenital ichthyosis. Hum Mol Genet. 2016;25(20):4484–4493. doi: 10.1093/hmg/ddw277 |
| [48] |
Shigehara Y., Okuda S., Nemer G., et al. Mutations in SDR9C7 gene encoding an enzyme for vitamin A metabolism underlie autosomal recessive congenital ichthyosis // Hum Mol Genet. 2016. Vol. 25, N 20. P. 4484–4493. doi: 10.1093/hmg/ddw277 |
| [49] |
Heinz L, Kim G-J, Marrakchi S, et al. Mutations in SULT2B1 cause autosomal-recessive congenital ichthyosis in humans. Am J Hum Genet. 2017;100(6):926–939. doi: 10.1016/j.ajhg.2017.05.007 |
| [50] |
Heinz L., Kim G.-J., Marrakchi S., et al. Mutations in SULT2B1 cause autosomal-recessive congenital ichthyosis in humans // Am J Hum Genet. 2017. Vol. 100, N 6. P. 926–939. doi: 10.1016/j.ajhg.2017.05.007 |
| [51] |
Israeli S, Khamaysi Z, Fuchs-Telem D, et al. A mutation in LIPN, encoding epidermal lipase N, causes a late-onset form of autosomal-recessive congenital ichthyosis. Am J Hum Genet. 2011;88(4):482–487. doi: 10.1016/j.ajhg.2011.02.011 |
| [52] |
Israeli S., Khamaysi Z., Fuchs-Telem D., et al. A mutation in LIPN, encoding epidermal lipase N, causes a late-onset form of autosomal-recessive congenital ichthyosis // Am J Hum Genet. 2011. Vol. 88, N 4. P. 482–487. doi: 10.1016/j.ajhg.2011.02.011 |
| [53] |
Vahlquist A, Fischer J, Törmä H. Inherited nonsyndromic ichthyoses: an update on pathophysiology, diagnosis and treatment. Am J Clin Dermatol. 2018;19(1):51–66. doi: 10.1007/s40257-017-0313-x |
| [54] |
Vahlquist A., Fischer J., Törmä H. Inherited nonsyndromic ichthyoses: an update on pathophysiology, diagnosis and treatment // Am J Clin Dermatol. 2018. Vol. 19, N 1. P. 51–66. doi: 10.1007/s40257-017-0313-x |
| [55] |
Cottle DL, Ursino GMA, Ip SCI, et al. Fetal inhibition of inflammation improves disease phenotypes in harlequin ichthyosis. Hum Mol Genet. 2015;24(2):436–449. doi: 10.1093/hmg/ddu459 |
| [56] |
Cottle D.L., Ursino G.M.A., Ip S.C.I., et al. Fetal inhibition of inflammation improves disease phenotypes in harlequin ichthyosis // Hum Mol Genet. 2015. Vol. 24, N 2. P. 436–449. doi: 10.1093/hmg/ddu459 |
| [57] |
Akiyama M, Sakai K, Sato T, et al. Compound heterozygous ABCA12 mutations including a novel nonsense mutation underlie harlequin ichthyosis. Dermatology. 2007;215(2):155–159. doi: 10.1159/000104269 |
| [58] |
Akiyama M., Sakai K., Sato T., et al. Compound heterozygous ABCA12 mutations including a novel nonsense mutation underlie harlequin ichthyosis // Dermatology. 2007. Vol. 215, N 2. P. 155–159. doi: 10.1159/000104269 |
| [59] |
Zhou X-J, Lin Y-J, Chen X-W, et al. Prenatal diagnosis of harlequin ichthyosis by ultrasonography: a case report. Ann Transl Med. 2021;9(2):183. doi: 10.21037/atm-20-8223 |
| [60] |
Zhou X.-J., Lin Y.-J., Chen X.-W., et al. Prenatal diagnosis of harlequin ichthyosis by ultrasonography: a case report // Ann Transl Med. 2021. Vol. 9, N 2. P. 183. doi: 10.21037/atm-20-8223 |
| [61] |
Laiho E, Niemi K-M, Ignatius J, et al. Clinical and morphological correlations for transglutaminase 1 gene mutations in autosomal recessive congenital ichthyosis. Eur J Hum Genet. 1999;7(6):625–632. doi: 10.1038/sj.ejhg.5200353 |
| [62] |
Laiho E., Niemi K.-M., Ignatius J., et al. Clinical and morphological correlations for transglutaminase 1 gene mutations in autosomal recessive congenital ichthyosis // Eur J Hum Genet. 1999. Vol. 7, N 6. P. 625–632. doi: 10.1038/sj.ejhg.5200353 |
| [63] |
Richard G. Autosomal recessive congenital ichthyosis. GeneReviews™ [Internet]. 1993. |
| [64] |
Hohl D, Aeschlimann D, Huber M. In vitro and rapid in situ transglutaminase assays for congenital ichthyoses — a comparative study. J Invest Dermatol. 1998;110(3):268–271. doi: 10.1046/j.1523-1747.1998.00132.x |
| [65] |
Hohl D., Aeschlimann D., Huber M. In vitro and rapid in situ transglutaminase assays for congenital ichthyoses — a comparative study // J Invest Dermatol. 1998. Vol. 110, N 3. P. 268–271. doi: 10.1046/j.1523-1747.1998.00132.x |
| [66] |
Huber M, Rettler I, Bernasconi K, et al. Mutations of keratinocyte transglutaminase in lamellar ichthyosis. Science. 1995;267(5197):525–528. doi: 10.1126/science.7824952 |
| [67] |
Huber M., Rettler I., Bernasconi K., et al. Mutations of keratinocyte transglutaminase in lamellar ichthyosis // Science. 1995. Vol. 267, N 5197. P. 525–528. doi: 10.1126/science.7824952 |
| [68] |
Akiyama M, Sawamura D, Shimizu H. The clinical spectrum of nonbullous congenital ichthyosiform erythroderma and lamellar ichthyosis. Clin Exp Dermatol. 2003;28(3):235–240. doi: 10.1046/j.1365-2230.2003.01295.x |
| [69] |
Akiyama M., Sawamura D., Shimizu H. The clinical spectrum of nonbullous congenital ichthyosiform erythroderma and lamellar ichthyosis // Clin Exp Dermatol. 2003. Vol. 28, N 3. P. 235–240. doi: 10.1046/j.1365-2230.2003.01295.x |
| [70] |
Yang CS, Pomerantz H, Mannava KA, et al. Comparing histopathology from patients with X-linked recessive ichthyosis and autosomal recessive congenital ichthyosis with transglutaminase 1 mutation: a report from the National Registry for Ichthyosis and Related Skin Disorders. J Am Acad Dermatol. 2016;74(5):1008–1010.e2. doi: 10.1016/j.jaad.2015.12.027 |
| [71] |
Yang C.S., Pomerantz H., Mannava K.A., et al. Comparing histopathology from patients with X-linked recessive ichthyosis and autosomal recessive congenital ichthyosis with transglutaminase 1 mutation: a report from the National Registry for Ichthyosis and Related Skin Disorders // J Am Acad Dermatol. 2016. Vol. 74, N 5. P. 1008–1010.e2. doi: 10.1016/j.jaad.2015.12.027 |
| [72] |
Akiyama M. Severe congenital ichthyosis of the neonate. Int J Dermatol. 1998;37(10):722–728. doi: 10.1046/j.1365-4362.1998.00488.x |
| [73] |
Akiyama M. Severe congenital ichthyosis of the neonate // Int J Dermatol. 1998. Vol. 37, N 10. P. 722–728. doi: 10.1046/j.1365-4362.1998.00488.x |
| [74] |
Cheng R, Liang J, Li Y, et al. Next-generation sequencing through multi-gene panel testing for diagnosis of hereditary ichthyosis in Chinese. Clin Genet. 2020;97(5):770–778. doi: 10.1111/cge.13704 |
| [75] |
Cheng R., Liang J., Li Y., et al. Next-generation sequencing through multi-gene panel testing for diagnosis of hereditary ichthyosis in Chinese // Clin Genet. 2020. Vol. 97, N 5. P. 770–778. doi: 10.1111/cge.13704 |
| [76] |
Fioretti T, Auricchio L, Piccirillo A, et al. Multi-gene next-generation sequencing for molecular diagnosis of autosomal recessive congenital ichthyosis: a genotype-phenotype study of four Italian patients. Diagnostics (Basel). 2020;10(12):995. doi: 10.3390/diagnostics10120995 |
| [77] |
Fioretti T., Auricchio L., Piccirillo A., et al. Multi-gene next-generation sequencing for molecular diagnosis of autosomal recessive congenital ichthyosis: a genotype-phenotype study of four Italian patients // Diagnostics (Basel). 2020. Vol. 10, N 12. P. 995. doi: 10.3390/diagnostics10120995 |
| [78] |
Paller AS, Renert-Yuval Y, Suprun M, et al. An IL-17-dominant immune profile is shared across the major orphan forms of ichthyosis. J Allergy Clin Immunol. 2017;139(1):152–165. doi: 10.1016/j.jaci.2016.07.019 |
| [79] |
Paller A.S., Renert-Yuval Y., Suprun M., et al. An IL-17-dominant immune profile is shared across the major orphan forms of ichthyosis // J Allergy Clin Immunol. 2017. Vol. 139, N 1. P. 152–165. doi: 10.1016/j.jaci.2016.07.019 |
| [80] |
Malik K, He H, Huynh TN, et al. Ichthyosis molecular fingerprinting shows profound TH17 skewing and a unique barrier genomic signature. J Allergy Clin Immunol. 2019;143(2):604–618. doi: 10.1016/j.jaci.2018.03.021 |
| [81] |
Malik K., He H., Huynh T.N., et al. Ichthyosis molecular fingerprinting shows profound TH17 skewing and a unique barrier genomic signature // J Allergy Clin Immunol. 2019. Vol. 143, N 2. P. 604–618. doi: 10.1016/j.jaci.2018.03.021 |
| [82] |
Murase Y, Takeichi T, Kawamoto A, et al. Reduced stratum corneum acylceramides in autosomal recessive congenital ichthyosis with a NIPAL4 mutation. J Dermatol Sci. 2020;97(1):50–56. doi: 10.1016/j.jdermsci.2019.12.001 |
| [83] |
Murase Y., Takeichi T., Kawamoto A., et al. Reduced stratum corneum acylceramides in autosomal recessive congenital ichthyosis with a NIPAL4 mutation // J Dermatol Sci. 2020. Vol. 97, N 1. P. 50–56. doi: 10.1016/j.jdermsci.2019.12.001 |
| [84] |
O’Shaughnessy RFL, Choudhary I, Harper JI. Interleukin-1 alpha blockade prevents hyperkeratosis in an in vitro model of lamellar ichthyosis. Hum Mol Genet. 2010;19(13):2594–2605. doi: 10.1093/hmg/dds511 |
| [85] |
O’Shaughnessy R.F.L., Choudhary I., Harper J.I. Interleukin-1 alpha blockade prevents hyperkeratosis in an in vitro model of lamellar ichthyosis // Hum Mol Genet. 2010. Vol. 19, N 13. P. 2594–2605. doi: 10.1093/hmg/dds511 |
| [86] |
Matsuki M, Yamashita F, Ishida-Yamamoto A, et al. Defective stratum corneum and early neonatal death in mice lacking the gene for transglutaminase 1 (keratinocyte transglutaminase). Proc Natl Acad Sci U S A. 1998;95(3):1044–1049. doi: 10.1073/pnas.95.3.1044 |
| [87] |
Matsuki M., Yamashita F., Ishida-Yamamoto A., et al. Defective stratum corneum and early neonatal death in mice lacking the gene for transglutaminase 1 (keratinocyte transglutaminase) // Proc Natl Acad Sci U S A. 1998. Vol. 95, N 3. P. 1044–1049. doi: 10.1073/pnas.95.3.1044 |
| [88] |
Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol. 2005;6(4):328–340. doi: 10.1038/nrm1619 |
| [89] |
Candi E., Schmidt R., Melino G. The cornified envelope: a model of cell death in the skin // Nat Rev Mol Cell Biol. 2005. Vol. 6, N 4. P. 328–340. doi: 10.1038/nrm1619 |
| [90] |
García M, Larcher F, Hickerson RP, et al. Development of skin-humanized mouse models of pachyonychia congenita. J Invest Dermatol. 2011;131(5):1053–1060. doi: 10.1038/jid.2010.353 |
| [91] |
García M., Larcher F., Hickerson R.P., et al. Development of skin-humanized mouse models of pachyonychia congenita // J Invest Dermatol. 2011. Vol. 131, N 5. P. 1053–1060. doi: 10.1038/jid.2010.353 |
| [92] |
Aufenvenne K, Rice RH, Hausser I, et al. Long-term faithful recapitulation of transglutaminase 1-deficient lamellar ichthyosis in a skin-humanized mouse model, and insights from proteomic studies. J Invest Dermatol. 2012;132(7):1918–1921. doi: 10.1038/jid.2012.65 |
| [93] |
Aufenvenne K., Rice R.H., Hausser I., et al. Long-term faithful recapitulation of transglutaminase 1-deficient lamellar ichthyosis in a skin-humanized mouse model, and insights from proteomic studies // J Invest Dermatol. 2012. Vol. 132, N 7. P. 1918–1921. doi: 10.1038/jid.2012.65 |
| [94] |
Briggaman RA, Wheeler CE Jr. Lamellar ichthyosis: long-term graft studies on congenitally athymic nude mice. J Invest Dermatol. 1976;67(5):567–576. doi: 10.1111/1523-1747.ep12541646 |
| [95] |
Briggaman R.A., Wheeler C.E. Jr. Lamellar ichthyosis: long-term graft studies on congenitally athymic nude mice // J Invest Dermatol. 1976. Vol. 67, N 5. P. 567–576. doi: 10.1111/1523-1747.ep12541646 |
| [96] |
Choate KA, Khavari PA. Direct cutaneous gene delivery in a human genetic skin disease. Hum Gene Ther. 1997;8(14):1659–1665. doi: 10.1089/hum.1997.8.14-1659 |
| [97] |
Choate K.A., Khavari P.A. Direct cutaneous gene delivery in a human genetic skin disease // Hum Gene Ther. 1997. Vol. 8, N 14. P. 1659–1665. doi: 10.1089/hum.1997.8.14-1659 |
| [98] |
Mildner M, Ballaun C, Stichenwirth M, et al. Gene silencing in a human organotypic skin model. Biochem Biophys Res Commun. 2006;348(1):76–82. doi: 10.1016/j.bbrc.2006.07.035 |
| [99] |
Mildner M., Ballaun C., Stichenwirth M., et al. Gene silencing in a human organotypic skin model // Biochem Biophys Res Commun. 2006. Vol. 348, N 1. P. 76–82. doi: 10.1016/j.bbrc.2006.07.035 |
| [100] |
Menon GK. New insights into skin structure: scratching the surface. Adv Drug Deliv Rev. 2002;54(Suppl. 1):S3–S17. doi: 10.1016/S0169-409X(02)00121-7 |
| [101] |
Menon G.K. New insights into skin structure: scratching the surface // Adv Drug Deliv Rev. 2002. Vol. 54, Suppl. 1. P. S3–S17. doi: 10.1016/S0169-409X(02)00121-7 |
| [102] |
Czarnowicki T, He H, Leonard A, et al. The major orphan forms of ichthyosis are characterized by systemic T-cell activation and Th-17/Tc-17/Th-22/Tc-22 polarization in blood. J Invest Dermatol. 2018;138(10):2157–2167. doi: 10.1016/j.jid.2018.03.1523 |
| [103] |
Czarnowicki T., He H., Leonard A., et al. The major orphan forms of ichthyosis are characterized by systemic T-cell activation and Th-17/Tc-17/Th-22/Tc-22 polarization in blood // J Invest Dermatol. 2018. Vol. 138, N 10. P. 2157–2167. doi: 10.1016/j.jid.2018.03.1523 |
| [104] |
Bastien J, Rochette-Egly C. Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene. 2004;328:1–16. doi: 10.1016/j.gene.2003.12.005 |
| [105] |
Bastien J., Rochette-Egly C. Nuclear retinoid receptors and the transcription of retinoid-target genes // Gene. 2004. Vol. 328. P. 1–16. doi: 10.1016/j.gene.2003.12.005 |
| [106] |
Brown LJ, Geesin JC, Rothnagel JA, et al. Retinoic acid suppression of loricrin expression in reconstituted human skin cultured at the liquid-air interface. J Invest Dermatol. 1994;102(6):886–890. doi: 10.1111/1523-1747.ep12382905 |
| [107] |
Brown L.J., Geesin J.C., Rothnagel J.A., et al. Retinoic acid suppression of loricrin expression in reconstituted human skin cultured at the liquid-air interface // J Invest Dermatol. 1994. Vol. 102, N 6. P. 886–890. doi: 10.1111/1523-1747.ep12382905 |
| [108] |
Khalil S, Bardawil T, Stephan C, et al. Retinoids: a journey from the molecular structures and mechanisms of action to clinical uses in dermatology and adverse effects. J Dermatolog Treat. 2017;28(8):684–696. doi: 10.1080/09546634.2017.1309349 |
| [109] |
Khalil S., Bardawil T., Stephan C., et al. Retinoids: a journey from the molecular structures and mechanisms of action to clinical uses in dermatology and adverse effects // J Dermatolog Treat. 2017. Vol. 28, N 8. P. 684–696. doi: 10.1080/09546634.2017.1309349 |
| [110] |
DiGiovanna JJ, Mauro T, Milstone LM, et al. Systemic retinoids in the management of ichthyoses and related skin types. Dermatol Ther. 2013;26(1):26–38. doi: 10.1111/j.1529-8019.2012.01527.x |
| [111] |
DiGiovanna J.J., Mauro T., Milstone L.M., et al. Systemic retinoids in the management of ichthyoses and related skin types // Dermatol Ther. 2013. Vol. 26, N 1. P. 26–38. doi: 10.1111/j.1529-8019.2012.01527.x |
| [112] |
Gatzka M, Scharffetter-Kochanek K. T-cell plasticity in inflammatory skin diseases–the good, the bad, and the chameleons. J Dtsch Dermatol Ges. 2015;13(7):647–651. doi: 10.1111/ddg.12677 |
| [113] |
Gatzka M., Scharffetter-Kochanek K. T-cell plasticity in inflammatory skin diseases–the good, the bad, and the chameleons // J Dtsch Dermatol Ges. 2015. Vol. 13, N 7. P. 647–651. doi: 10.1111/ddg.12677 |
| [114] |
Yamasaki K, Nakagawa H, Kubo Y, et al. Efficacy and safety of brodalumab in patients with generalized pustular psoriasis and psoriatic erythroderma: results from a 52-week, open-label study. Br J Dermatol. 2017;176(3):741–751. doi: 10.1111/bjd.14702 |
| [115] |
Yamasaki K., Nakagawa H., Kubo Y., et al. Efficacy and safety of brodalumab in patients with generalized pustular psoriasis and psoriatic erythroderma: results from a 52-week, open-label study // Br J Dermatol. 2017. Vol. 176, N 3. P. 741–751. doi: 10.1111/bjd.14702 |
| [116] |
Yogarajah J, Gouveia C, Iype J, et al. Efficacy and safety of secukinumab for the treatment of severe ABCA12 deficiency-related ichthyosis in a child. Skin Health Dis. 2021;1(2):e25. doi: 10.1002/ski2.25 |
| [117] |
Yogarajah J., Gouveia C., Iype J., et al. Efficacy and safety of secukinumab for the treatment of severe ABCA12 deficiency-related ichthyosis in a child // Skin Health Dis. 2021. Vol. 1, N 2. P. e25. doi: 10.1002/ski2.25 |
| [118] |
Oji V, Traupe H. Ichthyosis: clinical manifestations and practical treatment options. Am J Clin Dermatol. 2009;10(6):351–364. doi: 10.2165/11311070-000000000-00000 |
| [119] |
Oji V., Traupe H. Ichthyosis: clinical manifestations and practical treatment options // Am J Clin Dermatol. 2009. Vol. 10, N 6. P. 351–364. doi: 10.2165/11311070-000000000-00000 |
| [120] |
Tadini G, Giustini S, Milani M. Efficacy of topical 10% urea-based lotion in patients with ichthyosis vulgaris: a two-center, randomized, controlled, single-blind, right-vs.-left study in comparison with standard glycerol-based emollient cream. Curr Med Res Opin. 2011;27(12):2279–2284. doi: 10.1185/03007995.2011.628381 |
| [121] |
Tadini G., Giustini S., Milani M. Efficacy of topical 10% urea-based lotion in patients with ichthyosis vulgaris: a two-center, randomized, controlled, single-blind, right-vs.-left study in comparison with standard glycerol-based emollient cream // Curr Med Res Opin. 2011. Vol. 27, N 12. P. 2279–2284. doi: 10.1185/03007995.2011.628381 |
| [122] |
Bassotti A, Moreno S, Criado E. Successful treatment with topical N-acetylcysteine in urea in five children with congenital lamellar ichthyosis. Pediatr Dermatol. 2011;28(4):451–455. doi: 10.1111/j.1525-1470.2011.01375.x |
| [123] |
Bassotti A., Moreno S., Criado E. Successful treatment with topical N-acetylcysteine in urea in five children with congenital lamellar ichthyosis // Pediatr Dermatol. 2011. Vol. 28, N 4. P. 451–455. doi: 10.1111/j.1525-1470.2011.01375.x |
| [124] |
Allen A, Siegfried E, Silverman R, et al. Significant absorption of topical tacrolimus in 3 patients with Netherton syndrome. Arch Dermatol. 2001;137(6):747–750. |
| [125] |
Allen A., Siegfried E., Silverman R., et al. Significant absorption of topical tacrolimus in 3 patients with Netherton syndrome // Arch Dermatol. 2001. Vol. 137, N 6. P. 747–750. |
| [126] |
Halverstam CP, Vachharajani A, Mallory SB. Cushing syndrome from percutaneous absorption of 1% hydrocortisone ointment in Netherton syndrome. Pediatr Dermatol. 2007;24(1):42–45. doi: 10.1111/j.1525-1470.2007.00331.x |
| [127] |
Halverstam C.P., Vachharajani A., Mallory S.B. Cushing syndrome from percutaneous absorption of 1% hydrocortisone ointment in Netherton syndrome // Pediatr Dermatol. 2007. Vol. 24, N 1. P. 42–45. doi: 10.1111/j.1525-1470.2007.00331.x |
| [128] |
Uthoff D, Gorney M, Teichmann C. Cicatricial ectropion in ichthyosis: a novel approach to treatment. Ophthalmic Plast Reconstr Surg. 1994;10(2):92–95. doi: 10.1097/00002341-199406000-00004 |
| [129] |
Uthoff D., Gorney M., Teichmann C. Cicatricial ectropion in ichthyosis: a novel approach to treatment // Ophthalmic Plast Reconstr Surg. 1994. Vol. 10, N 2. P. 92–95. doi: 10.1097/00002341-199406000-00004 |
| [130] |
Li S, Yang X, Liu L, Tang X. A case of skin autograft for skin ulcers in ichthyosis. J Central South University (Medical Sciences). 2017;42(10):1239–1240. (In Chinese). doi: 10.11817/j.issn.1672-7347.2017.10.020 |
| [131] |
Li S., Yang X., Liu L., Tang X. A case of skin autograft for skin ulcers in ichthyosis // J Central South University (Medical Sciences). 2017. Vol. 42, N 10. P. 1239–1240. doi: 10.11817/j.issn.1672-7347.2017.10.020 |
| [132] |
Das S, Honavar SG, Dhepe N, Naik MN. Maternal skin allograft for cicatricial ectropion in congenital icthyosis. Ophthalmic Plast Reconstr Surg. 2010;26(1):42–43. doi: 10.1097/IOP.0b013e3181b8e0d4 |
| [133] |
Das S., Honavar S.G., Dhepe N., Naik M.N. Maternal skin allograft for cicatricial ectropion in congenital icthyosis // Ophthalmic Plast Reconstr Surg. 2010. Vol. 26, N 1. P. 42–43. doi: 10.1097/IOP.0b013e3181b8e0d4 |
| [134] |
Rybárová N, Pinková B, Došková H, Vlková E. Sight-threatening complication of cicatricial ectropion in a patient with lamellar ichthyosis — case report. Acta Dermatovenerol Croat. 2020;28(1):29–33. |
| [135] |
Rybárová N., Pinková B., Došková H., Vlková E. Sight-threatening complication of cicatricial ectropion in a patient with lamellar ichthyosis — case report // Acta Dermatovenerol Croat. 2020. Vol. 28, N 1. P. 29–33. |
| [136] |
Subramanian N, Nivean PD, Alam MS. Combined medical and surgical management for cicatricial ectropion in lamellar ichthyosis: a report of three cases. Indian J Ophthalmol. 2020;68(11):2615–2617. doi: 10.4103/ijo.IJO_855_20 |
| [137] |
Subramanian N., Nivean P.D., Alam M.S. Combined medical and surgical management for cicatricial ectropion in lamellar ichthyosis: a report of three cases // Indian J Ophthalmol. 2020. Vol. 68, N 11. P. 2615–2617. doi: 10.4103/ijo.IJO_855_20 |
| [138] |
Schaefer RM, Tylki-Szymańska A, Hilz MJ. Enzyme replacement therapy for Fabry disease: a systematic review of available evidence. Drugs. 2009;69(16):2179–2205. doi: 10.2165/11318300-000000000-00000 |
| [139] |
Schaefer R.M., Tylki-Szymańska A., Hilz M.J. Enzyme replacement therapy for Fabry disease: a systematic review of available evidence // Drugs. 2009. Vol. 69, N 16. P. 2179–2205. doi: 10.2165/11318300-000000000-00000 |
| [140] |
Okuyama T, Tanaka A, Suzuki Y, et al. Japan Elaprase® Treatment (JET) study: idursulfase enzyme replacement therapy in adult patients with attenuated Hunter syndrome (Mucopolysaccharidosis II, MPS II). Mol Genet Metab. 2010;99(1):18–25. doi: 10.1016/j.ymgme.2009.08.006 |
| [141] |
Okuyama T., Tanaka A., Suzuki Y., et al. Japan Elaprase® Treatment (JET) study: idursulfase enzyme replacement therapy in adult patients with attenuated Hunter syndrome (Mucopolysaccharidosis II, MPS II) // Mol Genet Metab. 2010. Vol. 99, N 1. P. 18–25. doi: 10.1016/j.ymgme.2009.08.006 |
| [142] |
Tanaka N, Saito H, Ito T, et al. Initiation of enzyme replacement therapy for an adult patient with asymptomatic type 1 Gaucher’s disease. Intern Med. 2001;40(8):716–721. doi: 10.2169/internalmedicine.40.716 |
| [143] |
Tanaka N., Saito H., Ito T., et al. Initiation of enzyme replacement therapy for an adult patient with asymptomatic type 1 Gaucher’s disease // Intern Med. 2001. Vol. 40, N 8. P. 716–721. doi: 10.2169/internalmedicine.40.716 |
| [144] |
Solovyeva VV, Shaimardanova AA, Chulpanova DS, et al. New approaches to Tay-Sachs disease therapy. Front Physiol. 2018;9:1663. doi: 10.3389/fphys.2018.01663 |
| [145] |
Solovyeva V.V., Shaimardanova A.A., Chulpanova D.S., et al. New approaches to Tay-Sachs disease therapy // Front Physiol. 2018. Vol. 9. P. 1663. doi: 10.3389/fphys.2018.01663 |
| [146] |
Shaimardanova AA, Chulpanova DS, Solovyeva VV, et al. Metachromatic leukodystrophy: diagnosis, modeling, and treatment approaches. Front Med (Lausanne). 2020;7:576221. doi: 10.3389/fmed.2020.576221 |
| [147] |
Shaimardanova A.A., Chulpanova D.S., Solovyeva V.V., et al. Metachromatic leukodystrophy: diagnosis, modeling, and treatment approaches // Front Med (Lausanne). 2020. Vol. 7. P. 576221. doi: 10.3389/fmed.2020.576221 |
| [148] |
Aufenvenne K, Larcher F, Hausser I, et al. Topical enzyme-replacement therapy restores transglutaminase 1 activity and corrects architecture of transglutaminase-1-deficient skin grafts. Am J Hum Genet. 2013;93(4):620–630. doi: 10.1016/j.ajhg.2013.08.003 |
| [149] |
Aufenvenne K., Larcher F., Hausser I., et al. Topical enzyme-replacement therapy restores transglutaminase 1 activity and corrects architecture of transglutaminase-1-deficient skin grafts // Am J Hum Genet. 2013. Vol. 93, N 4. P. 620–630. doi: 10.1016/j.ajhg.2013.08.003 |
| [150] |
Plank R, Yealland G, Miceli E, et al. Transglutaminase 1 replacement therapy successfully mitigates the autosomal recessive congenital ichthyosis phenotype in full-thickness skin disease equivalents. J Invest Dermatol. 2019;139(5):1191–1195. doi: 10.1016/j.jid.2018.11.002 |
| [151] |
Plank R., Yealland G., Miceli E., et al. Transglutaminase 1 replacement therapy successfully mitigates the autosomal recessive congenital ichthyosis phenotype in full-thickness skin disease equivalents // J Invest Dermatol. 2019. Vol. 139, N 5. P. 1191–1195. doi: 10.1016/j.jid.2018.11.002 |
| [152] |
Cuggino JC, Alvarez ICI, Strumia MC, et al. Thermosensitive nanogels based on dendritic polyglycerol and N-isopropylacrylamide for biomedical applications. Soft Matter. 2011;7(23):11259–11266. doi: 10.1039/c1sm06357j |
| [153] |
Cuggino J.C., Alvarez I.C.I., Strumia M.C., et al. Thermosensitive nanogels based on dendritic polyglycerol and N-isopropylacrylamide for biomedical applications // Soft Matter. 2011. Vol. 7, N 23. P. 11259–11266. doi: 10.1039/c1sm06357j |
| [154] |
Siprashvili Z, Nguyen NT, Bezchinsky MY, et al. Long-term type VII collagen restoration to human epidermolysis bullosa skin tissue. Hum Gene Ther. 2010;21(10):1299–1310. doi: 10.1089/hum.2010.023 |
| [155] |
Siprashvili Z., Nguyen N.T., Bezchinsky M.Y., et al. Long-term type VII collagen restoration to human epidermolysis bullosa skin tissue // Hum Gene Ther. 2010. Vol. 21, N 10. P. 1299–1310. doi: 10.1089/hum.2010.023 |
| [156] |
Freiberg RA, Choate KA, Deng H, et al. A model of corrective gene transfer in X-linked ichthyosis. Hum Mol Genet. 1997;6(6):927–933. doi: 10.1093/hmg/6.6.927 |
| [157] |
Freiberg R.A., Choate K.A., Deng H., et al. A model of corrective gene transfer in X-linked ichthyosis // Hum Mol Genet. 1997. Vol. 6, N 6. P. 927–933. doi: 10.1093/hmg/6.6.927 |
| [158] |
Choate KA, Kinsella TM, Williams ML, et al. Transglutaminase 1 delivery to lamellar ichthyosis keratinocytes. Hum Gene Ther. 1996;7(18):2247–2253. doi: 10.1089/hum.1996.7.18-2247 |
| [159] |
Choate K.A., Kinsella T.M., Williams M.L., et al. Transglutaminase 1 delivery to lamellar ichthyosis keratinocytes // Hum Gene Ther. 1996. Vol. 7, N 18. P. 2247–2253. doi: 10.1089/hum.1996.7.18-2247 |
| [160] |
Gurevich I, Agarwal P, Zhang PP, et al. In vivo topical gene therapy for recessive dystrophic epidermolysis bullosa: a phase 1 and 2 trial. Nat Med. 2022;28(4):780–788. doi: 10.1038/s41591-022-01737-y |
| [161] |
Gurevich I., Agarwal P., Zhang P.P., et al. In vivo topical gene therapy for recessive dystrophic epidermolysis bullosa: a phase 1 and 2 trial // Nat Med. 2022. Vol. 28, N 4. P. 780–788. doi: 10.1038/s41591-022-01737-y |
| [162] |
Kramm CM, Chase M, Herrlinger U, et al. Therapeutic efficiency and safety of a second-generation replication-conditional HSV1 vector for brain tumor gene therapy. Hum Gene Ther. 1997;8(17):2057–2068. doi: 10.1089/hum.1997.8.17-2057 |
| [163] |
Kramm C.M., Chase M., Herrlinger U., et al. Therapeutic efficiency and safety of a second-generation replication-conditional HSV1 vector for brain tumor gene therapy // Hum Gene Ther. 1997. Vol. 8, N 17. P. 2057–2068. doi: 10.1089/hum.1997.8.17-2057 |
| [164] |
Freedman JC, Parry TJ, Zhang P, et al. Preclinical evaluation of a modified herpes simplex virus type 1 vector encoding human TGM1 for the treatment of autosomal recessive congenital ichthyosis. J Invest Dermatol. 2021;141(4):874–882.e6. doi: 10.1016/j.jid.2020.07.035 |
| [165] |
Freedman J.C., Parry T.J., Zhang P., et al. Preclinical evaluation of a modified herpes simplex virus type 1 vector encoding human TGM1 for the treatment of autosomal recessive congenital ichthyosis // J Invest Dermatol. 2021. Vol. 141, N 4. P. 874–882.e6. doi: 10.1016/j.jid.2020.07.035 |
| [166] |
Gorell E, Nguyen N, Lane A, Siprashvili Z. Gene therapy for skin diseases. Cold Spring Harb Perspect Med. 2014;4(4):a015149. doi: 10.1101/cshperspect.a015149 |
| [167] |
Gorell E., Nguyen N., Lane A., Siprashvili Z. Gene therapy for skin diseases // Cold Spring Harb Perspect Med. 2014. Vol. 4, N 4. P. a015149. doi: 10.1101/cshperspect.a015149 |
| [168] |
Huber M, Hohl D, Limat A, Wagner E. Efficient in vitro transfection of human keratinocytes with an adenovirus-enhanced receptor-mediated system. J Invest Dermatol. 2000;114(4):661–666. doi: 10.1046/j.1523-1747.2000.00942.x |
| [169] |
Huber M., Hohl D., Limat A., Wagner E. Efficient in vitro transfection of human keratinocytes with an adenovirus-enhanced receptor-mediated system // J Invest Dermatol. 2000. Vol. 114, N 4. P. 661–666. doi: 10.1046/j.1523-1747.2000.00942.x |
| [170] |
Vahlquist A, Gånemo A, Virtanen M. Congenital ichthyosis: an overview of current and emerging therapies. Acta Derm Venereol. 2008;88(1):4–14. doi: 10.2340/00015555-0415 |
| [171] |
Vahlquist A., Gånemo A., Virtanen M. Congenital ichthyosis: an overview of current and emerging therapies // Acta Derm Venereol. 2008. Vol. 88, N 1. P. 4–14. doi: 10.2340/00015555-0415 |
| [172] |
Naso MF, Tomkowicz B, Perry III WL, Strohl WR. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs. 2017;31(4):317–334. doi: 10.1007/s40259-017-0234-5 |
| [173] |
Naso M.F., Tomkowicz B., Perry III W.L., Strohl W.R. Adeno-associated virus (AAV) as a vector for gene therapy // BioDrugs. 2017. Vol. 31, N 4. P. 317–334. doi: 10.1007/s40259-017-0234-5 |
| [174] |
Haug S, Braun-Falco M. Adeno-associated virus vectors are able to restore fatty aldehyde dehydrogenase-deficiency. Implications for gene therapy in Sjögren-Larsson syndrome. Arch Dermatol Res. 2005;296(12):568–572. doi: 10.1007/s00403-005-0556-x |
| [175] |
Haug S., Braun-Falco M. Adeno-associated virus vectors are able to restore fatty aldehyde dehydrogenase-deficiency. Implications for gene therapy in Sjögren-Larsson syndrome // Arch Dermatol Res. 2005. Vol. 296, N 12. P. 568–572. doi: 10.1007/s00403-005-0556-x |
| [176] |
Haug S, Braun-Falco M. Restoration of fatty aldehyde dehydrogenase deficiency in Sjögren-Larsson syndrome. Gene Ther. 2006;13(13):1021–1026. doi: 10.1038/sj.gt.3302743 |
| [177] |
Haug S., Braun-Falco M. Restoration of fatty aldehyde dehydrogenase deficiency in Sjögren-Larsson syndrome // Gene Ther. 2006. Vol. 13, N 13. P. 1021–1026. doi: 10.1038/sj.gt.3302743 |
| [178] |
Di W-L, Mellerio JE, Bernadis C, et al. Phase I study protocol for ex vivo lentiviral gene therapy for the inherited skin disease, Netherton syndrome. Hum Gene Ther Clin Dev. 2013;24(4):182–190. doi: 10.1089/humc.2013.195 |
| [179] |
Di W.-L., Mellerio J.E., Bernadis C., et al. Phase I study protocol for ex vivo lentiviral gene therapy for the inherited skin disease, Netherton syndrome // Hum Gene Ther Clin Dev. 2013. Vol. 24, N 4. P. 182–190. doi: 10.1089/humc.2013.195 |
| [180] |
Di W-L, Lwin SM, Petrova A, et al. Generation and clinical application of gene-modified autologous epidermal sheets in Netherton syndrome: lessons learned from a phase 1 trial. Hum Gene Ther. 2019;30(9):1067–1078. doi: 10.1089/hum.2019.049 |
| [181] |
Di W.-L., Lwin S.M., Petrova A., et al. Generation and clinical application of gene-modified autologous epidermal sheets in Netherton syndrome: lessons learned from a phase 1 trial // Hum Gene Ther. 2019. Vol. 30, N 9. P. 1067–1078. doi: 10.1089/hum.2019.049 |
| [182] |
Jensen TG, Jensen UB, Jensen PKA, et al. Correction of steroid sulfatase deficiency by gene transfer into basal cells of tissue-cultured epidermis from patients with recessive X-linked ichthyosis. Exp Cell Res. 1993;209(2):392–397. doi: 10.1006/excr.1993.1326 |
| [183] |
Jensen T.G., Jensen U.B., Jensen P.K.A., et al. Correction of steroid sulfatase deficiency by gene transfer into basal cells of tissue-cultured epidermis from patients with recessive X-linked ichthyosis // Exp Cell Res. 1993. Vol. 209, N 2. P. 392–397. doi: 10.1006/excr.1993.1326 |
| [184] |
March OP, Lettner T, Klausegger A, et al. Gene editing-mediated disruption of epidermolytic ichthyosis-associated KRT10 alleles restores filament stability in keratinocytes. J Invest Dermatol. 2019;139(8):1699–1710.e6. doi: 10.1016/j.jid.2019.03.1146 |
| [185] |
March O.P., Lettner T., Klausegger A., et al. Gene editing-mediated disruption of epidermolytic ichthyosis-associated KRT10 alleles restores filament stability in keratinocytes // J Invest Dermatol. 2019. Vol. 139, N 8. P. 1699–1710.e6. doi: 10.1016/j.jid.2019.03.1146 |
| [186] |
Lee MY, Wang H-Z, White TW, et al. Allele-specific small interfering RNA corrects aberrant cellular phenotype in keratitis-ichthyosis-deafness syndrome keratinocytes. J Invest Dermatol. 2020;140(5):1035–1044.e7. doi: 10.1016/j.jid.2019.09.022 |
| [187] |
Lee M.Y., Wang H.-Z., White T.W., et al. Allele-specific small interfering RNA corrects aberrant cellular phenotype in keratitis-ichthyosis-deafness syndrome keratinocytes // J Invest Dermatol. 2020. Vol. 140, N 5. P. 1035–1044.e7. doi: 10.1016/j.jid.2019.09.022 |
Eco-Vector
/
| 〈 |
|
〉 |